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Abstract—Problem: This paper addresses a centralized 

scheduling problem in multi-agent systems in which the incident 

commander (IC) of a disaster-response team aims to coordinate 

the actions of the field units (rational agents) to minimize the 

total operation time in uncertain, dynamic, and spatial 

environments.  

Objective: The purpose of this paper is to propose an 

intelligent software system that assists the IC in the dynamic 

assignment of geospatial-temporal macro tasks to agents under 

human strategic decisions. This system autonomously executes a 

heuristic algorithm to minimize the maximum total dependent 

duration according to human high-level strategies.  

Results: The result is a schedule composed of macro decisions, 

each comprised of seven types of information: 1) what task type 

is going to be accomplished, 2) who (a subset of agents) are 

assigned to this assignment, 3) where this task is to be performed 

(a road segment or zone as a macro geospatial object) containing 

a subset of tasks, 4) when operations start, 5) when operations 

finish, 6) how many tasks are estimated to be completed, 7) what 

task types and the estimated number to be revealed (identified” 

or “enabled) in this location to complete this job.  

Conclusion: This result, which is a feasible solution for the 

addressed problem, permits the IC to coordinate agents, 

partially specify the activities of the agents in time and space, 

minimize the overall execution time for all the tasks, calculate 

the correct time to revise the strategic decisions, evaluate the 

efficiency of the high-level strategy, and estimate the makespan. 

 
Index Terms—Task assignment, centralized scheduling, 

multi-agent systems, macro tasks, disaster emergency response, 

heuristic algorithm, coordination, incident commander 

 

I. INTRODUCTION 

The objective of scheduling is to minimize the overall 

execution time for all tasks by properly allocating them to 

processors/machines without violating the precedence 

constraints among the tasks [1]. The input to these problems is 

usually a directed acyclic graph (DAG) that provides 

precedence, dependency, priority among tasks, cost, and other 

information for the tasks [2]. The total run-time is called the 

makespan. 
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Urban search and rescue (USAR) is considered the major 

function of disaster emergency response operations. The 

objective of USAR is to reduce the number of fatalities in the 

first days after a disaster [3]. Scheduling is a crucial issue for 

incident commanders (ICs) who must manage and coordinate 

the activities of the field units (rational agents) during the 

disaster emergency response. It aims to identify and schedule 

the actions of the agents by appropriately assigning and 

allocating their tasks. Although scheduling enables the agents 

to accomplish tasks in the minimum overall time, it is difficult 

to solve this problem under uncertain, spatial, and dynamic 

situations. 

A responder team such as the INSARAG (International 

Search and Rescue Advisory Group) has a hierarchical 

structure consisting of two levels. The lower level in the 

hierarchy includes the rational agents. They are spatially 

distributed in a geographic environment. They perceive their 

local environment, execute strategic decisions made by the 

top node, rationally make decisions regarding their own 

actions, coordinate their actions with each other in a 

distributed approach, execute tasks, and report to the 

operation center [4]. An IC, located in the top node, has a 

global and timely view of the entire disaster situation. His role 

is to coordinate and command the agents using strategic 

planning and scheduling in a centralized approach. As a result, 

a team is a society of cooperative agents that attempt to 

maximize the global utility of the team.  

Coordination is the act of managing interdependencies 

among activities [5]. Coordination in disaster emergency 

response includes the management of task flow, recourse, 

information, decisions, and responders [6]. This paper 

recognizes the importance of five main types of coordination 

in a disaster-response team: 

1) Task Dependencies: The Enabling dependency between 

tasks specifies that when a task is completed, it triggers 

the initiation of other, dependent tasks. In other words, 

the time that a disenabled task becomes enabled depends 

on the finishing time of the task to which it is dependent. 

Agents can carry out only tasks whose state is enabled. 

2) Action Dependencies: Heterogeneous agents can 

perform tasks that have been previously revealed by the 

actions of other agents. Some agents may wait until their 

tasks are released by others.  

3) Redundant Actions: Multiple agents may possess 

overlapping capabilities that allow them to be involved in 

the same tasks. This can cause conflict between actions or 

redundant actions.  

4) Information Sharing: Information sharing allows 
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agents to know 1) the current state of the tasks, 2) what 

tasks are going to be performed, by whom and when, and 

3) what tasks are estimated to be revealed when, and 

where. These data enable an IC to coordinate the agents 

and facilitate multi-agent scheduling.  

5) Agent Allocation: Agents are considered as limited 

resources or machines that must be optimally scheduled 

and allocated to tasks.  

Many good approaches have been developed to address the 

scheduling problem. However, there remain challenges to the 

problem that are addressed by this paper. We categorize these 

limitations and deficiencies as follows:  

1) These approaches explicitly and fully schedule and 

specify actions for the rational and autonomous agents 

who are located in uncertain and dynamic environments. 

They attempt to associate a specific task with a specific 

agent. They do not provide an efficient approach for an 

IC because situational awareness that an IC has from the 

global picture is different from the perception that the 

agents have from their local environment.  

2) They are automated systems that do not involve a human 

in the loop. The primary obstacle is the scale of the 

operation. It is currently unrealistic for a fully automated 

system to effectively determine all of the possibilities that 

may arise during the execution of the tasks in a complex 

environment.  

3) They do not address the scheduling problems in which 

macro tasks are spatially distributed in a complex 

environment. Moreover, geospatial reasoning and 

geo-information analyses play a significant role in 

problem solving. Spatiotemporal macro tasks and 

characteristics of this environment make the assignment 

problem more difficult.  

This paper addresses the capability of GICoordinator in 

macro action scheduling. The IC is equipped with a computer 

that runs an instance of GICoordinator. GICoordinator is a 

GIS (Geographic Information Systems)-based intelligent 

software system that collaborates with an IC (as a human) and 

assists the IC in the action coordination of agents in complex 

situations such as disaster emergency response [7]. This 

system autonomously executes an algorithm for the 

assignment of spatiotemporal macro tasks to rational agents 

under human strategic decisions in a spatial and dynamic 

environment. The goal of this algorithm is to minimize the 

maximum total dependent duration by the dynamic 

assignment of idle agents to these tasks.  

The contribution of this paper is a heuristic algorithm that 

calculates a feasible solution for the addressed problem. This 

algorithm enables us to develop a software agent that can 

collaborate and cooperate with an IC on scheduling in 

multi-agent systems for agent coordination. It calculates a set 

of macro (semi-strategic) decisions that temporally constrain 

the actions of the agents according to the human strategy. 

 

II. LITERATURE REVIEW 

The scheduling problem for multiprocessor systems is 

stated as "How can we execute a set of tasks T on a set of 

processors P subject to some set of optimizing criteria C? "  A  

taxonomy of scheduling algorithms in parallel and distributed 

systems was presented by [8]. Algorithms have been 

developed to solve this problem [1, 9].  

The algorithm presented by [10] aims to minimize the 

maximum lateness and total delay for multi-machine 

problems concerned with the scheduling of single-operation 

jobs. Several heuristic algorithms were proposed by [11, 12] 

for the assignment of n independent tasks to m unrelated 

parallel machines to minimize the maximum completion time. 

This approach was extended by this paper to propose a new 

algorithm for the addressed problem.  

To assign spatially distributed tasks to field units (agents) 

in USAR management, algorithms were suggested by [4, 13]. 

These algorithms involved geographic information and 

geospatial analyses in the effective assignment of tasks to 

agents.  

There are several mechanisms, techniques, and algorithms 

for addressing task assignment to agents (humans, robots, or 

intelligent systems). They assist agents to achieve their 

objectives and to maximize the benefits of the system. There 

are works that address the task-scheduling problem in 

multi-agent systems [14, 15], multi-robot systems [16], 

disaster-emergency teams [17],  robocup rescue simulations 

[18], and strategic decision making for coordinating actions 

of a USAR team[19]. 

 

III. PROBLEM STATEMENT 

The problem addressed by this paper has characteristics 

described in the following subsections. 

A. Problem Domain 

USAR is a significant participant in earthquake 

disaster-response situations. The overriding goal is to rescue 

the greatest number of people, trapped under the debris of 

damaged buildings, in the shortest amount of time. USAR 

tasks involve a sequence of dependent tasks: (1) 

reconnaissance and assessment by collecting information on 

the extent of the earthquake damage, (2) search and locate 

victims trapped in collapsed structures, (3) extract and rescue 

trapped victims, and (4) transport and dispatch injured 

survivors to hospitals or shelters. Rescue tasks are classified 

into light, medium, and heavy rescue.  

USAR tasks are location-based entities that are distributed 

in a geographical area. A specific task needs a specific 

capability or several synchronous capabilities to complete in 

an acceptable duration. Capability requirements determine 

what agents are allowed to do what tasks. There is an 

uncertainty in task duration, distribution of tasks, and 

outcome of tasks. 

B. Agents 

Field units are considered mobile, spatial, rational, 

heterogeneous, and semi-autonomous agents. Their principal 

roles are to perform tasks suited to their capabilities. They 

possess different capabilities that allow them to engage in 

executing tasks for which they can provide the required 

capability. Because agents perform their tasks with different 

speeds, there is an uncertainty in action duration, speed, and 

outcome. 
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The IC, as the planning human, attempts to coordinate the 

disaster-response management. S/he has inaccessible, global, 

and uncertain information regarding the state of the 

environment. His observation and perception of a disaster 

situation is different from that of the agents in their local 

environment. 

C. Macro Tasks 

Macro task information forms a global picture of the task 

environment for ICs. A macro task is the aggregation of all the 

tasks that 1) are from a same task type and 2) are spatially 

contained within a specific geographic object or adjacent to a 

road segment in a definite time. Macro tasks are encoded by 

road segment in this paper. Road segments are surrounded by 

buildings that contain USAR tasks. Therefore, a segment 

contains a number of macro tasks that are located near this 

geographic object.  

A macro task contains two variables: 1) an enabled number 

of tasks, and 2) a disenabled number of tasks. The enabled 

variable indicates how many homogeneous tasks are observed, 

discovered, or revealed within an associated geo-object. 

Agents can only undertake tasks that are enabled. The 

disenabled variable indicates how many homogeneous tasks 

are estimated to be revealed or discovered in the future. They 

have dynamic and uncertain quantities that may vary over 

time because agents can complete an enabled task while other 

agents may reveal (enable)new ones. These numbers provide 

an estimation of the total duration and total capabilities that 

are required to complete this macro task.  

There is a complex, interdependent relationship among 

variables of macro tasks that are associated with a geo-object. 

For example, a whole reconnaissance macro task (enabled 

number plus disenabled number) can reveal only the 

disenabled part of a search macro task. 

D. Human Strategic Decisions 

A high-level strategy specification enables an IC to express 

his intuition and initiative for solving multi-agent planning 

problems. A strategy decomposes a complex problem into a 

set of smaller problems under human supervision. A strategy 

contains a set of parallel, interdependent, and prioritized 

threads. A thread is a sub-problem that is composed of a 

unique ranking, a subset of agents, a subset of task types, and 

a subset of a geographic area [19]. 

Strategic decision-making is the problem of the distribution 

of agents among the threads in an explicit time. Because 

agents may be shared among threads, an agent should be 

assigned to only one thread at a time. This agent will be 

available for the next thread whenever s/he is no longer 

required and is released by the thread. A human strategic 

decision defines what agents are assigned to what threads in 

an explicit time. A thread constrains the actions of the 

assigned agents according to its specification. A strategic 

decision should be refined and adapted to new states. 

E. Scheduling in Multi-Agent Systems 

Scheduling is the problem of the assignment of macro tasks 

to rational agents under human strategic decisions in 

multi-agent systems. It does not explicitly specify actions for 

the agents, however, it does partially identify actions and 

dynamically constrains agent activities and behaviors in time 

and space. It allows rational agents to make and adapt their 

own decisions according to calculated scheduling. Scheduling 

includes the characteristics as follows: 

Scheduling has a macro characteristic. More than one agent 

can be assigned to a macro task simultaneously. Assigned 

agents form a coalition that will execute this assignment 

cooperatively. 

Assignments are dynamic. Over time, new agents can be 

assigned to a macro task to which a set of agents have been 

previously allocated. 

Macro tasks retain assigned agents until the enabled tasks 

are completed. Released agents can be reassigned to other 

macro tasks. 

The objective is to minimize the overall time for the USAR 

task execution.  

Because of the spatial distribution of tasks, agents need 

travel time to reach macro tasks moving from one location to 

another using the road network. In addition, streets have 

varying states such as blocked or cleaned that affect the 

shortest paths. 

A coalition formed by several professional agents can do a 

macro task faster than another coalition. An efficient coalition 

has many capabilities and can finish a macro task faster than 

another coalition. 

Action scheduling is calculated with regard to a human 

strategic decision as long as this strategic decision is valid. It 

consists of a sequence of temporal scheduling.  

Scheduling changes the state of the macro tasks. An 

assignment can define how much of a macro task is scheduled 

to be addressed, or it can define how much of another macro 

task will be revealed after completion. 

 

IV. APPROACH 

The proposed approach shown in Fig. 1 is used by ICs for 

multi-agent coordination. The focus of this paper is on the 

fourth component.  

 

 
Fig. 1. Role of the central scheduling problem (the 4th component) in the 

proposed approach for strategic planning and scheduling in disaster 

response team [20]. 
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Whenever a human strategic decision is made for solving a 

problem, this system autonomously executes a heuristic 

scheduling algorithm for the dynamic assignment of 

spatiotemporal macro tasks to rational agents under human 

strategic decisions. The algorithm, which is shown in 

Algorithm 1, is composed of 1) select efficient agents, 2) 

select active macro-tasks, 3) identify the release time, 4) 

select idle agents, 5) nominate macro task, 6), calculate 

utilities, 7) find the highest utilities, 8) assign agents to the 

macro tasks, and 9) calculate the earliest finish time. 

 
 

This paper applies the SAP data model [20] for the 

presentation and formulation of the problem. It enables us to 

design, implement, and develop the proposed algorithm. Fig. 

2 shows a part of this data model that presents the important 

information classes.  

A. Select Efficient Agents 

This algorithm aims to select efficient agents for the macro 

tasks. It has two purposes. The first is to identify what agents 

can be assigned to what macro tasks. The second is to 

calculate the maximum ability that an assigned agent can 

provide to a macro task. The selection of the agent for the 

macro task is important because selecting an agent states that 

this agent is a useful candidate who can be legally assigned to 

and perform this macro task. This algorithm considers four 

key criteria to efficiently select agents for a definite macro 

task:  

1) Does this macro task contain any task? 

2) Does the human strategic decision allow this agent to be 

allocated to the location of this macro task? 

3) Does the human strategic decision allow this agent to be 

assigned to the task type of this macro task? 

4) Does this agent have any useful capability that is required 

by this macro task and what maximum capability is 

provide by this agent? 

 
An agent can be selected for more than one macro task and 

more than one agent can be selected for a macro task. After 

agent selection for a definite macro task, this algorithm 

creates a set of legalAssignment elements for this macro task. 

A macro task may contain a number of legalAssignment 

elements that define what agents are allowed to be assigned to 

this macro task. A legal assignment is composed of three 

kinds of information: 1) the Id of the agent, 2) a maximum 

capability that the associated agent provides with regard to the 

capability requirements of this macro task, and 3) an 

estimated time when this agent will arrive in the location of 

this macro task and will be available to begin.  

An agent is efficient for a task if s/he provides any 

capability required by the task under the human strategic 

decisions. To simplify this algorithm, we assumed that each 

task type requires a specific capability and agents provide 

 
 

Fig. 2. Part of the SAP data model that includes important information 

classes for this paper [20] 

 
Algorithm 1. Heuristic algorithm for dynamic assignment of 

spatiotemporal macro tasks to rational agents under human strategic 

decisions for centralized scheduling in multi-agent systems 
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different capabilities. This assumption ignores tasks that may 

require simultaneous capabilities. This algorithm must also 

consider not only the enabled tasks but also the disenabled 

tasks. These tasks are estimated and expected to be revealed, 

enabled, or discovered by other tasks in the future. Because of 

the dynamic environment, this algorithm enables the system 

to automatically and timely recognize agents who are no 

longer efficient by macro tasks e.g. there is no task for these 

agents to carry out for this thread.  

B. Select Active Macro Tasks 

The aim of this algorithm is to select active macro tasks 

from the task environment. It is important to identify and 

recognize only a subset of the macro tasks to which agents can 

be potentially allocated. Agents can only work on enabled 

tasks. If agents are assigned to disenabled tasks, they become 

inactive and must wait until tasks are discovered, revealed, or 

enabled by completing other tasks. 

This algorithm applies two criteria to identify a macro task 

as active:  

1) Does this macro task contain any enabled tasks?  

2) Does this macro task contain any legalAssignment?  

C. Select Idle Agents 

This algorithm aims to select idle agents from the team at 

the current time, g2. Selected agents are candidates who will 

be assigned accordingly to other active macro tasks.  

There are two sources that dynamically and temporally 

provide idle agents for this algorithm:  

1) IC who defines and enters new agents to the team.  

2) Macro tasks that release assigned agents.  

A macro task releases its agents assigned to enabled tasks 

by the time g2. This algorithm accesses the information from 

the macro tasks and agent allocation and identities all idle 

agents who have been released by a macro task at this time. A 

legalAssignment element is used to encode a released agent 

and present a last location (Id of a road segment). Finally, the 

algorithm adds the selected agents to the current collection, L, 

in the algorithm.  

D. Identify the Release Time 

This algorithm determines whether it is a correct decision 

to release a subset of idle agents at time g2. It is important, in 

a timely manner, to adapt a strategic decision to a new 

situation by releasing unneeded agents from threads and 

sending (entering) them to other threads that may require 

them. This algorithm helps the system to select a choice 

between: 1) continue scheduling with all the idle agents under 

the same strategic decision, or 2) stop scheduling and let the 

system revise the current strategic decision.  

As Algorithm 2 shows, this algorithm considers two 

criteria to keep an idle agent for task assignment:  

1) Is there any macro task for which this agent has been 

categorized as an efficient agent previously?  

2) Is it estimated that an identified macro task release any 

new task (enabled tasks or disenabled tasks) at the current 

time? 

E. Nominate Macro Tasks 

This heuristic algorithm aims to select a subset of the active 

macro tasks. Idle agents are assigned to the nominated macro 

tasks. Unlike a search algorithm, this algorithm selects the 

best node and extends it to reach the goal node at which all the 

tasks are completed. 

 
The logic of this algorithm is to select macro tasks that have 

a strong effect on minimizing the makespan. This algorithm 

nominates macro tasks that have a “longest total dependent 

duration”. Two sources of information are important for the 

calculation of this dynamic variable for each macro task for 

the current time: 

1) How many enabled tasks are contained in this macro task? 

Alternatively, when does the enabled portion of this 

macro task complete according to the previous schedule? 

2) What is the estimate of how many dependent tasks this 

macro task can reveal? 

F. Calculate Utilities 

This algorithm aims to calculate a utility matrix of idle 

agents for the nominated macro tasks. It is important to 

answer the question “How much can a macro task benefit 

from allocation of a specific agent?” This matrix assists in 

selecting and allocating the best agents for the macro tasks. 

The benefit statement asks “How much will an agent reduce 

the finish time of a macro task, if this agent is assigned to the 

task?” This algorithm takes into account several factors in the 

calculation of the benefit of a specific agent for a specific 

macro task:  

1) Is it legal for this idle agent to be assigned to this 

nominated macro task? 

2) When will this agent start doing tasks? The dynamic 

amount of this time is dependent on three factors: 1) 

moving speed of this agent, 2) release time of this agent, 

and 3) travel time and distance between two locations in 

the road network.  

3) What capability does this agent provide for this macro 

task? With what speed can this agent carry out tasks? 

4) How much can this agent improve performance of a 

coalition that has previously been assigned to this macro 

task? 

 
Algorithm 2. “Identify_theRelease_Time()” algorithm that determines 

whether it is a correct decision to release a subset of idle agents from a 

thread now 
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This utility matrix is used to present a matrix of utility 

elements that idle agents provide for nominated macro tasks. 

Rows are assigned to macro tasks and columns are assigned to 

agents. A set of numbers in a cell shows the utility information 

that the relevant agent can provide for the relevant macro task.  

G. Find the Highest Utilities 

The goal of this algorithm is to determine if there is a subset 

of idle agents who can provide a benefit-ratio higher than 10%. 

This algorithm uses the utility matrix to find these agents who 

can provide acceptable benefits for the nominated macro 

tasks. These agents will be assigned to the related macro tasks. 

If a suitable agent is not found, all nominated macro tasks will 

be removed by the algorithm.  

H. Assign Agents to Macro Tasks 

This heuristic algorithm is shown in Algorithm 3. It aims to 

select the proper agents and assign them to the macro tasks. 

This algorithm uses the utility matrix and applies a minimax 

algorithm to select the best agents for the best macro tasks. 

This algorithm selects all agents that decrease the finish time 

of the macro tasks by more than 10%. If an agent is allocated 

to a macro task, the associated row and column of the matrix 

is removed and the assigned agent is removed from the list of 

idle agents. 

 

I. Calculate the Earliest Finish Time 

This algorithm aims to calculate the earliest time at which 

agents will be released by a macro task and become idle. It 

updates the problem state that includes agents, tasks, 

scheduling, and the finish time of each macro task. This 

algorithm enables us to simulate the problem and estimate 

future states. A new subset of macro tasks is identified. The 

results allow other algorithms to continue scheduling.  

 

V. EVALUATION AND RESULTS 

To evaluate the proposed approach, a USAR scenario 

simulated by GIS was used. As Fig. 3 shows, a rapid response 

team composed of an IC and 12 agents was assigned to the 

operational area. The global objective was to accomplish, 

with this team, USAR tasks in a minimum time. Table 1 shows 

the strategic decision that was used for scheduling at time 0 

(the initial time). 

 

 
 

TABLE 1. HUMAN HIGH-LEVEL STRATEGIC DECISION VALID FROM TIME 0 

AND USED FOR SCHEDULING 

thread Id set of zones set of task types set of agents 
1 zo1, zo2 T0-Reconnaissance a0, a1, a2, 

a3, a4, a5 

2 zo1, zo2 T1-Search a7 

3 zo1, zo2 T2-SlightRescue, 

T3-MediumRescue, 

T4-HeavyRescue 

a9, a11 

4 zo3, zo4 T0-Reconnaissance, 

T1-Search, 

T2-SlightRescue, 

T3-MediumRescue, 

T4-HeavyRescue 

a6, a8, a10 

 

The two main results achieved by executing the proposed 

algorithm are: 1) a feasible schedule, and 2) an 

adaption/refinement time. In addition, two minor results are 

achieved: 1) the makespan, and 2) the total schedule. 

The schedule is composed of a number of macro decisions 

that partially specify the actions of the agents. This schedule is 

calculated according to the valid strategic decision shown in 

Table 1. A macro decision contains seven types of 

information:  

1) A task type as a sub-goal that is scheduled to be 

completed.  

2) A set of agents who are allocated to this decision and are 

responsible for performing this decision.  

3) A geographic object such as a road segment that presents 

the operational area of this decision.  

4) A time that indicates when this decision execution starts.  

 

Fig. 3. Two thematic maps of spatial distribution of macro tasks [20]. 

 
Algorithm 3. Agent selection for assignment of tasks to agents. 
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5) A time that indicates when this decision ends.  

6) A quantity of the number of tasks that are estimated to be 

completed during this decision.  

7) A quantity of tasks with different types that are estimated 

to be revealed at the end of this decision, at the same 

location.  

The adaption time is extracted from the schedule. It 

estimates a correct time when the current human decision is 

required to be revised by the IC. Furthermore, this time states 

that this schedule ends at this time and a new schedule will be 

calculated based on the strategic decision adapted.  

The overall time can be calculated if the scheduling 

algorithm and the planning algorithm are executed in 

sequence as shown in Fig. 1. Search algorithms can apply this 

method to calculate the total schedule with the estimated 

makespan in order to find an optimal solution for the 

scheduling problem.  

Results showed that 1) the first human strategic decision 

expired at time 579 (minutes), 2) the total makespan is 16859 

(minuts), and 3) a sequence of twelve strategic decisions was 

made. For example, Fig. 4 shows a geo-visualization of the 

macro actions scheduled for an agent. An example of the task 

assignment and action scheduling is presented in Fig. 5 using 

another data set in order to view a better perception of the 

results. 

 
 

 

A. Discussion 

This algorithm calculated a feasible, fast, and semi-optimal 

solution for the addressed problem. However, the results 

showed that this algorithm did not guarantee optimality of the 

assignments because the task list showed that some agents 

sometimes became idle. In an efficient coordination, agents 

should remain active. Minimizing the makespan is dependent 

on the quality of five parameters: 1) human strategy, 2) 

strategic decision, 3) search algorithms, 4) scheduling 

algorithms, and 5) distribution coordination among agents.  

The adaption time of a strategic decision is dependent upon 

the structure of a scheduling algorithm and other factors. If 

several algorithms are applied to the same data, they will 

reach different results. We cannot assume that the optimal 

assignment minimizes the adaption time.  

Tasks may include deadlines that influence maximizing the 

global utility. Humans can manage this issue by specifying an 

effective high-level strategy.  

This paper proposed an algorithm for multi-agent 

scheduling. There is a value to supporting humans by 

providing a set of algorithms for the IC and allowing him to 

select a suitable algorithm for each thread. The system can 

apply a specific algorithm for a thread.  

This paper studied a single IC. A disaster emergency 

response may involve several ICs and there are 

interdependencies among the team actions. It would be 

valuable to study the distributed coordination among multiple 

ICs and their scheduling.  

This paper did not study synchronized actions, facilitating 

task dependency, or resource allocations in the proposed 

algorithm. These subjects could be important issues for some 

domains and teams.  

A comprehensive approach for multi-agent coordination 

includes a loop consisting of scheduling, execution, 

monitoring, adapting, and learning. Uncertain and dynamic 

environments disrupt scheduling, making it necessary to 

execute decisions, continuously monitor execution, and adapt 

scheduling to unexpected events. Learning algorithms could 

provide efficient tools to improve the efficiency and 

performance of this system. 

 

VI. CONCLUSION 

This paper presented a heuristic and greedy algorithm that 

appropriately assigns macro tasks to rational agents and 

schedules the macro actions of agents according to human 

strategic decisions. This algorithm was used to develop 

GICoordinator that assists the IC in coordinating a team of 

agents.  

A schedule provides an IC with a feasible solution for a 

coordination problem in a team. Multi-agent scheduling 

partially specifies the actions of the rational agents and 

constrains them temporally and dynamically. The IC 

authorizes agents to autonomously make their own tactical 

decisions (planning and scheduling) or adapt their activities 

under these macro decisions. 

The proposed system executes this algorithm while the 

current strategic decision is valid. Therefore, this algorithm 

calculates a time at which this strategic decision should be 

adapted. The result has two advantages: 1) It enables the IC to 

refine this strategic decision at the correct time, and 2) it is 

used in a search algorithm that estimates a makespan, 

calculates a complete solution, and finds an optimal solution 

 
Fig. 5. Example of assignment of macro tasks to agents for another 

data set 

 
Fig. 4. 3D map that geo-visualizes macro actions scheduled for a 

specific agent 

International Journal of Machine Learning and Computing, Vol. 4, No. 1, February 2014

45



  

for the multi-agent planning and scheduling. 

Macro tasks enable the system to model and present the 

distribution of the tasks in different geographic scales. Spatial 

topology between spatial objects enables the system to extract 

new views of the tasks. These tasks can be used for task 

assignment. Limited only by the quality of the data, an IC can 

select different geographic layers such as zones or buildings 

and allocate tasks to them. The IC can specify and contain 

actions in different spatial accuracies.  

Information fusion algorithms extract new and useful 

information from the scheduling results. They provide an 

efficient situational awareness for an IC to view the state of 

the global environment. They support human decisions using 

tools such as geospatial reasoning, geo-visualization, and 

complex queries. For example, they can answer the questions 

“What activities will be completed in a specific zone during a 

specific period?”, “When will a specific task be completed 

and by whom?”, and “What is the task list of a specific 

agent?”  

Future works to improve the current contribution may 

include:  

1) In some cases, the tasks environment contains tasks that 

may require synchronous capabilities. This means that 

the actions of more than one agent must be coordinated to 

provide the required capabilities for performing a 

specific task simultaneously. It is important that an ideal 

algorithm form a proper coalition comprised of suitable 

agents and assign this group to the task.  

2) Decentralized coordination of distributed schedules is a 

significant issue in which multiple teams are involved in 

performing the tasks. It is possible that interdependencies 

between team actions exist. To maximize the joint 

objective, it is necessary to apply algorithms to 

coordinate the distributed schedules prepared by each IC.  
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