
  

 

Abstract—The proposed protein function prediction methods 

are mostly based on sequence or structure protein similarity 

and do not take into account the semantic similarity extracted 

from protein knowledge databases such as Gene Ontology. 

Many studies have shown that identification of protein 

complexes or functional modules can be effectively done by 

clustering protein interaction network (PIN). A significant 

number of proteins in such PIN remain uncharacterized and 

predicting their function remains a major challenge in system 

biology. In this paper we present a “semantic driven” clustering 

approach for protein function prediction by using both 

semantic similarity metrics and the whole network topology of a 

PIN. We apply k-medoids clustering combined with several 

semantic similarity metrics as a weight factor in the 

distance-clustering matrix. Protein functions are assigned based 

on cluster information. Results reveal improvement over 

standard non-semantic similarity metric. 

 

 

I. INTRODUCTION 

Nowadays, most of the similarity-based methods for 

determining protein function rely on protein’s sequence or 

structure. Unfortunately, the big drawback of these methods 

is that structure/sequence similarity is not directly related to 

the protein function, since proteins with significant 

structure/sequdence similarity can have different functions. 

Furthermore, proteins with different ancestors and no 

significant sequence similarity can have the same function, 

due to evolution. 

One of the most important challenges of molecular biology 

is finding a method for extracting protein function and 

protein similarity knowledge, consisted in the great amount 

of protein and genome data in well-known protein databases. 

An important breakthrough in protein annotation is the 

creation of the Gene Ontology (GO) [1], the most famous 

bio-ontology; structured and controlled vocabulary for 

describing gene and protein products. The GO, structured as a 

directed acyclic graph (DAG), defines a set of terms used for 

protein annotation. The GO-annotated interacting proteins 

can be used as a fertile basis for performing semantic driven 

protein comparison. This type of comparison is called 

semantic similarity, and is based on the structure of the GO 

and the relations between its terms, focusing on the semantic 

similarity between the terms themselves. It is still not clear 
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which is the best way to calculate semantic similarity 

considering the current bio-ontologies, but several metrics 

have been proposed to calculate protein semantic similarity 

in the context of the GO [2], [3]. 

A protein interaction network (PIN) consists of nodes 

representing proteins, and edges representing interactions 

between proteins. Such networks are stochastic as edges are 

weighted with the probability of interaction. There is more 

information in a PIN compared to sequence or structure alone. 

A network provides a global view of the context of each 

gene/protein. Hence, our computational function prediction is 

characterized by the use of a protein’s interaction context 

within the network to predict its functions.  

It has been shown that clustering PINs is an effective 

approach to understand the relationship between the 

organization of a network and its function [4]. Clustering in 

PIN is to group the proteins into sets (clusters) that 

demonstrate greater similarity among proteins in the same 

cluster than in different clusters. Since biological functions 

can be carried out by particular groups of genes and proteins, 

dividing networks into naturally grouped parts (clusters or 

communities) is an essential way to investigate some 

relationships between the function and topology of networks 

or to reveal hidden knowledge behind them. 

There are many clustering techniques proposed, but 

usually standard clustering algorithms are the most effective. 

In this paper we use k-medoids [5] clustering algorithm for 

standard protein clustering without the use of PIN, and for 

graph clustering with the use of PIN. Semantic similarity is 

added to these clustering techniques as a distance metric in 

the distance matrix. The aim is to present our work for 

evaluating the semantic similarity metrics and presenting a 

new system for protein function prediction by the use of this 

clustering algorithm based on semantic similarity. For a 

given protein the system can determine similar proteins based 

on functional (semantic) similarity, and our goal is to see the 

impact of semantic similarity metrics on determining protein 

function. 

In Section II we present a related work of the existing 

semantic similarity metrics that will be used, while Section 

III will give the proposed system architecture for protein 

function prediction based on the semantic similarity metrics 

and the whole network topology using the semantic driven 

k-medoids clustering algorithm. Section IV presents 

experimental results and a discussion of the way that 

semantic similarity metrics influence the prediction process. 

Finally, Section V concludes the paper. 

 

II. OVERVIEW OF SEMANTIC SIMILARITY METRICS 

Several approaches are available to quantify semantic 

similarity between terms or annotated entities in an ontology 
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represented as a DAG such as GO. There are essentially two 

types of methods for comparing terms in a graph-structured 

ontology: edge-based, that use the edges and their types as 

data source; and node-based, in which the main data sources 

are the nodes and their properties. 

Edge-based approaches are based mainly on counting the 

number of edges in the graph path between two terms. The 

most common technique is the distance that selects either the 

shortest path or the average of all paths, when more than one 

path exists. This technique gives a metric of the distance 

between two terms, which can be easily converted into a 

similarity metric. While this approach is intuitive, terms at 

the same depth do not necessarily have the same specificity, 

and edges at the same level do not necessarily represent the 

same semantic distance, therefore in this paper we do not take 

these metrics into account.  

A. Node-Based Metrics 

Node-based approaches are mainly based on comparing 

the properties of the terms involved, which can be related to 

the terms themselves, their ancestors, or their descendants. 

The most commonly used concept in these approaches is 

information content (IC), which gives a measure how specific 

and informative a term is. The IC of a term c is defined as the 

negative log likelihood –logp(c), where p(c) is the probability 

of occurrence of c in a specific knowledgebase, being 

normally estimated by its frequency of annotation. The use of 

IC is important because it is more probable (and less 

meaningful) that two gene products share a commonly used 

term than an uncommonly used term. 

Four most common node-based semantic similarity 

metrics include Resnik’s, Lin’s, Jiang and Conrath’s and 

Relevance metric. They were originally developed for the 

WordNet, and then applied to GO. The definition of Resnik 

metric [6] is the similarity between two terms as the IC of 

their most informative common ancestor (MICA) as the 

following: 

Re 1 2( , ) ( )s MICAsim c c IC c                    (1) 

Resnik’s metric does not take into account how distant are 

the terms from their common ancestor. To consider that 

distance, Lin’s metric [7] is defined as: 

            (2) 

Jiang and Conrath’s metric [8] is based on Resnik's metric 

considering the IC of the two terms compared as in Lin's 

metric. It is defined as follows: 

(3) 

Another metric used is the relevance similarity metric [9], 

which is based on Lin's metric, but uses the probability of 

annotation of the MICA as a weighting factor to provide 

graph placement: 

          (4) 

B. Hybrid Metrics 

Furthermore, there are hybrid methods that combine the 

two types of methods for semantic similarity, and they give 

weights to the GO nodes or edges according to their type. In 

this paper, for the purpose of protein function prediction, we 

use two semantic similarity hybrid metrics: Wang's [10] and 

Shortest path [11] semantic similarity metric. 

In Wang's metric [10] each edge is given a weight 

according to the type of developed relationship. For a given 

term and its ancestor, a semantic contribution of the ancestor 

to the term is defined, as the product of all edge weights in the 

“best” path from the ancestor to the term, where the “best” 

path is the one that maximizes the product. Semantic 

similarity between two terms is then calculated by summing 

the semantic contributions of all common ancestors to each of 

the terms and dividing by the total semantic contribution of 

each term's ancestors to that term. 

Shortest Path semantic similarity metric [11] uses a 

shortest path algorithm between terms in GO and gives 

weights to the terms as a reciprocal value of their IC. The 

distance between two terms is given by: 

1 1
( )

( ) ( )
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IC t IC tt path t path

dist c c
SP 

 
 

   (5) 

where path1(path2) is the shortest path between term c1(c2) 

with its MICA, and t1(t2) are the terms on path1(path2). 

Semantic similarity is defined as 

1 2 1 2( , ) 1 ( , )SP SPsim c c dist c c                (6) 

 

III. PROTEIN FUNCTION PREDICTION SYSTEM 

ARCHITECTURE 

In our developed approach function prediction process is 

consisted of few steps: preprocessing; semantic matrix 

formulation; protein clustering and function prediction; and 

results evaluation. Fig. 1 shows the developed protein 

function prediction system architecture using semantic 

clustering algorithm. The preprocessing step [12] is made to 

get a highly reliably dataset. Following, semantic similarity 
between each protein pair is computed to formulate the 

dataset semantic similarity matrix. This means that we use 

the semantic similarity as e weighting factor while computing 

protein distance. 
We consider two scenarios: protein function prediction 

using standard k-medoids clustering without the use of PIN, 

and protein function prediction using PIN graph k-medoids 

clustering. In the former scenario, each protein pair semantic 

similarity matrix is an input to the k-medoids clustering 

algorithm as a distance matrix.  
In the latter, the graph representing the PIN is weighted 

with the semantic similarity matrix where the weight shows 

the semantic protein distance (or the probability of 

interaction between protein pairs). The resulting semantic 

similarity matrix is an input to the graph k-medoids clustering 

algorithm. 
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Fig. 1. Protein function prediction system architecture using semantic clustering algorithm. 

 

After the clustering, we set up a strategy for annotating a 

query protein with the adequate functions according to the 

functions of the proteins in its cluster. Each function is ranked 

by its frequency of appearance as an annotation for the 

proteins in the cluster. This rank is calculated by (7) and it is 

then normalized in the range from 0 to 1. 

 

                                        𝑓(𝑗)𝑗∈𝐹 =  𝑧𝑖𝑗𝑖∈𝐾                                    (7) 

 

where F is the set of functions present in the cluster K, and 

 

          𝑧𝑖𝑗 =  
1, if protein 𝑖 from 𝐾 has function 𝑗 from 𝐹

0, otherwise
   (8) 

 

In our proposed approach the previously explained 

Resnik’s, Lin’s, Relevance, JC’s, Wang's and Shortest Path 

metrics are used in the SS matrix, and therefore, evaluated 

with the semantic driven protein function prediction 

algorithm. 

 

IV. RESULTS AND DISCUSSION 

For the needs of this paper the dataset and the PIN data are 

compiled, pre-processed and purified from a number of 

established datasets, like: DIP, MIPS, MINT, BIND and 

BioGRID. The used dataset is believed to be highly reliable 

and consists of 2502 proteins from the interactome of the 

baker's yeast has 12708 interactions between them and are 

annotated with a total of 888 functional labels [12]. For the 

purposes of evaluating the proposed methods, the largest 

connected component of this dataset is used, which consists 

of 2146 proteins. 

Each protein in the dataset is streamed through the 

prediction process one at a time as a query protein. The query 

protein is considered un-annotated, that is we employ the 

leave-one out method. Each of the algorithms works in a 

fashion that ranks the “proximity” of the possible functions to 

the query protein. The ranks are scaled between 0 and 1 as 

explained in 3. The query protein is annotated with all 

functions that have rank above a previously determined 

threshold ω. For example, for ω=0, the query protein is 

assigned with all the function present in its cluster. We 

change the threshold with step 0.1 and compute numbers of 

true-positives (TP), true-negatives (TN), false-positives (FP) 

and false-negatives (FN). For a single query protein we 

consider the TP to be the number of correctly predicted 

functions, and for the whole PIN and a given value of ω, the 

TP number would be the total sum of all single protein TPs. 

To compare performance between different algorithms we 

use standard measures as sensitivity (9) and false positive rate 

(10). Experiments were performed with different number of 

clusters; however, we conclude that the starting number of 

clusters in k-medoids does not affect the results with different 

semantic similarity metrics. 

TP
sensitivity

TP FN



                        (9) 

FP
fpr

FP TN



                            (10) 

For the purpose of comparing semantic similarity metrics 

with other non-similarity metrics we apply cosine similarity 

between proteins for the experiments that don’t involve PIN 

and minimal hop distance between proteins for those that 

involve the PIN. 

Table I shows protein function prediction results based on 

semantic k-medoids without PIN. It is evident from Table I 

that the sensitivity for ω=0 is over 80% with all semantic 

similarity metrics, however, the false positive rate varies 

from metric to metric. The false positive rate varies between 

56% with cosine distance, and 21% with Wang similarity 

metric for 78-81% sensitivity. This shows a significant false 

positive rate decrease of 62.5% in favour of semantic 

similarity metrics (with Wang metric) over standard 

non-semantic cosine metric. Furthermore, with k-medoids 

dataset clustering without PIN the highest AUC value is 

achieved with Wang semantic similarity metric, while the 

other semantic metrics also show AUC value improvement 

compared to cosine metric in protein function prediction. 

Fig. 2(a) shows the semantic similarity metrics comparison 

ROC curves for evaluation of annotation using semantic 

k-medoids clustering without PIN.  
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TABLE I: PROTEIN FUNCTION PREDICTION RESULTS BASED ON SEMANTIC K-MEDOIDS CLUSTERING WITHOUT PIN 

М ω = 0 0.1 0.2 0.3 0.5 0.7 0.9 AUC 

Resnik 
sen 0.818 0.6216 0.4869 0.3909 0.2614 0.1915 0.1273 

0.816 
fpr 0.3633 0.0923 0.0409 0.0253 0.0076 0.0036 0.0005 

Lin 
sen 0.8221 0.622 0.4833 0.3835 0.2551 0.1882 0.1302 

0.817 
fpr 0.3711 0.0925 0.0407 0.0259 0.0075 0.0032 0.0005 

Rel 
sen 0.8231 0.6322 0.4901 0.3925 0.2669 0.1958 0.1279 

0.820 
fpr 0.3632 0.0929 0.0411 0.0259 0.0076 0.0033 0.0005 

JC 
sen 0.8237 0.6349 0.4991 0.4059 0.2734 0.1994 0.146 

0.822 
fpr 0.3606 0.0922 0.0409 0.0254 0.0078 0.0036 0.0005 

Wang 
sen 0.7863 0.627 0.4529 0.3588 0.2339 0.1631 0.098 

0.831 
fpr 0.2109 0.0855 0.035 0.0211 0.0071 0.0031 0.0012 

ShPath 
sen 0.8126 0.6344 0.4996 0.4076 0.2815 0.2019 0.148 

0.817 
fpr 0.3596 0.0927 0.0412 0.0262 0.0077 0.0033 0.0005 

Cosine 
sen 0.8041 0.6629 0.5366 0.4533 0.3126 0.2017 0.1325 

0.759 
fpr 0.5665 0.198 0.098 0.0613 0.0258 0.0072 0.0022 

 
TABLE II: PROTEIN FUNCTION PREDICTION RESULTS BASED ON SEMANTIC K-MEDOIDS CLUSTERING WITH PIN 

М ω = 0 0.1 0.2 0.3 0.5 0.7 0.9 AUC 

Resnik 
sen 0.8958 0.69 0.5316 0.4488 0.2648 0.1543 0.0928 

0.750 
fpr 0.8014 0.2388 0.1202 0.0794 0.0285 0.0093 0.0017 

Lin 
sen 0.8717 0.6322 0.4707 0.3517 0.1801 0.1025 0.0274 

0.701 
fpr 0.8654 0.2308 0.1143 0.0676 0.0221 0.0091 0.0011 

Rel 
sen 0.8739 0.6494 0.4974 0.3911 0.2131 0.118 0.0668 

0.717 
fpr 0.8339 0.2338 0.1205 0.0717 0.025 0.0088 0.0027 

JC 
sen 0.8747 0.656 0.4805 0.3798 0.2071 0.1111 0.0399 

0.719 
fpr 0.8319 0.2372 0.1091 0.0671 0.0242 0.0089 0.0013 

Wang 
sen 0.9018 0.6871 0.5354 0.4163 0.26 0.1657 0.073 

0.732 
fpr 0.8424 0.2756 0.1393 0.0812 0.035 0.0168 0.0044 

ShPath 
sen 0.8733 0.6518 0.5008 0.4042 0.2085 0.1167 0.0576 

0.712 
fpr 0.8454 0.2502 0.1216 0.0796 0.0252 0.0097 0.0027 

Min 
sen 0.88 0.6573 0.5062 0.3978 0.2095 0.1151 0.0515 

0.719 
fpr 0.8371 0.2452 0.1251 0.0758 0.025 0.0088 0.0018 

 

     
(a)                                                                                                              (b) 

Fig. 2. ROC curves for evaluation of annotation using semantic k-medoids clustering (a) without PIN, and (b) with PIN. 

 

Table II shows protein function prediction results for 

sensitivity and false positive rate, based on semantic 

k-medoids with PIN. In this case, only Resnik’s semantic 

similarity metric gives an improvement in the AUC value, 

which indicates that the simplest node-based metric 

outperform the prediction. Also, this shows that SS metrics 

have a bigger impact on protein function prediction based on 

k-medoids clustering of the dataset without the use of PIN, 

compared to protein graph k-medoids clustering with the use 

of PIN. 

 

V. CONCLUSION 

A new method for protein function prediction using 

semantic similarity metrics with and without protein 

interaction networks was presented. It is based on a 

k-medoids clustering algorithm by using a semantic 

similarity metric as a weight factor in the distance-clustering 

matrix. The influence of 6 different semantic similarity 

metrics was evaluated with the protein data. Experiments 

revealed that the prediction accuracy of the method based on 

protein clustering without PIN with the use of hybrid 

semantic similarity metrics outperforms the use of other 

standard non-semantic similarity metrics. However, with PIN 

data and graph clustering, results show that semantic 

similarity metrics do not influence overall protein function 

prediction, but only give a small decrease in the false positive 

rate. High sensitivity gives a high false positive rate, 

therefore, the decrease of the false positive rate is a 

significant result. These results show the future need of 

detecting true protein interactions in PINs with the help of 

other SS metrics.  
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