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Abstract—Transportation modes are aplenty in today’s 

urban environment. Commuters use public transport such as 

buses, trains, taxis, personal motor vehicles, walking, bicycles, 

etc. to travel between places. One of the major concerns for the 

people who rely on public transportation is the unavailability 

or inaccuracy of systems that predict the estimated arrival time 

or the schedule based on the current location of vehicles and 

the traffic situation. With the advent of technology, a large set 

of urban transportation operators have begun to use location 

reporting systems such as GPS devices on-board their fleet, 

with the primary purpose of monitoring and managing their 

fleet. This paper describes methods for predicting the arrival 

time taking advantage of the location reports from such devices. 

The system pipeline developed is based on a complex event 

processing engine within which an algorithm is implemented to 

continuously predict in real-time the estimated arrival time in 

an online fashion. The developed system in first phase is 

evaluated using a vehicle simulator that generates vehicle 

trajectories along real public transportation routes.  
 

Index Terms—Complex event processing, data stream 

mining, real-time distributed systems, spatial data mining. 

 

I. INTRODUCTION 

Public transportation is one of the key enablers of city 

operations. Majority of the population in cities rely on 

different modes of public transportation for their daily 

commute. To quote the Mayor of the city of Bogota, 

Gustavo Petro [1], “A developed country is not a place 

where the poor have cars. It‟s where the rich use public 

transportation”, which gives a clear indication that planners 

see the need to invest resources and time for building 

efficient transportation systems. Transportation operators 

and planners look towards technology and infrastructure, 

both hardware and software, for this purpose. This is not 

only to make their systems efficient, but also to improve the 

experience of the citizens. 

It is agreeable that in most mega cities the transportation 

systems are quite well-developed. In fact, most public 

transportation operators already make available the 

timetables or schedule of their services for commuters on 

the web, through mobile apps or display boards at stations. 

But, it is often a case that over the day, the dynamics of the 

city change and there are unforeseen delays. Long waiting 

time tends to cause bad experience for commuters as they 

are either unaware of where the vehicles are currently, or 

there are not very accurate methods that use location 

reported from existing hardware such as GPS devices, 
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mobile networks, etc. to predict the estimated arrival or 

travel time. Advancements in GPS technology enable 

location reporting with a high degree of accuracy, and this 

can be exploited to predict the arrival time. 

Technology such as GPS devices are already being used 

by various operators for monitoring and managing their fleet 

in cities like Singapore, London, etc. This enables systems 

to collect the location information of vehicles in near real-

time if sampled at higher rates. This tilts the spotlight 

towards being able to process and analyze all of this data on 

the fly. The paradigm of extracting knowledge from 

continuous, rapid, high-volume, highly-variable data 

streams is referred to as “Real-time Data Stream Mining”. 

Through this paper, we discuss high-velocity data stream 

mining that can be applied to data generated from location 

reporting devices such as GPS within the context of urban 

transportation. 

The system presented in this paper can perform real-time 

prediction of the arrival time of vehicles based on location 

data, which is processed by an event stream processing 

engine. The system is tested using a simulator built that uses 

real bus routes in Singapore to model the movement of 

vehicles and streams in the location information of these 

vehicles at high sampling rates. 

In this paper, a novel technique to estimate the arrival 

time or travel time of vehicles in an online fashion is 

discussed. The system is designed to handle multiple 

streams of GPS data and continuously predict the arrival 

time for each vehicle. 

 

II. RELATED WORK 

Zhou et al. [2] present a system that predicts bus arrival 

time using mobile phone signals. They use techniques such 

as cell-tower sequence matching that rely on the cell 

configuration of GSM network operators to compare the 

position of the bus to the actual bus route. This method is 

quite effective assuming there is not much handover 

between cell-towers, which is not a common case in urban 

environments where there is quite a high density of 

subscribers. 

Yu et al. [3] discuss a prediction model for bus travel 

time based on support vector machine regression method. 

This approach introduces a forgetting factor to assign 

weights based on the recent data due to the bus running 

time-based variable quantities. They use Grubbs‟ test 

method to remove outliers from the input location data. 

Pu et al. [4] discuss various literature that use artificial 

neural networks to estimate/predict travel time. They use a 

segment-based approach by dividing the street into smaller 

snippets and computing the average speed of the vehicle. 

This method suggests using buses as probes to estimate 
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travel time along segments. 

Another method makes use of GPS data to dynamically 

predict the travel time. This takes into account the travel 

time between two consecutive stops to estimate the arrival 

time at the next stop in sequence. Kieu et al. [5] discuss how 

Bluetooth and RFID can be used as a traffic data source. 

There are many systems that, in practice, estimate traffic 

density based on loop detectors over various road segments 

and predict arrival time based on the estimates. This paper 

discusses a grid-based approach that uses GPS locations that 

help in reaching the granularity of road segments by limiting 

the area per cell or size of the cell. 

 

III. DATA STREAM MINING 

A lot of the research focus, effort and money are being 

invested in the area of data stream mining by both industry 

and academia to address the pressing needs of architecting 

real-time or close-to real-time systems. 

STREAM: The Stanford Data Stream Management 

System [6] was built on top of contextual query language 

(CQL) focused on query optimization for memory 

management. The system made use of “synopses” to 

approximate results based on summarized information. 

TelegraphCQ developed at Berkeley [7] was an extension of 

PostgreSQL using a continuous querying mechanism of 

CQL type. This system addressed a key requirement of 

being able to add new queries dynamically. Aurora 

(superseded by Medusa, then Borealis) [8] brought in the 

new dimension of scalability through “distributed stream 

processing”. Other systems that were similar in nature 

include NiagaraCQ [9] which is a scalable continuous query 

system for web-based (XML) databases, StatStream [10] for 

statistical monitoring of multiple data streams, StreamMiner 

[11] which is a classifier ensemble-based data mining 

engine, Gigascope – a Stream database [12] and Hancock (a 

C programming language variant) from AT&T was 

developed for mass surveillance of their massive networks. 

The interesting thing about most of the above systems is 

that they gained attention from the big names in the market 

and hence, further development was shifted to the industrial 

research labs. Streambase is one such system that spun-off 

from Aurora and focuses on high-performance Complex 

Event Processing (CEP). Coral8 another famous CEP tool, 

designed on top of a publish-subscribe architecture, has been 

used widely by the likes of Microsoft and IBM. The engine 

that evolved from STREAM is maintained by SAP as part of 

the SAP Sybase Event Stream Processor. TelegraphCQ 

became widely popular with the telecommunication network 

sector, and was integrated by Cisco into their network 

management platform – Cisco Prime. 

By convention, real-time data stream mining systems are 

built either as batch processing systems or, the more recent, 

continuous (real-time) processing frameworks. 

Batch processing systems, such as “Hadoop” (from 

Apache Software Foundation and Cloudera), store/buffer 

raw data streams (files, web, images, etc.) over a period of 

time and process them at frequent intervals. This in turn is 

done in two stages where the input (files) is distributed over 

multiple machines and then a Map-Reduce operation is 

performed. The results are then pushed to a data-store or a 

subscribed client. To achieve close to real-time processing, 

the regular interval in which the input is distributed is 

narrowed down. 

A couple of years ago, BackType (now acquired by 

Twitter) came up with a promising continuous distributed 

real-time processing framework called “Storm” which 

addresses most of the requirements for a system of its genre, 

such as reliability, robustness, fault-tolerance, scalability, 

etc. Pachube (now Cosm) is another system that was 

developed as a platform to address the idea of “The Internet 

of Things”. This platform acquires data from various 

external devices and handles them in real-time. DataSift 

provides a social media data platform which brings in 

multiple data streams together and aids in performing 

analysis over them through the steps of extraction and 

reduction of data. Most of these systems use ZeroMQ and 

Apache Zookeeper for message queuing and coordination 

respectively. Other comparable systems are Esper, 

Streambase, Hstreaming and Yahoo S4. A system such as 

that of DataSift's has an estimated data volume that adds up 

to 1 TB each day. 

For this system, we make use of the SAP Sybase Event 

Stream Processor for running the queries on the simulated 

vehicles GPS data streams. 

 

IV. ONLINE GRID-BASED DYNAMIC ARRIVAL TIME 

PREDICTION ALGORITHM 

The online grid-based dynamic arrival time prediction 

algorithm can be broken down into the following functional 

steps:- 

1) Initializing the bound (global or local) 

2) Splitting the grid (rows × columns) 

3) Fitting the GPS location to a cell 

4) Computing the time spent in a cell 

5) Estimation of arrival time 

A. Initializing the Bound (Global or Local) 

One of the required inputs into the model is the bounds of 

the grid. As GPS locations can be seen as latitude/longitude 

points on the map, the grid can be bounded either by global 

constraints (-180 < lon < 180; -180 < lat < 180) or locally 

(lon1 < lon < lon2; lat1 < lat < lat2). For example, in the 

case of Singapore, the grid is locally bounded to (103.62 < 

lon < 104.02; 1.22 < lat < 1.48) the geographic boundaries 

of the territory, as illustrated in Fig. 1. 
 

 
Fig. 1. Defining the bounds of the grid as the geographic extent. 

International Journal of Machine Learning and Computing, Vol. 3, No. 6, December 2013

517



B. Splitting the Grid (Rows × Columns) 

The number of rows and columns are to be selected to 

split the grid into cells. The larger number of cells will result 

in higher granularity, thereby, resulting in more frequent 

updates in the predicted time. 

As illustrated in Fig. 2, based on larger number of rows 

and columns, the coverage per cell is limited to a smaller 

area which gives higher precision or detail, almost up to the 

road segment level. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Grid-view based on different splits. As the split results in larger 
number of cells, the level of detail increases. 

 

C. Fitting the GPS Location to a Cell 

With the input stream containing the GPS location of the 

vehicle, the current position (cell number) within the grid 

can be computed, as shown in Fig. 3, using the following 

method: 

 

gridX = floor[{(lat – lat1) * rows} / (lat2 – lat1)] 

gridY = floor[{(lon – lon1) * columns} / (lon2 – lon1)] 

cell_number = ((columns * (gridX – 1)) + gridY) 

 

 
Fig. 3. Fitting the GPS location, indicated by the marker, to a cell. 

D. Computing the Time Spent in a Cell 

Using the window operator of the complex event 

processing engine, we can accurately measure the duration 

of cell transitions, i.e. the time spent by a vehicle within a 

cell before moving to an adjacent cell. Let each cell 

transition from „m‟ to „n‟, as shown in Fig. 4, be denoted as 

„Cm


n‟, the time taken for this transition be denoted as „tm


n‟ 

and the average time of all vehicles transitioning from 

„mn‟ be denoted as „Tm


n‟. 

 

 
Fig. 4. Time windows are used to measure the duration for traversing from 

one cell to another (Cm


n, tm


n). 

E. Estimation of Arrival Time 

The arrival time is computed and output every time the 

vehicle makes a cell transition. If the grid splitting is good 

(i.e. highly granular or contains a large number of cells), the 

transition is rather soon and therefore, the prediction 

algorithm returns the arrival time in a dynamic fashion. 

 

 

2 6 7 11 15 16 
Series of cell transitions 

Fig. 5. Transition between cells as the vehicle moves along the route. 

 

In any given grid, if the cells are numbered in a sequential 

fashion starting from the lower left, as shown in Fig. 5, the 

arrival time (Test) is estimated using the given algorithm: 

 

Test  Troute (scheduled arrival time) 

C2


6 : Test  Troute + (T2


6  –  t2


6) 

C6


7 : Test  Test + (T6


7  –  t6


7) 

C7


11 : Test  Test + (T7


11  –  t7


11) 

C11


15 : Test  Test + (T11


15  –  t11


15) 

C15


16 : Test  Test + (T15


16  –  t15


16) 

 

To generalize, 

 

Cm


n : Test  Test + (Tm


n  –  tm


n) 

 

The stream processing engine sees the transitions between 

cells as an event, and the operator to estimate the arrival 

time is applied every time the transition event occurs. Hence, 

the system continuously predicts the estimated arrival time 

for the vehicle. The initialization of the estimate can be done 

either through scheduled arrival time (Troute), as illustrated 

above, if the schedule is available, or by computing the 

average for the specific route over a window of time by 

aggregating the time spent by all vehicles following a 

similar route or that made a similar cell transition. 
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V. CONCLUSION 

In this paper an online grid-based algorithm for 

dynamically predicting the arrival time of public transport is 

presented. The initial system design and implementation is 

done in a complex event processing engine to ensure 

scalability when multiple GPS data streams are used in the 

future. The simulator built serves as a good test of the 

algorithm, but as an improvement the intention is to run and 

test the system with actual live GPS streams from vehicles 

on the road, when available. In future, the prediction 

accuracy could be improved by also analyzing historical 

trajectory data. As an extension, the system would be built 

in a generic manner to be able to handle spatial data streams 

from multiple different sources. 
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