
 
 

 

  
Abstract—In this paper, we introduce a new general 

definition of L1-norm SVM (GL1-SVM) for feature selection 
and represent it as a polynomial mixed 0-1 programming 
problem. We prove that solving the new proposed optimization 
problem reduces error penalty and enlarges the margin 
between two support vector hyper-planes. This possibly 
provides better generalization capability of SVM than solving 
the traditional L1-norm SVM proposed by Bradley and 
Mangasarian. We also propose a new search method that 
ensures obtaining of the global feature subset by means of the 
new GL1-SVM. The proposed search method is based on 
solving a mixed 0-1 linear programming (M01LP) problem by 
using the branch and bound algorithm. In this M01LP problem, 
the number of constraints and variables is linear in the number 
of full set features. Experimental results obtained over the UCI, 
LIBSVM, UNM and MIT Lincoln Lab data sets show that the 
new general L1-norm SVM gives better generalization 
capability, while selecting fewer features than the traditional 
L1-norm SVM in many cases. 
 

Index Terms—branch and bound, feature selection, L1-norm 
support vector machine, mixed 0-1 linear programming 
problem. 

I. INTRODUCTION 
   

The feature selection problem for support vector machine 
(SVM) was studied in many previous works [1]-[7]. In this 
paper, we focus on feature selection for linear SVMs [10,11] 
for two-class classification problems. In particular, we 
consider the application of L1-norm SVM for feature 
selection, which was first proposed by Bradley and 
Mangasarian in 1998 [1]. Feature selection is an indirect 
consequence of the training process of SVMs. In fact, in the 
context of linear SVMs for two-class classification problems, 
the number of selected important features is the number of 
nonzero elements of the weight vector after the training phase. 
Bradley and Mangasarian [1] showed in many cases that 
utilizing the L1-norm SVM leads to a feature selection 
method, whereas utilizing the standard SVM [10,11] does 
not. 
    However, we realize that the Bradley and Mangasarian's 
method considers only one case of all n full-set features in the 
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training phase. Since there probably exist irrelevant and 
redundant features [14,15], it is necessary to test all 

2n possible combinations of features for training SVM. In 
this paper, we propose a new general definition of L1-norm 
SVM (GL1-SVM) that takes into account all 2n possible 
feature subsets. Therefore, the traditional L1-norm SVM 
proposed by Bradley and Mangasarian is just only a case of 
our new GL1-SVM. This is the reason why we call our 
method a general L1-norm SVM. The main idea of the 
GL1-SVM is that we encode the weight vector and the data 

matrix by utilizing binary variables ( 1, )jx j n= . Following 

this encoding scheme, our GL1-SVM can be represented as a 
polynomial mixed 0-1 programming problem (PM01P). The 
objective function of this PM01P, which is a sum of the 
inverse value of margin by means of L1-norm and the error 
penalty, depends on binary variables. We prove that the 
minimal value of the objective function from the GL1-SVM 
is not larger than the one from the traditional L1-norm SVM. 
As a consequence, solving our new proposed optimization 
problem PM01P reduces error penalty and enlarges the 
margin between two support vector hyper-planes. This 
possibly provides better generalization capability of SVM 
than those obtained by solving the traditional L1-norm SVM.  

In order to solve the obtained PM01P problem, we apply 
Chang's method to transfer it into a mixed 0-1 linear 
programming problem (M01LP), which can be solved by 
using branch and bound algorithm. The number of variables 
and constraints in this M01LP is linear in the number of 
full-set features and the number of instances. We have 
compared our new GL1-SVM with the traditional L1-norm 
SVM proposed by Bradley and Mangasarian [1] regarding 
the generalization capability and the number of selected 
important features. Experimental results obtained over the 
UCI [12], LIBSVM [17], UNM [19] and MIT Lincoln Lab 
(MIT LL) [18] data sets show that the new general L1-norm 
SVM gives better generalization capability, while selecting 
fewer features in many cases.  

The paper is organized as follows. Section II formally 
defines a new general definition of L1-norm SVM 
(GL1-SVM). We show how to represent GL1-SVM as a 
polynomial mixed 0-1 programming problem (PM01P) by 
means of an encoding scheme. In this section, we also prove 
that the minimal value of the objective function from the 
GL1-SVM is not larger than the one from the traditional 
L1-norm SVM. Section III describes our new search 
approach that ensures globally optimal feature subsets by 
means of the GL1-SVM. We present experimental results in 
Section IV. The last section summarizes our findings. 
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II. A GENERAL L1-NORM SUPPORT VECTOR MACHINES  
 
We are given a training data set D with m instances: 
 

  1{( , ) | , { 1,1}}n m
i i i i iD a c a R c == ∈ ∈ −  

 
where ia is the thi instance that has n features and a class 

label ic ; ia can be represented as a data vector as follows: 

1 2( , ,..., )i i i inaa a a= , where ija is the value of the 
thj feature in instance ia . 
 
For the two-class classification problem, SVM learns the 

separating hyper-plane w*a=b that maximizes the margin 

distance 2

2

2
w

, where w is the weight vector and b is the bias. 

The primal form of SVM is given below [10]: 

 

        

2

2,

1min
2w b

w          (P1) 

  subject to the following constraints: 

{ ( ) 1, 1, }i ic wa b i m− ≥ =  

In 1995, Cortes and Vapnik [11] proposed a modified 
version of SVM that allows for mislabeled instances. They 
called this version of SVM Soft Margin, which has the 
following form: 
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 subject to the following constraints: 

        

  

ci (wai − b) ≥ 1− ξi ,

ξi ≥ 0, i = 1,m.

⎧
⎨
⎪

⎩⎪
  

 
   where iξ  is slack variable, which measures the degree of 

misclassification of instance ia , 0C >  is the error penalty 
parameter. 

In 1998, Bradley and Mangasarian [1] proposed to use 
L1-norm SVM for feature selection as a consequence of the 
resulting sparse solutions: 
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w,b,ξ
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+ C ξi
i=1

m

∑                  (P3) 

 subject to the following constraints: 

       
  

ci (wai − b) ≥ 1− ξi ,

ξi ≥ 0, i = 1,m.

⎧
⎨
⎪

⎩⎪
   

 

Define w = p - q with , 0p q ≥ . The problem (P3) is then 
equivalent to the following linear programming problem [1]: 
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p ,q,b,ξ

en
T ( p + q) + C ξi

i=1

m

∑ ,
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It can be seen from (P4) that the vectors p, q and ia are 

n-dimensional, where n is the number of full-set features. 
That means the Bradley and Mangasarian's method considers 
only a single case of the whole m x n data matrix, while 
skipping 2 1n −  cases of  m x k  data matrix (1 k n≤ ≤ ) in 

the training phase. In other words, 2 1n − possible feature 
subsets are not taken into account by the traditional L1-norm 
SVM. Therefore, the general formulation of L1-norm SVM 
for feature selection is given below: We need to find the 
subset S of k features, which has the minimum value of 

( )SMerit k over all 2n possible feature subsets: 
 

{ }min ( ),1SS
Merit k k n≤ ≤  

where    
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subject to the following constraints: 
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When the number of features n is small, we can apply the 
brute force method to scan all these subsets. But when this 
number becomes large, a more computationally efficient 
method that also ensures obtaining of the globally optimal 
subsets is required. In the following, we will show how to 
represent the problem (P4)' as a polynomial mixed 0-1 
programming problem and show how to solve this 
optimization problem in order to get the globally optimal 
feature subset. 

Firstly, we use the binary variables ( 1, )jx j n= for 

indicating the appearance of the thj feature ( 1jx = ) or the 
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absence of the thj feature ( 0jx = ) to encode the variables p, 

q and the data vector ( 1, )ia i m= as follows: 
 

              

  

p = (x1z1,x2z2 ,..., xnzn ),
q = (x1zn+1,x2zn+2 ,..., xnz2n ),
ai = (ai1x1,ai2x2 ,...,ainxn )

⎧

⎨
⎪

⎩
⎪

                  (*) 

 
Proposition 1: With the encoding scheme (*), the problem 
(P4)' can be represented as a polynomial mixed 0-1 
programming problem. 
 
Proof. By using the encoding scheme (*), we generalize the 
problem (P4) into the following polynomial mixed 0-1 
programming problem that takes into account all 2n possible 
feature subsets and that is the same problem as (P4)': 
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subject to the following constraints: 
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Remark: We can even control the minimal number T            

( T n≤ ) of selected features or the minimal number T           
( T n≤ ) of  nonzero elements of the weight vector w by 

adding the following constraint: 1 2 ... nx x x T+ + + = to 
the optimization problem (P5). We will show how to solve 
this optimization problem in the next section. 
 
Proposition 2: Suppose that S1, S2 are minimal values of the 
objective functions from (P4), (P5), respectively. The 
following inequality is true: 
 

  S2 ≤ S1  

 
Proof. It is obvious, since the problem (P4) is a case of the 

problem (P5) when 1 2( , ,..., ) (1,1,...,1)nx x x x= = .□ 
 
Remark: As a consequence of the Proposition 2, solving 

the problem (P5) reduces error penalty and enlarges the 
margin between two support vector hyper-planes, thus 
possibly providing better generalization capability of SVM 
than solving the traditional L1-norm SVM proposed by 

Bradley and Mangasarian [1]. 
In the next section, we show how to solve the problem (P5) 

by applying Chang's method [8,9]. The idea is to convert the 
(P5) into a mixed 0-1 linear programming problem, which 
can then be solved by utilizing the branch and bound 
algorithm for finding globally optimal feature subsets. 

 

III. OPTIMIZING THE GENERAL L1-NORM SUPPORT  
 VECTOR MACHINES 

 Since x jz j = x j
2z j when x j ∈{0,1}, the following 

problem is equivalent to (P5): 

 

            
min
x ,z ,b,ξ

[ x j
2z j + x j

2zn+ j + C ξi
i=1

m

∑
j=1

n

∑
j=1

n

∑ ]  

 

subject to the following constraints 

ciaijx j
2z j − ciaijx j

2zn+ j − cib
j=1

n

∑ ≥ 1− ξi
j=1

n

∑ ,

x = (x1,x2 ,...,xn ),x j ∈{0,1}, j = 1,n,

ξ = (ξ1,ξ2 ,...,ξm ),ξi ≥ 0, i = 1,m,

z = (z1, z2 ,..., z2n ), zk ≥ 0,k = 1,2n

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

   (P6)  

 

Proposition 3: A polynomial mixed 0-1 term x j
2z j  from 

(P6) can be represented by a continuous variable jv , subject 

to the following linear inequalities [8,9]: 
 

      

(2 2) ,

(2 2 ) ,

0 ,

j j j

j j j

j j

v M x z
v M x z

v Mx

⎧ ≥ − +
⎪

≤ − +⎨
⎪ ≤ ≤⎩

                      (P7) 

 
   where M is a large positive value. 
 

Proof. 
1. If 0jx = , then (P7) becomes 

  

v j ≥ M (0 − 2) + z j ,

v j ≤ M (2 − 0) + z j ,

0 ≤ v j ≤ 0,

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

      jv is forced to be zero, as M is a large positive value.  

 
2. If 1jx = , then (P7) becomes 
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0

j j

j j

j

v M z
v M z
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⎪
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jv is forced to be jz , as 0jz ≥ . 

Therefore, the constraints on jv reduce to  

 
0, 0,

, 1,
j

j
j j

if x
v

z if x

⎧ =⎪= ⎨
=⎪⎩

 

which is the same as 
2
j j jx z v= .□ 

 
Remark: As a consequence of the Proposition 3, the 

polynomial mixed 0-1 programming problem (P6) becomes a 
mixed 0-1 linear programming problem (M01LP). The total 
number of variables of the M01LP problem will be linear    
(5n + m + 1), as they are , , , ,j k j n jx b z v v + and 

( 1, , 1,2 , 1, )i j n k n i mξ = = = . Therefore, the number of 
constraints on these variables will also be a linear function of 
n (number of full-set features) and m (number of instances). 
We can use branch and bound algorithm for solving this 
M01LP problem. 

 

IV. EXPERIMENT 
In order to validate our theoretical findings, we conducted 

an experiment on the UCI [12], the LIBSVM [17], the UNM 
[19] and the MIT LL [18] data sets. The goal was to compare 
our new method with the standard SVM [11] and the 
traditional L1-norm SVM [1] regarding the number of 
selected features and the generalization capability. Note that 
the number of selected features in context of linear SVM for 
binary classification problem is the number of nonzero 
elements of the weight vector. 

We selected 2 UCI data sets [12], 4 LIBSVM data sets [17], 
5 UNM data sets [19] and 2 MIT LL data sets [18]. The raw 
UNM and MIT LL data sets were not analyzed. Instead, we 
utilized the data sets with extracted features from [20]. For 
implementing the standard SVM and the traditional L1-norm 
SVM, we used the Mangasarian's code from the website [16]. 
For implementing the new general L1-norm SVM 
(GL1-SVM), the TOMLAB tool [13] was used for solving 
the mixed 0-1 linear programming problem. The values of the 
error penalty parameter C used for the experiment were:   

72− , 62− ... 62 , 72 . We applied 10-fold cross validation 
for estimating the average classification accuracies as well as 
the average number of selected features. All the best results 
obtained over those penalty parameters were chosen and are 
given in the tables I and  II. 

We observed from Table I that our new proposed method 
GL1-SVM selects the smallest number of relevant features in 
comparison to the standard SVM and the traditional L1-norm 
SVM. At the same time, our new method still keeps or even 
yields better generalization capability than the traditional 
L1-norm SVM does. This can be seen from Table II. 

 

 
TABLE I: NUMBER OF SELECTED FEATURES (ON AVERAGE) 

Data Sets Full 
set 

SVM L1-nor
m 

GL1-SV
M 

a1a [17] 123 105.3 64 3.5 

a2a [17] 123 107.6 74.9 3.8 

w1a [17] 300 266.2 76.7 11.1 

w2a [17] 300 270.5 99.9 10.2 

Spectf [12] 44 44 31 6 

haberman[12] 3 3 2.8 1.6 

RawFriday [18] 53 33.9 8.4 1.9 

RawMonday[18] 54 26 1 1 

L-inetd [19] 164 33.5 13.5 2.4 

Login [19] 164 46 9.6 2 

PS [19] 164 22 5 2 

S-lpr [19] 182 36.9 3.2 2 

Xlock [19] 200 46.8 13.4 1 

Average 144.1 80.1 31 3.7 

 
 

TABLE II: CLASSIFICATION ACCURACIES (ON AVERAGE) 
Data Sets SVM L1-norm GL1-SVM 

a1a [17] 83.99 65.40 75.37 

a2a [17] 82.25 68.34 74.75 

w1a [17] 96.76 88.49 97.09 

w2a [17] 96.69 85.76 96.92 

Spectf [12] 72.20 79.55 79.55 

Haberman[12] 73.48 73.16 73.48 

RawFriday [18] 98.40 54.02 98.80 

RawMonday[18
] 

100 95.65 100 

L-inetd [19] 88.33 85.00 85.83 

Login [19] 80.00 65.00 81.67 

PS [19] 100 100 100 

S-lpr [19] 100 70 99.11 

Xlock [19] 100 56.79 100 

Average 90.16 75.93 89.42 

 

V. CONCLUSIONS  
We have proposed a new general L1-norm SVM 

(GL1-SVM) for feature selection that considers all possible 
feature subsets. The main idea was to utilize binary variables 
for encoding the weight vector and the data matrix. The new 
GL1-SVM can then be represent as a polynomial mixed 0-1 
programming problem (PM01LP). We proved that the 
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traditional L1-norm SVM proposed by Bradley and 
Mangasarian is only a single case of our new GL1-SVM. 
Therefore, solving the new proposed optimization problem 
reduces error penalty and enlarges the margin between two 
support vector hyper-planes, thus possibly providing better 
generalization capability of SVM than solving the traditional 
L1-norm SVM problem from Bradley and Mangasarian. We 
also proposed a new search method that ensures obtaining of 
the global feature subset by means of the new GL1-SVM. By 
applying Chang's method, we transferred the PM01LP 
problem into a mixed 0-1 linear programming (M01LP) 
problem, which can be solved by using the branch and bound 
algorithm. In this M01LP problem, the number of constraints 
and variables is linear in the number of full set features.. 
Experimental results obtained over the UCI, the LIBSVM, 
the UNM and the MIT LL data sets showed that the new 
general L1-norm SVM gives better generalization capability, 
while selecting fewer features than the traditional L1-norm 
SVM in many cases. 
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