


Abstract—Transportation modes are aplenty in today’s

urban environment. Commuters use public transport such as

buses, trains, taxis, personal motor vehicles, walking, bicycles,

etc. to travel between places. One of the major concerns for the

people who rely on public transportation is the unavailability

or inaccuracy of systems that predict the estimated arrival time

or the schedule based on the current location of vehicles and

the traffic situation. With the advent of technology, a large set

of urban transportation operators have begun to use location

reporting systems such as GPS devices on-board their fleet,

with the primary purpose of monitoring and managing their

fleet. This paper describes methods for predicting the arrival

time taking advantage of the location reports from such devices.

The system pipeline developed is based on a complex event

processing engine within which an algorithm is implemented to

continuously predict in real-time the estimated arrival time in

an online fashion. The developed system in first phase is

evaluated using a vehicle simulator that generates vehicle

trajectories along real public transportation routes.

Index Terms—Complex event processing, data stream

mining, real-time distributed systems, spatial data mining.

I. INTRODUCTION

Public transportation is one of the key enablers of city

operations. Majority of the population in cities rely on

different modes of public transportation for their daily

commute. To quote the Mayor of the city of Bogota,

Gustavo Petro [1], “A developed country is not a place

where the poor have cars. It‟s where the rich use public

transportation”, which gives a clear indication that planners

see the need to invest resources and time for building

efficient transportation systems. Transportation operators

and planners look towards technology and infrastructure,

both hardware and software, for this purpose. This is not

only to make their systems efficient, but also to improve the

experience of the citizens.

It is agreeable that in most mega cities the transportation

systems are quite well-developed. In fact, most public

transportation operators already make available the

timetables or schedule of their services for commuters on

the web, through mobile apps or display boards at stations.

But, it is often a case that over the day, the dynamics of the

city change and there are unforeseen delays. Long waiting

time tends to cause bad experience for commuters as they

are either unaware of where the vehicles are currently, or

there are not very accurate methods that use location

reported from existing hardware such as GPS devices,

Manuscript received September 20, 2013; revised November 19, 2013.

This research was supported with the funding from the Economic

Development Board and the National Research Foundation of Singapore.

Naveen Nandan is with SAP Research & Innovation, Singapore (e-mail:
naveen.nandan@sap.com).

mobile networks, etc. to predict the estimated arrival or

travel time. Advancements in GPS technology enable

location reporting with a high degree of accuracy, and this

can be exploited to predict the arrival time.

Technology such as GPS devices are already being used

by various operators for monitoring and managing their fleet

in cities like Singapore, London, etc. This enables systems

to collect the location information of vehicles in near real-

time if sampled at higher rates. This tilts the spotlight

towards being able to process and analyze all of this data on

the fly. The paradigm of extracting knowledge from

continuous, rapid, high-volume, highly-variable data

streams is referred to as “Real-time Data Stream Mining”.

Through this paper, we discuss high-velocity data stream

mining that can be applied to data generated from location

reporting devices such as GPS within the context of urban

transportation.

The system presented in this paper can perform real-time

prediction of the arrival time of vehicles based on location

data, which is processed by an event stream processing

engine. The system is tested using a simulator built that uses

real bus routes in Singapore to model the movement of

vehicles and streams in the location information of these

vehicles at high sampling rates.

In this paper, a novel technique to estimate the arrival

time or travel time of vehicles in an online fashion is

discussed. The system is designed to handle multiple

streams of GPS data and continuously predict the arrival

time for each vehicle.

II. RELATED WORK

Zhou et al. [2] present a system that predicts bus arrival

time using mobile phone signals. They use techniques such

as cell-tower sequence matching that rely on the cell

configuration of GSM network operators to compare the

position of the bus to the actual bus route. This method is

quite effective assuming there is not much handover

between cell-towers, which is not a common case in urban

environments where there is quite a high density of

subscribers.

Yu et al. [3] discuss a prediction model for bus travel

time based on support vector machine regression method.

This approach introduces a forgetting factor to assign

weights based on the recent data due to the bus running

time-based variable quantities. They use Grubbs‟ test

method to remove outliers from the input location data.

Pu et al. [4] discuss various literature that use artificial

neural networks to estimate/predict travel time. They use a

segment-based approach by dividing the street into smaller

snippets and computing the average speed of the vehicle.

This method suggests using buses as probes to estimate

Online Grid-Based Dynamic Arrival Time Prediction

Using GPS Locations

Naveen Nandan

International Journal of Machine Learning and Computing, Vol. 3, No. 6, December 2013

516DOI: 10.7763/IJMLC.2013.V3.372

travel time along segments.

Another method makes use of GPS data to dynamically

predict the travel time. This takes into account the travel

time between two consecutive stops to estimate the arrival

time at the next stop in sequence. Kieu et al. [5] discuss how

Bluetooth and RFID can be used as a traffic data source.

There are many systems that, in practice, estimate traffic

density based on loop detectors over various road segments

and predict arrival time based on the estimates. This paper

discusses a grid-based approach that uses GPS locations that

help in reaching the granularity of road segments by limiting

the area per cell or size of the cell.

III. DATA STREAM MINING

A lot of the research focus, effort and money are being

invested in the area of data stream mining by both industry

and academia to address the pressing needs of architecting

real-time or close-to real-time systems.

STREAM: The Stanford Data Stream Management

System [6] was built on top of contextual query language

(CQL) focused on query optimization for memory

management. The system made use of “synopses” to

approximate results based on summarized information.

TelegraphCQ developed at Berkeley [7] was an extension of

PostgreSQL using a continuous querying mechanism of

CQL type. This system addressed a key requirement of

being able to add new queries dynamically. Aurora

(superseded by Medusa, then Borealis) [8] brought in the

new dimension of scalability through “distributed stream

processing”. Other systems that were similar in nature

include NiagaraCQ [9] which is a scalable continuous query

system for web-based (XML) databases, StatStream [10] for

statistical monitoring of multiple data streams, StreamMiner

[11] which is a classifier ensemble-based data mining

engine, Gigascope – a Stream database [12] and Hancock (a

C programming language variant) from AT&T was

developed for mass surveillance of their massive networks.

The interesting thing about most of the above systems is

that they gained attention from the big names in the market

and hence, further development was shifted to the industrial

research labs. Streambase is one such system that spun-off

from Aurora and focuses on high-performance Complex

Event Processing (CEP). Coral8 another famous CEP tool,

designed on top of a publish-subscribe architecture, has been

used widely by the likes of Microsoft and IBM. The engine

that evolved from STREAM is maintained by SAP as part of

the SAP Sybase Event Stream Processor. TelegraphCQ

became widely popular with the telecommunication network

sector, and was integrated by Cisco into their network

management platform – Cisco Prime.

By convention, real-time data stream mining systems are

built either as batch processing systems or, the more recent,

continuous (real-time) processing frameworks.

Batch processing systems, such as “Hadoop” (from

Apache Software Foundation and Cloudera), store/buffer

raw data streams (files, web, images, etc.) over a period of

time and process them at frequent intervals. This in turn is

done in two stages where the input (files) is distributed over

multiple machines and then a Map-Reduce operation is

performed. The results are then pushed to a data-store or a

subscribed client. To achieve close to real-time processing,

the regular interval in which the input is distributed is

narrowed down.

A couple of years ago, BackType (now acquired by

Twitter) came up with a promising continuous distributed

real-time processing framework called “Storm” which

addresses most of the requirements for a system of its genre,

such as reliability, robustness, fault-tolerance, scalability,

etc. Pachube (now Cosm) is another system that was

developed as a platform to address the idea of “The Internet

of Things”. This platform acquires data from various

external devices and handles them in real-time. DataSift

provides a social media data platform which brings in

multiple data streams together and aids in performing

analysis over them through the steps of extraction and

reduction of data. Most of these systems use ZeroMQ and

Apache Zookeeper for message queuing and coordination

respectively. Other comparable systems are Esper,

Streambase, Hstreaming and Yahoo S4. A system such as

that of DataSift's has an estimated data volume that adds up

to 1 TB each day.

For this system, we make use of the SAP Sybase Event

Stream Processor for running the queries on the simulated

vehicles GPS data streams.

IV. ONLINE GRID-BASED DYNAMIC ARRIVAL TIME

PREDICTION ALGORITHM

The online grid-based dynamic arrival time prediction

algorithm can be broken down into the following functional

steps:-

1) Initializing the bound (global or local)

2) Splitting the grid (rows × columns)

3) Fitting the GPS location to a cell

4) Computing the time spent in a cell

5) Estimation of arrival time

A. Initializing the Bound (Global or Local)

One of the required inputs into the model is the bounds of

the grid. As GPS locations can be seen as latitude/longitude

points on the map, the grid can be bounded either by global

constraints (-180 < lon < 180; -180 < lat < 180) or locally

(lon1 < lon < lon2; lat1 < lat < lat2). For example, in the

case of Singapore, the grid is locally bounded to (103.62 <

lon < 104.02; 1.22 < lat < 1.48) the geographic boundaries

of the territory, as illustrated in Fig. 1.

Fig. 1. Defining the bounds of the grid as the geographic extent.

International Journal of Machine Learning and Computing, Vol. 3, No. 6, December 2013

517

B. Splitting the Grid (Rows × Columns)

The number of rows and columns are to be selected to

split the grid into cells. The larger number of cells will result

in higher granularity, thereby, resulting in more frequent

updates in the predicted time.

As illustrated in Fig. 2, based on larger number of rows

and columns, the coverage per cell is limited to a smaller

area which gives higher precision or detail, almost up to the

road segment level.

(a)

(b)

(c)

Fig. 2. Grid-view based on different splits. As the split results in larger
number of cells, the level of detail increases.

C. Fitting the GPS Location to a Cell

With the input stream containing the GPS location of the

vehicle, the current position (cell number) within the grid

can be computed, as shown in Fig. 3, using the following

method:

gridX = floor[{(lat – lat1) * rows} / (lat2 – lat1)]

gridY = floor[{(lon – lon1) * columns} / (lon2 – lon1)]

cell_number = ((columns * (gridX – 1)) + gridY)

Fig. 3. Fitting the GPS location, indicated by the marker, to a cell.

D. Computing the Time Spent in a Cell

Using the window operator of the complex event

processing engine, we can accurately measure the duration

of cell transitions, i.e. the time spent by a vehicle within a

cell before moving to an adjacent cell. Let each cell

transition from „m‟ to „n‟, as shown in Fig. 4, be denoted as

„Cm


n‟, the time taken for this transition be denoted as „tm


n‟

and the average time of all vehicles transitioning from

„mn‟ be denoted as „Tm


n‟.

Fig. 4. Time windows are used to measure the duration for traversing from

one cell to another (Cm


n, tm


n).

E. Estimation of Arrival Time

The arrival time is computed and output every time the

vehicle makes a cell transition. If the grid splitting is good

(i.e. highly granular or contains a large number of cells), the

transition is rather soon and therefore, the prediction

algorithm returns the arrival time in a dynamic fashion.

2 6 7 11 15 16
Series of cell transitions

Fig. 5. Transition between cells as the vehicle moves along the route.

In any given grid, if the cells are numbered in a sequential

fashion starting from the lower left, as shown in Fig. 5, the

arrival time (Test) is estimated using the given algorithm:

Test  Troute (scheduled arrival time)

C2


6 : Test  Troute + (T2


6 – t2


6)

C6


7 : Test  Test + (T6


7 – t6


7)

C7


11 : Test  Test + (T7


11 – t7


11)

C11


15 : Test  Test + (T11


15 – t11


15)

C15


16 : Test  Test + (T15


16 – t15


16)

To generalize,

Cm


n : Test  Test + (Tm


n – tm


n)

The stream processing engine sees the transitions between

cells as an event, and the operator to estimate the arrival

time is applied every time the transition event occurs. Hence,

the system continuously predicts the estimated arrival time

for the vehicle. The initialization of the estimate can be done

either through scheduled arrival time (Troute), as illustrated

above, if the schedule is available, or by computing the

average for the specific route over a window of time by

aggregating the time spent by all vehicles following a

similar route or that made a similar cell transition.

International Journal of Machine Learning and Computing, Vol. 3, No. 6, December 2013

518

V. CONCLUSION

In this paper an online grid-based algorithm for

dynamically predicting the arrival time of public transport is

presented. The initial system design and implementation is

done in a complex event processing engine to ensure

scalability when multiple GPS data streams are used in the

future. The simulator built serves as a good test of the

algorithm, but as an improvement the intention is to run and

test the system with actual live GPS streams from vehicles

on the road, when available. In future, the prediction

accuracy could be improved by also analyzing historical

trajectory data. As an extension, the system would be built

in a generic manner to be able to handle spatial data streams

from multiple different sources.

ACKNOWLEDGMENT

We would like to thank the Land Transport Authority

(LTA) of Singapore for making the bus routes available

through their Data Mall which has been used as a basis to

model the vehicle simulator; the Economic Development

Board and National Research Foundation of Singapore for

supporting this research which can be extended and applied

to any generic geo-spatial real-time application domains; my

colleague Dr. Daniel Dahlmeier for pair programming on

the vehicle simulator.

REFERENCES

[1] Gustavo Petro. [Online]. Available:

http://www.changemakrs.com/GustavoPetro

[2] P. Zhou, Y. Zheng, and M. Li, “How long to wait: Predicting bus
arrival time with mobile phone based participatory sensing,” ACM

MobiSys’12, vol. 4, no. 3, pp. 33-39, June 2012.
[3] B. Yu, T. Ye, X. Tian, G. Ning, and S. Zhong, “Bus travel-time

prediction with forgetting factor,” Journal of Computing in Civil

Engineering, November 2012.
[4] W. Pu, J. J. Lin, and L. Long, “Real-time estimation of urban street

segment travel time using buses as speed probes,” Transportation
Research Record, January 2010.

[5] L. M. Kieu, A. Bhaskar, and E. Chung, “Bus and car travel time on

urban networks: integrating bluetooth and bus vehicle identification
data,” in Proc. 25th ARRB Conf., 2012.

[6] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R.

Motwani, U. Srivastava, and J. Widom, “STREAM: The Stanford

data stream management system,” Technical Report, Stanford

InfoLab, 2004.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F.

Reiss, and M. Shah, “TelegraphCQ: Continuous dataflow processing

for an uncertain world,” in Proc. 1st Biennial Conf. on Innovative
Data Systems Research, Asilomar, CA, January 2003.

[8] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, Y. Xing, and S. Zdonik, “Scalable distributed stream

processing,” in Proc. 1st Biennial Conf. on Innovative Data Systems

Research, Asilomar, CA, January 2003.
[9] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A scalable

continuous query system for internet databases,” ACM SIGMOD
Record, pp. 379-390, May 2000.

[10] Y. Zhu and D. Shasha, “Statstream: Statistical monitoring of

thousands of data streams in real time,” in Proc. 28th VLDB Conf.,
August 2002, pp. 358–369.

[11] W. Fan, “Streamminer: a classifier ensemble-based engine to mine

concept-drifting data streams,” in Proc. 30th VLDB Conf., August

2004, pp. 1257–1260.

[12] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk,
“Gigascope: A stream database for network applications,” ACM

SIGMOD Record, pp. 647-651, June 2003.

Naveen Nandan is from India and was born on
March 6, 1988. He received a bachelor of Technology

in Electronics and Communication Engineering from

Amrita Vishwa Vidyapeetham, Coimbatore in 2009.
He continued to pursue Master of Science at the

School of Computer Engineering, Nanyang
Technological University, Singapore where his thesis

work was on “Multi-class Emotion Detection from

Suicide Notes” applying techniques from natural
language processing for feature extraction, association

rule mining for feature selection and machine learning for classification.
He started off his career as a systems engineer with the Education &

Research Department at Infosys, Mysore. He spent a brief stint as a systems

engineer with JamiQ.com, a social media intelligence startup in Singapore,
after which, he worked as a software engineer (PLATFORM) on the LIVE

Singapore project with the MIT SENSEable City Lab at the Singapore-MIT
Alliance for Research and Technology under the Future Urban Mobility

program. He currently works for SAP Research & Innovation, Singapore as

a research & development engineer. His current research focus is in the
areas of distributed & real-time systems, machine learning and spatial data

mining.

International Journal of Machine Learning and Computing, Vol. 3, No. 6, December 2013

519

