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Abstract—The application of robust loss function is an 

important approach to classify data sets that contaminated by 

noisy data points, in particular by outliers. In this paper we 

present an extension of smoothed 0-1 loss function to the 

multiclass case. In multiclass case, Fisher consistency of 

smoothed 0-1 loss function is satisfied. A classification 

algorithm is developed for multiclass classification problems. 

The performance of Hinge loss function and smoothed 0-1 loss 

function based classification algorithms are compared on 

several data sets with different levels of noise. Experiments 

show that smoothed 0-1 loss function demonstrates improved 

performance for data classification on more noisy datasets with 

noisy features or labels. 

 
Index Terms—Optimization, classification, loss function, 

robust. 

 

I. INTRODUCTION 

Loss function plays an important role in data classification. 

In order to deal with data sets that contaminated by outliers, 

many robust loss functions including Hinge Loss Function[1], 

Exponential Loss Function [2], [3], Log Loss Function [3], 

[4], Mada boost Loss Function [5], Sigmoid Loss Function 

[6], Ф Loss Function [7], Ramp Loss Function [8], [9](also 

known as Robust Truncated Hinge Loss Function [10]), 

Normalized Sigmoid Lost Function [11], Logistic Difference 

Loss Function [12], have been proposed and evaluated. 

Based on the analysis of these loss functions, Smoothed 0-1 

Loss Function has been proposed, applied and evaluated in 

binary data classification [13]. However, in many real 

applications we are more interested in solving multiclass 

problems where there are more than two classes. 

This paper examines the application of Smoothed 0-1 Loss 

Function to multiclass classification problems. Fisher 

consistency of the smoothed 0-1 loss function is investigated. 

Based on the smoothed 0-1 loss function, a multiclass 

classification algorithm is proposed. We hypothesize that this 

algorithm will perform well on noisy data sets, in particular 

for those noisy data sets with many outliers. To prove this, we 

compare this algorithm with hinge loss based multiclass 

classification algorithm through a systematic evaluation on 

several well-known multiclass data sets corrupted with two 

kinds of noise: class noise and attribute noise. Our 

experiments indicate that the smoothed 0-1 loss function 

based multiclass classification algorithm is robust for label 

noise and attribute noise. 

The structure of this paper is as follows. We first review 

some important loss functions for multiclass classification 

problem in Section II. Then Fisher consistent loss functions 

for multiclass classification is investigated in Section III. In 
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Section IV, a single machine approach for multiclass data 

classification is proposed. Numerical experiments are 

conducted in Section V, followed by conclusions in Section 

VI. 

 

II. MULTICLASS CLASSIFICATION 

Given a multiclass data set: 

 

 

𝑥11𝑥12 ⋯ 𝑥1𝑛  𝑦1

⋮ ⋱ ⋮
𝑥𝑙1  𝑥𝑙2 ⋯ 𝑥𝑙𝑛𝑦𝑙

  

 

where 𝑥𝑖𝑗  ∈ 𝑅, 𝑦𝑖 ∈ {1, … , 𝑘} denotes the class of the ith data 

point 𝑥𝑖 =  𝑥𝑖1 , … , 𝑥𝑖𝑛  ,we consider the following linear 

multiclass data classification problem: 

𝑋𝑊 + 𝐵 = 𝐹 

where  

 

𝑋 =  

𝑥11𝑥12 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑙1  𝑥𝑙2 ⋯ 𝑥𝑙𝑛 }

 , 

 

𝑊 =  

𝑤11𝑤12 ⋯ 𝑤1𝑘

⋮ ⋱ ⋮
𝑤𝑛1  𝑤𝑛2 ⋯ 𝑤𝑛𝑘

 , 

 

𝐵 =  
𝑏1𝑏2 ⋯ 𝑏𝑘

⋮ ⋱ ⋮
𝑏1  𝑏2 ⋯ 𝑏𝑘

 , 

 

𝐹 =  
𝑓11𝑓12 ⋯ 𝑓1𝑘

⋮ ⋱ ⋮
𝑓𝑙1𝑓𝑙2 ⋯ 𝑓𝑙𝑘

 , 

 

And the combination of matrix W and vector 𝑏1 , … , 𝑏𝑘  is 

called linear classifier, which means given W and 

𝑏1 , … , 𝑏𝑘we can classify any data point 𝑥𝑖 =  𝑥𝑖1 , … , 𝑥𝑖𝑛  . 

We define the following loss functions with respect to data 

point 𝒙𝒊 and the corresponding class label 𝑦𝑖 : 

Square Loss 𝑉𝑚𝑐  𝑥𝑖 , 𝑦𝑖 =   𝑓𝑖𝑦𝑖
− 𝑓𝑖𝑗 − 1 

2
𝑗≠𝑦𝑖

       (1) 

Hinge Loss 𝑉𝑚𝑐  𝑥𝑖 , 𝑦𝑖 =   1 −  𝑓𝑖𝑦𝑖
− 𝑓𝑖𝑗   

+

2

𝑗≠𝑦 𝑖
   (2) 

Smoothed 0-1 Loss 𝑉𝑚𝑐  𝑥𝑖 , 𝑦𝑖 =  𝑉 𝑓𝑖𝑦𝑖
− 𝑓𝑖𝑗  

2
𝑗≠𝑦𝑖

  (3) 

where loss function 𝑉(∙) is defined as 

𝑉 𝑡𝑗  =  

0, 𝑡𝑗 > 1
1

4
𝑡𝑗

3 −
3

4
𝑡_𝑗 +

1

2
, −1 ≤ 𝑡𝑗 ≤ 1

1, 𝑡𝑗 < −1

                 (4) 

Given a single data point 𝑥 that belongs to class i, for each 
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pair 𝑖 ≠ 𝑗  we pay a penalty which is measured by loss 

function𝑉(∙). This penalty plays an important role in the 

optimizationmodule, which will be further discussed in 

Section IV. 

 

III. FISHER CONSISTENT LOSS FUNCTIONS FOR MULTICLASS 

CLASSIFICATION 

Fisher consistency plays a fundamental role in the 

construction of successful binary margin-based classifiers. It 

is possible to first design a nice Fisher consistent loss 

function and then construct the corresponding classifier [14]. 

A Fisher consistent smoothed 0-1 loss function for binary 

classification, constructed the corresponding classification 

algorithms and the experimental results show some good 

properties of the new algorithm [13]. Following the same line, 

we will extend this work to multiclass classification 

problems. 

There has been a considerable amount of work in the 

literature to extend the binary classifiers to the multiclass 

case. In particular, a wide class of smooth convex loss 

functions that are Fisher consistency for multiclass 

classification has been investigated by Zou et al. [15]. 

A loss function 𝑉(∙)  is said to be Fisher consistency 

fork-class classification  𝑘 ≥ 3  𝑖𝑓 ∀𝑥  in a set of full 

measure, the following optimization problem 

 

𝑓∗ 𝑥 = argmin𝑓 𝒙 𝑉 𝑝, 𝑓 𝑥     𝑠. 𝑡.  𝑓𝑗
𝑘
𝑗 =1  𝑥 = 0   (5) 

 

has a unique solution 𝑓∗, and  

 

argmin
𝑗

𝑓𝑗
∗ 𝑥 = argmin

𝑗
𝑝(𝑦 = 𝑗|𝑥)                    (6) 

 

where 

 

𝑉(𝑝, 𝑓(𝑥)) =  𝑗 =1
𝑘 𝑉  𝑓𝑗  𝑥  𝑝(𝑦 = 𝑗|𝑥)             (7) 

 

is the expected 𝑉 risk at 𝑥. 

Remark 1: Unlike the margin 𝑦𝑖𝑓(𝑥𝑖) defined in the 

binarycase, it is difficult to construct a special coding scheme 

for𝑦  in multiclass classification. Zou et al. [15] proposed 

themulticlass margin as𝑓𝑦𝑖 (𝑥𝑖). Thus the empirical risk is 

definedas that in (7). 

Zou et al. [15] characterize a family of convex loss 

functions, including exponential loss and logistic regression 

loss(also called Logit loss), that are Fisher consistent for 

multiclass classification. Based on these multiclass Fisher 

consistent loss functions, Zou et al. [15] also derive some 

new multiclass boosting algorithms by minimizing the 

empirical loss. The results show that the corresponding 

algorithms converge tothe Bayes classifier in terms of 

classification error. 

Theroem 1: [15] Let 𝑉(∙)  be a twice differentiable 

lossfunction, if 𝑉 ′ 0 < 0 𝑎𝑛𝑑 𝑉 ′′  𝑡 > 0, then 𝑉 is Fisher 

consistent. Moreover, letting 𝑓∗ be the solution of (5), then 

we have 

 

𝑝 𝑦 = 𝑗 𝑥 =
1/𝑉′(𝑓𝑗

∗ 𝒙 )

 1/𝑉′(𝑓𝑙
∗(𝒙)𝑘

𝑙=1

                         (8) 

Next we extend the work of Zou et al. [15] by considering 

the nonconvex loss function for multiclass classification 

problem. 

Theroem 2: Let 𝑉(∙) be a bounded continuous 

decreasingfunction. Then for any given 𝑥 the following 

optimizationproblem 

𝑓∗ 𝑥 = argmin𝑓 𝒙 𝑉 𝑝, 𝑓 𝑥     𝑠. 𝑡.  𝑓𝑗
𝑘
𝑗 =1  𝑥 = 0  (9) 

has a solution 𝑓∗, and  

argmin
𝑗

𝑓𝑗
∗ 𝑥 = argmin

𝑗
𝑝(𝑦 = 𝑗|𝑥)                (10) 

Proof: Firstly, we proof the existence of a minimizer 𝑓∗: 

Since 𝑝𝑖 and 𝑉(𝑓𝑖)  are both non-negative, the 

objectivefunction is bounded below by 0. Because 𝑉(·) is 

continuous,the objective function is also continuous. 

Therefore we cansafely say that the existence of a 

minimizer𝑓∗ for theoptimization problem is guaranteed. 

Secondly, we show that (10) holds. Without loss of 

generality, we assume 𝑝1 > 𝑝2 ≥ · · · ≥  𝑝𝑘 >  0, where𝑝𝑖 =

 𝑃(𝑦𝑖 = 𝑖|𝑥𝑖). If we have a minimizer 𝑓  with 𝑓 𝑚 > 𝑓 1 (𝑚 ≠

1) , then 𝑓∗  =  (𝑓 𝑚 , 𝑓 2, . . . , 𝑓 𝑚−1, 𝑓 1, 𝑓 𝑚+1 , . . . , 𝑓 𝑘)  isa better 

solution of (9). This contradicts the assumption that𝑓 is a 

minimizer of (9). Therefore, 𝑓1
∗ = max𝑖=1,…,𝑘 𝑓𝑖 . 

Remark 2: According to the nonconvexity of smoothed 

0-1loss function, the solution to (8) is not required to be 

unique. Actually, the uniqueness is not a necessary condition 

for Fisher consistency. So we safely relax Def 5 [15] by not 

requiring an unique minimizer. In the binary case, the 

minimizer is also not required to be unique [14]. 

Remark 3: The constraint 𝛴𝑖=1
𝑘 𝑓𝑗 (𝑥) = 0 guarantees that if 

a point 𝑧 is in the symmetric set 𝑅 (defined by [16]) then sois 

any point obtained by interchanging any two coordinates of 𝑧. 

Next we demonstrate the geometric features of Fisher 

consistency for different loss functions in multiclass cases. 

Similar to the binary case, we fix 𝑥  and denote 𝑃(𝑌 =
 𝑦𝑖 |𝑋 = 𝑥) by 𝑝𝑖 , and we omit the argument in 𝑓(𝑥) . 

Theconditional expected value can be written as 

 

𝐴 𝑓 =  𝑝𝑖𝑉(𝑓𝑖)
𝑘
𝑖=1                                (11) 

 

If we define the set R ⊆ Rk  as 

 

𝑅 = {(𝑉(𝑓1), 𝑉(𝑓2), . . . , 𝑉(𝑓𝑘)) ∶  𝑓 = (𝑓1, . . . , 𝑓𝑘)  ∈ 𝑅𝑘}, (12) 

 

then the minimization of 𝐴(𝑓) can be written as 

 

minz∈R⟨p, z⟩                               (13) 

 

where 𝑝 = (𝑝1 , 𝑝2 , . . . , 𝑝𝑘). 

The set 𝑅  is shown in Figure 1(a) for the squared 

lossfunction 𝑉(𝑡) =  1 − 𝑡 2  by a blue curved surface. 

Givenp, geometrically, the solution to (13) is obtained by 

takinga hyper plane (denoted in Fig. 1(a) by green hyper 

plane) whose equation is ⟨𝑝, 𝑧⟩ = c and then sliding it until it 

touches𝑅 and with the minimum𝑐. 

It is intuitively clear from Figure 1(a) that if𝑝1 > 𝑝2 > 𝑝3, 

then the angle between the hyper plane and the axes 𝑉(𝑓1) 

isthe biggest, and the value of 𝑉(𝑓1) is the smallest compared 

with 𝑉(𝑓2)  and 𝑉(𝑓3) . Because 𝑉(·)  is a decreasing 
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functionin [−∞, 1], we can safely say that 

argmin
𝑗

𝑓𝑗  𝑥 = argmin
𝑗

𝑝(𝑦 = 𝑗|𝑥)                    (14) 

Now it is clear that the square loss function is Fisher 

consistent in this 3 dimensional case. 

 

 
Fig. 1(a). The demonstration of geometric features of Fisher consistency for 

Square Loss Function. 

 

 
Fig. 1(b). The demonstration of geometric features of Fisher consistency for 

Hinge Loss Function. 

 

 
Fig. 1(c).The demonstration of geometric features of Fisher consistency 

for Smoothed 0-1 Loss Function. 

 

In Fig. 1(b), the set 𝑅 of hinge loss function is shown bya 

blue figure. ∀𝑝 =  (𝑝1 , 𝑝2 , 𝑝3), we can have a set of hyper 

planes. However, the hyper planes that minimize Equation 

(13) have to pass the three red points. Therefore, the solution 

of this problem is also unique, and Equation (14) is satisfied. 

The Fisher consistent condition is satisfied in this case. In Fig. 

1(c), the set 𝑅 of the smoothed 0-1 loss function is denoted 

byblue figures. The same as the square loss and hinge loss, 

thesolution to equation 14 is also unique. Therefore, the 

geometryexample shows that the smoothed 0-1 loss function 

satisfies Theorem 8. 

 

IV. SINGLE MACHINE APPROACH FOR MULTICLASS DATA 

CLASSIFICATION 

Based on the Tikhonov regularization model and the 

multiclass hinge loss function (2), we have the following 

multiclass classification model: 

min𝑊,𝑏
1

l
   1 −  𝑓𝑖𝑦𝑖

− 𝑓𝑖𝑗   
+

+ 𝜆    𝑤𝑗   
2

𝑘
𝑗 =1j≠𝑦𝑖

l
𝑖=1 (15) 

By replacing the multiclass hinge loss  𝑓𝑖𝑦𝑖
− 𝑓𝑖𝑗  +

 by𝜉𝑖  

and making some simple transformation, we can have 

thefollowing model proposed by [17]. 

Considering smoothed 0-1 loss function, we propose the 

following single machine model for multiclass classification 

problems. 

min𝑊,𝑏𝜙 𝑊, 𝑏 =
1

l
  𝑉(𝑡𝑖𝑗 ) + 𝜆    𝑤𝑗   

2
𝑘
𝑗 =1𝑗≠𝑦𝑖

l
𝑖=1  (16) 

where 

𝑉 𝑡𝑗  =  

0, 𝑡𝑗 > 1
1

4
𝑡𝑗

3 −
3

4
𝑡_𝑗 +

1

2
, −1 ≤ 𝑡𝑗 ≤ 1

1, 𝑡𝑗 < −1

              (17) 

𝑡𝑖𝑗 =  𝑓𝑖𝑦𝑖
− 𝑓𝑖𝑗 =  ⟨𝑥𝑖 , 𝑤𝑦𝑖

⟩ + 𝑏𝑦 𝑖
− ⟨𝑥𝑖 , 𝑤𝑗 ⟩ − 𝑏𝑗 (𝑗 ≠ 𝑦𝑖) 

The derivative of objective function in (16) can be 

expressed as: 

𝜕𝜙

𝜕(𝑤𝑖𝑗 )
=

 
 
 

 
 

1

𝑙
  𝑥𝑖𝑗  0.75 − 0.75𝑡𝑗

2 + 2𝜆𝑤𝑖𝑗𝑗≠𝑦𝑖

𝑙
𝑖=1

𝑖𝑓 𝑗 ≠ 𝑦𝑖  𝑎𝑛𝑑 − 1 ≤ 𝑡𝑗 ≤ 1

2𝜆𝑤𝑖𝑗

𝑖𝑓 𝑗 = 𝑦𝑖  𝑜𝑟  𝑡𝑗 < −1 𝑜𝑟 𝑡𝑗 > 1

    (18) 

𝜕𝜙

𝜕(𝑏𝑗 )
=

 
 
 

 
 

1

𝑙
   0.75 − 0.75𝑡𝑗

2 𝑗≠𝑦𝑖

𝑙
𝑖=1

𝑖𝑓 𝑗 ≠ 𝑦𝑖  𝑎𝑛𝑑 − 1 ≤ 𝑡𝑗 ≤ 1

0
𝑖𝑓 𝑗 = 𝑦𝑖  𝑜𝑟  𝑡𝑗 < −1 𝑜𝑟 𝑡𝑗 > 1

          (19) 

According to the above single machine model for 

multiclass classification problems, we propose the 

corresponding multiclass classification algorithm (see 

Algorithm 1). 

It has been demonstrated that Quasi Secant Method (QSM) 

[18] outperforms some traditional local optimization methods 

for binary classification problem [13]. In this algorithm, 

QSMis adopted as the optimization solver. To apply the 

QSMin the multiclass case, we make a simple transformation 

by converting matrix 𝑊 and vector 𝑏 into a long vector. 
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Algorithm 1: The smoothed 0-1 loss function based 

multi-class training procedure 

Input: 𝑆 =   𝑥1 , 𝑦1 , . . . ,  𝑥𝑙 , 𝑦𝑙  , Λ, 𝑊, 𝑏 

1  while do 

2  stoping criteria not satisfied 

3  end 

4  foreach𝑖 =  1, . . . , 𝑙do 

5  𝑓(𝑥𝑖)  ← 𝑥𝑖 ·𝑊 +  𝑏 ; 
6  foreach𝑗 =  1, . . . , 𝑘 and 𝑗 ≠ 𝑦𝑖do 

7  𝑡𝑗 =  𝑓𝑦𝑖 (𝑥𝑖)  − 𝑓𝑗(𝑥𝑖) ; 
8  if 𝑡𝑗 > 1 then 

9  𝑉 =  0; 
10  else if 1 ≥ 𝑡𝑗 ≥ −1 then 

11  𝑉 =  0.25 ∗ 𝑡3𝑖 − 0.75 ∗ 𝑡𝑖 +  0.5; 
12  else 

13  𝑉 =  1; 
14  end 

15  𝑉𝑡𝑜𝑡𝑎𝑙 =  𝑉𝑡𝑜𝑡𝑎𝑙 +  𝑉 
16  end 

17   end 

18   foreach𝑖 =  1, . . . , 𝑘do 

19  𝑅 =  ||𝑤𝑖||2 ; 

20  𝑅𝑡𝑜𝑡𝑎𝑙 =  𝑅𝑡𝑜𝑡𝑎𝑙 +  𝑅 ; 
21   end 

22   𝑂𝑏𝑗𝑓 =  𝑉 𝑡𝑜𝑡𝑎𝑙/𝑙 +  𝜆 ∗ 𝑅𝑡𝑜𝑡𝑎𝑙 ; 

23   Call optimization solver to minimize Objf ; 

24   return 𝑊, 𝑏. 

 

V. NUMERICAL EXPERIMENTS 

In this Section, we examine the effectiveness of the 

proposed single machine classification algorithm for 

multiclass learning. Hinge loss function and the Smoothed 

0-1 Loss function based algorithms are compared. We 

present experimental results of nine multiclass classification 

problems from the Statlog collection [19] and the UCI 

Repository of machine learning databases [20] respectively. 

From the UCI Repository we choose the following data sets: 

iris, wine, glass, vowel, ecoli, letter, and pendigit. From 

Statlog collection we choose the following data sets: vehicle, 

and segment. These multiclass classification problems had 

already been tested in [17], [21]-[23] respectively. The data 

set statistics are given in Table I. Some data sets in this table 

do not have a training and test split, in this case we use 

10-fold cross validation approach to evaluate the 

performance of different classification algorithms. 

TABLE I: MULTICLASS DATA SETS USED IN NUMERICAL EXPERIMENTS 
Problem #training data #test data #classes #attributes 
ecoli 327  

2100 
5 7 

iris 150 3 4 
wine 178 3 13 
glass 214 6 13 
vowel 990 11 10 
vehicle 846 4 18 
segment 210 7 19 
pendigit 7494 3498 10 16 
letter 15000 5000 26 16 

 

In order to investigate the robustness of the proposed 

classification algorithm, random class and attribute noise are 

injected into these data sets respectively. These noisy data 

sets are generated by randomly corrupting 20% of training 

data, and we keep the test data intact. 

For class noise, we corrupt 20% training data by updating 

the class label to a random class from all possible classes. 

For attribute noise, instead of corrupting each attribute by a 

random value that is between the maximal and minimal [24], 

we corrupt the attribute by either the maximal or minimal of 

the corresponding attribute because this can help us insert 

outliers to the data set. In order to investigate the performance 

of robust classification algorithm, four different noise levels 

are considered for attribute noise. That is, 1 and 2 attribute 

values altered per data point; 50% and 100% attribute values 

altered per data point. 

With this scheme, the actual percentage of noise is always 

lower than the theoretical noise level, as sometimes the 

random assignment would pick the original label. 

The above mechanism implies that we only deal with 

completely random class or attribute noise, which means the 

probability that a label or an attribute has noise is unrelated to 

any other label or attribute. If noise among labels or attributes 

is introduced with correlations, the situation becomes more 

complicated, and this is beyond the coverage of this research. 

The classification results of hinge loss Function and 

smoothed 0-1 loss function based algorithms on nine original 

data sets are presented in Table II. It can be seen that even 

though the training accuracy of smoothed 0-1 loss function 

based algorithm is much better, there is no clear improvement 

on the test accuracy. It is because these data sets are well 

behaved, in other words, these data sets do not have too much 

noise or outliers. To demonstrate the robustness of the 

proposed algorithm, next we investigate noisy data sets. 

Table III lists the average CPU time over 100 runs. Even 

though the CPU time of smoothed 0-1 loss function based 

algorithm takes longer than hinge loss function based 

algorithm, it is still acceptable. 
 

TABLE II: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON ORIGINAL DATA 

SETS. ACCURACIES ARE PRESENTED FOR TRAINING AND TEST SETS 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test training test 

ecoli 86.97% 85.42% 86.93% 85.06% -0.04% -0.36% 
iris 96.47% 89.38% 96.69% 91.25% 0.22% 1.87% 
wine 99.07% 90.90% 98.02% 91.45% -1.05% 0.55% 
glass 54.86% 53.07% 55.94% 52.15% 1.08% -0.92% 
vowel 48.44% 46.60% 52.05% 47.80% 3.61% 1.20% 
vehicle 83.79% 79.19% 85.14% 78.48% 1.35% -0.71% 
segme
nt 

99.05% 92.29% 99.05% 91.91% 0.00% -0.38% 
pendigi
t 

95.94% 90.77% 97.40% 89.54% 1.46% -1.23% 
letter 70.19% 70.17% 73.05% 72.57% 2.86% 2.40% 

 
TABLE III: COMPARISON OF AVERAGE CPU TIME OVER 100 RUNS 

 Hinge Loss(s) Smoothed0-1Loss(s) 
ecoli 0.3985 0.8518 
iris 0.0781 0.0906 
wine 0.5844 0.8797 
glass 0.0606 0.1153 
vowel 8.2222 15.2194 
vehicle 108.7729 114.1934 
segment 8.1314 45.2806 
pendigit 31.0965 50.2832 
letter 171.5363 288.3232 

 

Table IV gives the classification results on data sets with 

class noise. Compare to hinge loss function based 

classification algorithm, results of smoothed 0-1 loss 

function based classification algorithm in Table IV show that 

the improvements in classification performance for the 

smoothed 0-1 loss function based classification algorithm are 

significant for all training data sets and 8 test data sets 
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respectively. Even though the test accuracy on vowel data set 

is worse, the difference is not big (only 0.4%). It is also 

noticed that due to training sets are corrupted by label noise 

while test sets are intact, all training accuracy are less than the 

corresponding test accuracy. 

 
TABLE IV: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON DATA SETS WITH 

20% TRAINING LABEL NOISE. ACCURACIES ARE PRESENTED FOR TRAINING 

AND TEST SETS 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test training test 

ecoli 62.59% 70.73% 65.84% 73.51% 3.25% 2.78 
iris 81.25% 88.13% 84.63% 90.63% 3.38% 2.50

% wine 84.99% 86.41% 85.54% 90.13% 0.55% 3.72
% glass 51.44% 55.40% 53.77% 56.60% 2.33% 1.20
% vowel 36.00% 40.00% 36.20% 39.60% 0.20% -0.40
% vehicle 68.49% 74.19% 72.56% 76.01% 4.07% 1.82
% segmen

t 
69.19% 73.44% 76.78% 85.25% 7.59% 11.81

% pendigi
t 

74.54% 84.71% 78.55% 87.48% 4.01% 2.77
% letter 52.80% 64.63% 57.82% 71.35% 5.02% 6.72
%  

Table V and Table VI summarize the classification 

accuracy of the two algorithms on noisy data sets with 1 and 2 

attributes are altered by maximal or minimal values of the 

corresponding attributes. 

Compared to hinge loss function based algorithm, we see 

that smoothed 0-1 loss function based algorithm is effective 

in increasing classification accuracy, even though the 

improvement is not as prevalent as the results shown in Table 

IV with label noise. The reason why the attribute noise 

experimental results in Table V and Table VI are less 

significant than the label noise experiments shown in Table 

IV is that there are only one or two attributes are altered per 

data point, these attributes may not be predictable attributes 

and accordingly degrade the noise level. To see a more 

significant attribute noise level, we investigate Table VII and 

Table VIII where50% and 100% attributes are corrupted by 

noise. 
 

TABLE V: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON DATA SETS WITH 

20% TRAINING ATTRIBUTE NOISE (ONE ATTRIBUTE VALUE ALTERED PER 

DATA POINT). ACCURACIES ARE PRESENTED FOR TRAINING AND TEST SETS 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test training test 

ecoli 80.83% 83.65% 81.61% 82.55% 0.78% -1.10% 
iris 90.51% 88.75% 90.96% 88.75% 0.45% 0.00% 
wine 97.33% 90.51% 96.64% 91.07% -0.69% 0.56% 
glass 51.24% 48.62% 54.24% 50.47% 3.00% 1.85% 
vowel 42.80% 43.90% 44.22% 45.00% 1.42% 1.10% 
vehicle 70.00% 73.93% 79.18% 73.72% 9.18% -0.21% 
segment 99.05% 92.19% 99.05% 90.77% 0.00% -1.42% 
pendigit 90.55% 88.45% 93.42% 89.00% 2.87% 0.55% 
letter 62.91% 68.87% 64.52% 70.79% 1.61% 1.92% 

 
TABLE VI: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON DATA SETS WITH 

20% TRAINING ATTRIBUTE NOISE (TWO ATTRIBUTE VALUE ALTERED PER 

DATA POINT). ACCURACIES ARE PRESENTED FOR TRAINING AND TEST SETS. 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test training test 

ecoli 76.60% 80.67% 77.15% 78.91% 0.55% -1.76% 
iris 88.38% 88.75% 89.63% 88.75% 1.25% 0.00% 
wine 95.60% 90.17% 97.03% 89.40% 1.43% -0.77% 
glass 49.33% 46.38% 53.41% 46.84% 4.08% 0.46% 
vowel 40.92% 42.60% 42.79% 43.40% 1.87% 0.80% 
vehicle 68.49% 74.19% 72.56% 76.01% 4.07% 1.82% 
segment 96.68% 89.86% 98.10% 89.77% 1.42% -0.09% 
pendigit 87.48% 87.40% 90.94% 88.91% 3.46% 1.51% 
letter 60.46% 69.15% 62.64% 71.63% 2.18% 2.48% 

TABLE VII: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON DATA SETS WITH 

20% TRAINING ATTRIBUTE NOISE (50% ATTRIBUTE VALUES ALTERED PER 

DATA POINT). ACCURACIES ARE PRESENTED FOR TRAINING AND TEST SETS 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test trainin

g 
test 

ecoli 76.23% 80.37% 75.76% 80.67% -0.47
% 

0.3% 
iris 87.57% 88.75% 89.34% 88.75% 1.77% 0% 
wine 93.60% 90.90% 94.16% 91.62% 0.56% 0.72% 
glass 48.29% 45.58% 50.31% 47.40% 2.02% 1.82% 
vowel 36.61% 39.80% 40.57% 41.30% 3.96% 1.5% 
vehicle 66.11% 68.72% 72.90% 74.07% 6.79% 5.35% 
segment 97.16% 86.48% 98.58% 87.77% 1.42% 1.29% 
pendigit 78.81% 84.48% 82.62% 87.54% 3.81% 3.06% 
letter 54.06% 65.09% 59.54% 70.97% 5.48% 5.88% 

 

Table VII and Table VIII show the results of experiments 

with higher attribute noise levels. First, except for data set 

“ecoli” and “iris”, smoothed 0-1 loss function based 

algorithm out performs hinge loss function based algorithm 

on both training and test accuracy. Second, it is clear that with 

the increasing of the attribute noise level (from 50% to 100%), 

smoothed 0-1 loss function based algorithm performs better 

on test accuracy. The only exception cases are data set “iris” 

and “vehicle”, all other seven data sets’ test classification 

accuracy have been better increased. Moreover, for data set 

“vowel” and “letter”, smoothed 0-1 loss function based 

algorithm is even able to increase the classification accuracy 

significantly by 6.7% and 6.82% respectively when the 

attribute noise level as high as 100% in Table VIII. These 

experiments also demonstrate that in this case label noise has 

a larger effect or impact on the performance of the classifiers 

than attribute noise. 

 
TABLE VIII: COMPARISON OF HINGE LOSS FUNCTION AND THE SMOOTHED 

0-1 LOSS FUNCTION ON MULTICLASS CLASSIFICATION ON DATA SETS WITH 

20% TRAINING ATTRIBUTE NOISE (100% ATTRIBUTE VALUES ALTERED PER 

DATA POINT). ACCURACIES ARE PRESENTED FOR TRAINING AND TEST SETS 

 Hinge Loss Smoothed0-1Loss Improvement 
training test training test training test 

ecoli 72.51% 78.36% 72.87% 79.27% 0.36% 0.91% 
iris 84.49% 90.63% 87.50% 90.00% 3.01% -0.63% 
wine 88.82% 85.68% 90.50% 89.79% 1.68% 4.11% 
glass 46.08% 41.49% 50.21% 44.22% 4.13% 2.73% 
vowel 34.30% 37.90% 40.49% 44.60% 6.19% 6.7% 
vehicle 64.43% 68.68% 72.21% 71.34% 7.57% 2.66% 
segment 93.37% 87.34% 95.26% 89.24% 1.89% 1.9% 
pendigit 74.13% 82.60% 79.59% 86.05% 5.46% 3.45% 
letter 52.30% 63.81% 58.45% 70.63% 6.15% 6.82% 

VI. CONCLUSION 

This paper extends smoothed 0-1 loss function from binary 

to multiclass classification problem. From the theoretical 

point of view, Fisher consistency of smoothed 0-1 loss 

function has been proved and demonstrated by geometrical 

examples. A multiclass classification algorithm is proposed 

based on a single machine model. These algorithms are used 

to demonstrate the robustness of smoothed 0-1 loss function 

based classification algorithm. For experiments, 9 multiclass 

datasets are used and different kinds of noise with different 

levels are introduced to these data sets. The experiments 

show that smoothed 0-1 loss function based multiclass 

classification algorithm is robust. 
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