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Abstract—Until today, we have not found a general and 

effective algorithm for synthesis, especially to multi-variables 

quantum circuit. This is an important question needed to be 

resolved, because it can not only reduce the cost of manufacture 

quantum circuit, but also optimize many quantum algorithms. 

For a quantum circuit which contains N quantum bits, the 

latitude of the matrix is 𝟐𝒏 to realize its function. If we directly 

design the circuits of the matrix, the workload is huge. Want to 

reduce the dimensions of the matrix, but also to ensure the 

unitary of matrix after decomposing, so it is need to use 

Kronecker product. 

 
Index Terms—Decompose, unitary, kronecker product. 

 

I. INTRODUCTION 

Quantum reversible logic circuits is an important 

component of quantum computer, and it consists of quantum 

bits, quantum logic gates and quantum lines in order to 

implement functions such as storage, writing ,reading and 

logic operation of quantum computer. Two main 

compositions of quantum circuits are quantum bits and 

quantum gates which are also called arithmetic operators. 

The values of Quantum bits got from measure. Multi-bit and 

multi-gate is expressed by kronecker. Quantum mechanics 

hypothesis provides a fully quantum mechanical properties of 

a collection, and quantum circuits synthesis use these 

properties to design the logic. 

Reversible logic finds many applications, especially in the 

area of quantum computing. A completely specified n-input, 

n-output Boolean function is called reversible if it maps each 

input assignment to a unique output assignment and vice 

versa. Logic synthesis for reversible functions differs 

substantially from traditional logic synthesis and is currently 

an active area of research.  

Nowadays, many kinds of reversible quantum gates have 

been proposed, for example, CNOT gate [1], Toffoli gate [2], 

and Fredkin gate [3]. How to automatically construct the 

quantum circuit with small cost using given quantum gates? 

Several approaches for reversible logic circuit synthesis have 

been presented. Shende [4] and Song [5] et al. present some 

algorithm of reversible logic synthesis. Shende [6] et al. 

present 3 variables synthesis algorithms. Iwama [7] et al. 

present transformation rules for CNOT-based circuits. Miller 

[8] and Maslov [9] et al. give a synthesis method based on 

truth table, and use template technology to simplify the 

circuit. Until today, we have not found a general and effective 
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algorithm for synthesis, especially to multi-variables 

quantum circuit. This is an important question needed to be 

resolved, because it can not only reduce the cost of 

manufacture quantum circuit, but also optimize many 

quantum algorithms [10]. 

 

II. QUANTUM GATES 

A gate of fundamental importance is the Hadamard gate. It 

puts a single q-bit into superposition. If a q-bit has been read, 

then it has collapsed to either |0> or |1>. If such a q-bit is 

passed through a Hadamard gate, then both possibilities 

become equally likely if a read is then performed. In unitary 

matrix form, the non-projective Hadamard gate is: 
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The Phase gate sends |1> to i |1> and fixes |0>. 
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The Pauli gates are spin operators discovered by Wolfgang 

Pauli. They can be represented by the following matrices: 

𝜎𝑥  =  
0 1
1 0

    𝜎𝑦  =  
0 −𝑖
𝑖 0

    𝜎𝑧  =  
1 0
0 −1

  

 

The classical gates CNot and Toffoli can also be 

represented in the quantum setting and each has a related gate 

for wire diagrams. CNot is a 2 q-bit gate similar to the 3 q-bit 

gate Toffoli. To perform a not on the second bit if and only if 

the first is set reduces to permuting |10> and |11>. 
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This wire diagram shows that the upper q-bit is the control 

and the lower bit is the target. The Toffoli gate is drawn 

similarly, since it has two control q-bits acting on one target 

q-bit [11]. 
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III. UNIVERSAL QUANTUM GATES 

A group of gates is called universal for quantum 

computing is because with this set of gates can compose a 

quantum circuit which can approximate arbitrary unitary 

operation with any precision. Toffoli gate can construct a 

complete set of Boolean join words because it can achieve the 

classic function of NAND gates. In fact, because Toffoli gate 

is universal for classical computation, so the quantum circuit 

includes classic circuit [12]. 

Although Toffoli gate is a universal gate of combinational 

circuit, they can’t achieve arbitrary quantum state 

transformation. Therefore we need add single-bit revolving 

gate. It is already proved that CNOT and single-bit quantum 

gate is a universal set of quantum gates. 
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Fig. 1. Toffoli gate. 
 

Depending on the input Toffoli gate Fig. 1 can perform 

several different basic logic gate operations: 

1) If the input z = 0, the output is xy, perform the AND 

operation of x and y. 

2) If the input z=0, y=1, the output is copy(x). 

3) If the input x=y=1, the output is NOT(z). 

4) If the input y=1, the output is zx, perform the CONT of x 

and y. 

 

IV. MAIN RESEARCH ASPECTS OF THE QUANTUM CIRCUITS 

Up to now, there are two aspects with regard to the 

quantum circuits: one is the synthesis of quantum circuits, 

which use given inputs, outputs of a reversible logic function, 

which expresses quantum circuits functions, and use given 

quantum gates, according to given quantum cost standard, 

find the smallest or smaller quantum cost to product quantum 

circuits automatically. The other is building quantum circuit 

simulator, in order to simulate the process of quantum 

computing and quantum algorithm [12]. 

For a quantum circuit which contains N quantum bits, the 

latitude of the matrix is 2
n
 to realize its function. If we 

directly design the circuits of the matrix, the workload is huge. 

Even if use genetic algorithm, because the length of 

chromosome which is used to represent quantum gate sets is 

longer, it will inevitably reduce the effectiveness of the 

genetic algorithm, so within a limited time in a limited space 

it cannot get a final solution. 

It is known that, in quantum compute, either individually 

basic quantum gate or combination of basic quantum gates 

must satisfy a basic condition that the matrix they represent 

must meet the unitary. Want to reduce the dimensions of the 

matrix, but also to ensure the unitary of matrix after 

decomposing, so it is need to split into Kronecker product of 

unitary matrix. 

 

V. THE DEFINITION OF KRONECKER PRODUCT 

The Kronecker product of a matrix  
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and a matrix  
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It is computed by multiplying the matrix B with each of the 

components of the matrix A. The resulting block matrix is 

returned as a matrix of larger dimension. The new matrix is a 

pm×qm matrix. For example,  
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VI. DECOMPOSITION OF KRONECKER PRODUCT 

Theorem 1. Suppose A is a nonzero matrix, and its 

dimension is m×n(both m and n are prime number). rank(A)

≠1.Then A can’t be decomposed into the kronecker product 

of two matrixes whose line or column number is greater than 

1. 

Corollary 1. Suppose A is an n order square matrix (N is 

prime number). rank(A)≠1.Then A can’t be decomposed into 

the kronecker product of two square matrixes whose 

dimension is greater than 1. 

Theorem 2. The rank of the invertible matrix of is equal to 

the order of the matrix. 

Definition 1. Assume a matrix A=(𝑎𝑖𝑗 )𝑚×𝑛  , arrange each 

line of A crosswise to get mn dimension row vector, it is 

called row-expansion, and it is marked rs(A). Arrange each 

column of A crosswise to get mn dimension column vector, it 

is called column-expansion, and it is marked cs(A). 

 11, 12, 1 , 21, 22, 2 , 1,rs( )= , n n m mnA a a a a a a a a
 

 11, 12, 1 , 21, 22, 2 , 1,cs( )= ,
T

n n m mnA a a a a a a a a  

Obviously, for matrix A, B, exist A=kB rs(A)=k rs(B). 

Theorem 3. If a matrix A=(𝑎𝑖𝑗 )𝑚×𝑛≠0, m=sp, n=tq, then 

A can be decomposed into the kronecker product of a s×t 

matrix B and a p×q matrix C  In the block matrixes of 
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( )ij s tA A  , rank  11 1t 1rs( ),..., rs( ),..., rs( ),..., rs( ) 1s stA A A A  , 

and 𝐴𝑖𝑗  is a p × q matrix (i=1, 2,…, s; j=1, 2,…, t). If 

11 1 1(rs( ) ,..., rs( ) ,..., rs( ) ,..., rs( ) )T T T T

t s stK A A A A , 

then K is a (pq) ×(st) matrix[13], [14]. 

 

VII. THE STEP OF DECOMPOSITION 

1) Get the dimension of a unitary matrix A =(𝑎𝑖𝑗 )𝑛×𝑛  . If 

the dimension n is a prime number, According to 

Theorem 2 and Corollary 1 we can know that the unitary 

matrix A cannot be decomposed into a kronecker product 

of two square matrixes whose order is greater than 1. 

Because the dimension of a matrix of a quantum circuit 

which contain more than or equal to two-qubit quantum 

bits is 𝑛 = 2𝑚 (m=2, 3, 4…), the dimension of this 

matrix A is not a prime number for sure. 

2) Get the factors of n, the factor is 
ma ( 1ma   and 

)ma n . For example, if 𝑛=8, 𝑎1=2, 𝑎2=4. 

3) Divide matrix A=(𝑎𝑖𝑗 )𝑛×𝑛  into 𝑏𝑚 = (n×n)/(𝑎m × 𝑎m ) 

sub-block matrix ijA  and the dimension of ijA  is 
ma  

4) Make the matrix K =

11 1 1(rs( ) ,..., rs( ) ,..., rs( ) ,..., rs( ) )
m m m m

T T T T

b b b bA A A A  

5) Do the elementary transformation of matrix K. If K can 

transform into 

1 111

0 0 0 0

0 0 0 0

m m m mb b b bd d dd

D

 
 
 
 
 
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in which (𝑑11  , … , 𝑑1𝑏𝑚
 , … , 𝑑𝑏𝑚 1  ,…,  𝑑𝑏𝑚 𝑏𝑚

) ≠ 0, matrix 

can be decomposed into the kronecker product of two 

matrixes, otherwise can’t. 

6) If 𝑑11 ≠ 0, D can transform into  

1 1

11 11 11

1

0
0 0 0

0
0 0 0

m m m mb b b bd d d

d d d

T
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 
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by further elementary transformation. 

Then rs 1

11

( ) =
jT

ij

d
A

d
= rs 11( )TA and 

11

11

ij

ij

d
A A

d
 , 

(1 ,1 )m mi b j b    . Write the kronecker product of 

matrix
11

11

( ) ( )
m m m m

ij

ij b b b b

d
A A A

d
    . 

 

VIII. GENERATE QUANTUM CIRCUITS  

There is a matrix 32 32=( )ijA a  as shown below. 

A=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Divide matrix A into (32×32)/(4×4)=8×8 sub-block 

matrixes. 

A=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Make the matrix K, and does the elementary 

transformation of K, then K will transform into: 

K=

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

K=

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

We can get the result  
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1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

A

 
 
 
 
 
 
 
 
 
 
 
  

 

Finally, we can get the quantum circuit as Fig. 2. 

 
Fig. 2. The quantum circuit. 

 

IX. CONCLUSION 

From the example above, we can draw the conclusion that, 

by using the kronecker product, we can not only decompose 

high dimension matrix in order to reduce the complexity of 

quantum reversible logic circuits synthesis, but also get a 

much simpler circuit by using this method than get the 

quantum circuit synthesize directly. Furthermore, the 

quantum circuit which gets from this method provides better 

precondition for deducing count of execution time unit. 
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