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Abstract—As 3D models are used more and more in various 

applications, model decomposition acts as an important step for 

model understanding and can be used as a pre-processing step 

for different applications. This paper presents a mesh 

decomposition method based on skeleton. In recent years, a lot 

of work has been done to decompose polygon meshes to 

sub-meshes. No standard for the result, but the aim is to get 

reasonable sub-meshes and keep the boundaries between them 

fine. In this paper, we propose a mesh decomposition algorithm 

using skeleton and fuzzy clustering. Our method uses the 

skeleton of the mesh as the base to automatically get the 

meaningful components without over-segmentation and keeps a 

fine boundary using fuzzy clustering.  

 
Index Terms—Mesh decomposition, skeleton extraction, 

fuzzy clustering. 

 

I. INTRODUCTION 

A problem may become easier when we cut the object to 

simpler sub-objects. In image processing, segmentation has 

been considered a fundamental problem, which is a necessary 

pre-processing step for many higher-level computer vision 

algorithms. In recent years, more and more efforts have been 

put in the mesh decomposition for graphics applications.  

Mesh decomposition can be used in many applications. 

Shlafman et al. [1] used decomposition in metamorphosis to 

give a correspondence between two models. Li et al. [2] used 

decomposition in collision detection to build a hierarchical 

data structures. Levy et al. [3] used decomposition to make 

parameterization and texture mapping be applied to each 

sub-component. Katz et al. [4] used decomposition to extract 

the control skeleton of mesh. Many other applications can 

benefit include simplification, compression, and modeling. 

Many approaches have been discussed for decomposing 

meshes in the past years. In [5] Mangan et al. proposed a 

watershed method for mesh decomposition. This approach 

generalized the watershed technique for 2D image processing 

to 3D polygon meshes. One problem of this approach is 

over-segmentation, which needs a post-processing step to 

resolve. Another problem is the result can easily be affected 

by noise of the mesh. Shalfman et al. proposed a K-means 

clustering algorithm for mesh decomposition in [1]. The 

mesh is well segmented, but the boundaries are always too 

jaggy and always not correct. A random walks method is 

proposed in [6]. In this case, meaningful components can be 

generated in a short time. The only problem is the 
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dependency on seed faces. Li et al. use the skeleton as sweep 

path and use the space sweep method to get the mesh 

segmented in [2], but the boundary is too smooth and loses 

the features of the mesh. Katz et al. proposed the fuzzy 

clustering method for decomposition in [4], combined with 

cuts, it gets a good performance in both components and 

boundaries. But the iterations to get the representative faces 

make it unsuitable for large models. 

In this paper we propose a new algorithm for mesh 

decomposition. Our work gets a fuzzy clustering using the 

geography distance to the skeleton, and then gets the 

boundaries from the fuzzy parts using the angular distance. In 

this way, we can get the meaningful components of the mesh 

without over-segmentation and the boundaries look fine. 

The rest of the paper is organized as follows. Section II 

gives the definition of components and outlines our algorithm. 

Section III describes the details of extracting skeleton. 

Section IV describes how to do the fuzzy clustering. Section 

V shows some results. Section VI concludes and discusses 

future works. 

 

II. OVERVIEW 

By decomposition, we aim to get the mesh broken down 

into meaningful components. A component is meaningful if 

it’s distinguishable from the rest. For example, we can break 

down a human into head, body, hands, and legs, because we 

can tell each component from others. This doesn’t mean the 

result is unique, different ways to decompose a mesh will get 

different results. It’s difficult to tell which is better, just like 

you can take a hand as whole, and also you can break it down 

to palm and five fingers.  

Let S be an orientable mesh, a K-way decomposition of S is 

to break down S into K independent components, S1, S2 ... Sk, 

and each component Si is called a patch. 

To decompose a mesh well, two important characteristics 

are needed, geometry and topology. So we choose skeleton as 

the base of our decomposition algorithm. As shown in Fig. 1, 

we can get the geometry and topological information from 

the skeleton. We use a modified edge collapse method to 

extract the skeleton of the mesh.  

 

           
  (a) geometric model               (b) skeleton extracted 

Fig. 1. Skeleton of a duck model. 
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Another key idea of our algorithm is fuzzy clustering. 

Assume we have extracted the skeleton of the mesh, and the 

number of skeletal edges is K. Each skeletal edge is taken as 

the representative of a patch, and we aim to get a K-way 

decomposition of the mesh. We first find the meaningful 

components and leave the boundaries between them fuzzy. 

Then we focus on the fuzzy areas to find the boundaries. 

The work flow of our algorithm is as below: 

1) Extracting the skeleton of the mesh. 

2) Assigning distances to all pairs of face and skeletal edge. 

3) Get a fuzzy decomposition by assigning a probability 

value for each pair of face and skeletal edge. 

4) Make use of angular distances to extract boundaries 

from the fuzzy areas. 

 

III. EXTRACTING SKELETON 

This section justifies how to extract the skeleton of a mesh 

using a modified edge collapse method. 

H. Hoppe proposed the progressive meshes in [7] and 

presented a procedure for mesh simplification. It will first 

assign a cost to all the edges in the mesh, and iteratively do 

the edge collapse transformation to the edge with the lowest 

cost. 

Our method is based on [7], but as we just need the 

skeleton for decomposition, a simple cost function is used 

instead. We use the Euclidean length of the edge as the cost. 

The procedure of edge collapse is shown in Fig. 2. Edge (u, v) 

is the edge with lowest cost in the mesh. It collapses to its 

endpoint u, and the position of point u changes to the 

midpoint of the edge. We assigned a list for each point to 

store the edges associated with it, we call this associated 

edges list. This will make it easier to refresh the related data 

after the edge collapse. When no triangle is incident to the 

edge, this edge is called a skeletal edge. The skeletal edges 

make up the skeleton. The procedure of the algorithm we use 

is as below: 

1) Assigning costs to all the edges and assigning each point 

an associated edge list. 

2) Find the edge with the lowest cost and collapse the edge. 

3) Refresh the associated edges list of the remained point 

and refresh the cost of the edges in the list. 

4) If an edge in the list is a skeletal edge, keep it in the 

skeletal edge list. Then remove it from the mesh and the 

associated edges list to keep its endpoints unchanged in 

later procedure. 

5) Iteratively do step 2 to step 4 until no edge exists in the 

mesh. 

 

 
Fig. 2. Edge collapse. 

 

With this method, we avoid using complex computing. For 

a mesh consists of n edges, it takes (log )O n to find the lowest 

cost edge and (1)O to refresh the data. So the total runtime of 

the procedure is ( log )O n n . This method is suitable for us. The 

skeleton it gets is approximate the medial axis of the mesh 

and works well with noises to avoid over-segmentation. A 

2D example of extracting skeleton is shown in Fig. 3 and the 

extracted skeleton of a cow model with 75524 faces is shown 

in Fig. 4. 

 

         
         (a) original mesh                    (b) edge (v0,v5) collapse to v0 

 

   
    (c) edge (v6,v7) collapse to v6          (d) edge (v1,v2) collapse to v1 

 

 
(e) edge (v0,v4) collapse to v0 

Fig. 3. 2D example of extracting skeleton. 

 

 
Fig. 4. Skeleton of a cow model. 

 

IV. FUZZY CLUSTERING 

The fuzzy clustering method based on the skeleton will be 

described in this section. 

Katz et al. proposed the fuzzy clustering method for 

decomposition in [4]. The algorithm uses a face to represent a 

patch and calculate the probability of other faces belongs to 

this patch based on the distance, and then uses the result to 

re-compute a more accurate representative face. This process 

is time consuming. After finally get the best representative 

face and make the fuzzy clustering, the exact boundaries are 

constructed from the fuzzy area. 

The basic idea of our fuzzy clustering algorithm is almost 

the same. But instead of using a face to represent a patch, we 

use the skeleton.  
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A. Computing Distances 

The skeleton is approximate the medial axis of the mesh, 

so we can assume that the meshes around the skeleton form a 

cylinder, as shown in Fig. 5. Considering the ending patches 

like the head, fingers, and toes, finally we use the model 

shown in Fig. 6, a cylinder with a hemisphere on both ends.  

 

 
Fig. 5. Cylinder model for meshes around the skeleton. 

 

 
Fig. 6. Cross-section of the model for meshes around the skeleton. 

 

As shown in Fig. 7, assume edge (u, v) is a skeletal edge ki, 

and point c is the center of mass of an arbitrary face fj. The 

distance between fj and ki is Distji, which can be computed as 

show in (1). As shown in Fig. 6, we need an initial guess of r 

to complete the model. To make it simple, for edge (u, v), the 

radius is | |


jr uv .  

 

   
(a)  α>π/2                         (b) β>π/2 

 

 
(c) others 

Fig. 7. Distance between face and skeleton. 
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B. Fuzzy Clustering 

For an arbitrary face fi, we compute the weight between fi 

and each skeletal edge ki as shown in (2). Assume we have k 

skeletal edges, find the minimal weight among all the k 

weights for fi. Assume that weightim is the minimal weight, 

and then we believe that face fi most probably belongs to 

patch m. For skeleton m and any other skeleton j, the 

probability that fi belongs to patch m is computed as shown in 

(3). We define a threshold ε, if promj is less than 0.5+ε, then 

we think that fi may belong to patch j as well. In this case, we 

make fi belong to the fuzzy path. If for all other skeletal edges, 

promj is larger than 0.5+ε, then we make fi belong to m.  

/ij ij jweight Dist r                              (2) 

ij

mj

im ij

weight
pro =

weight + weight
                     (3) 

The fuzzy clustering result of the cow model is shown in 

Fig. 8. The threshold ε we use is 0.02. For we have many 

short skeletal edges, the threshold shouldn’t be too large in 

case that no face is assigned to the patches represented by the 

short skeletal edges. 

 

 
Fig. 8. Fuzzy clustering result of the cow model. 

 

C. Extracting Boundaries 

We use the angular distance instead of the geography 

distance to extract the boundary from the fuzzy areas. 

We give the model of a patch in Fig. 6, combined with the 

distance computing shown in Fig. 7, we can see that in a 

novel situation, as shown in Fig. 9, if a face fj belongs to patch 

i represented by edge (u1, v1), the direction of its normal 

should be the same with 
1v c


 and have a huge difference 

from
2v c


. According to the situations in Fig. 7, define
jn


 the 

normal of fj, and ( )
| |

Vec
N Vec
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
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  the unit vector ofVec


, we 

compute the angular distance as shown in (4). The patch m 

with the minimal angular distance to fj is the one fj belongs to. 

 

 
Fig. 9. Angular distance between face and skeleton. 
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Fig. 10. Final decomposition of a cow model. 
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The result of final decomposition of the cow model is 

shown in Fig. 10. We can see that the boundary between the 

body and head is smooth, but the boundary between the 

different patches of the leg is a little jaggy. Because the 

skeletal edge that represents the patch is too short and no 

exact boundary as shown in Fig. 9 exists between them. 

 

V. RESULTS 

A. Some Results 

Some results of our decomposition is shown in Fig. 11. We 

get good performances in the man, hand, dolphin and many 

other models provided by X. Chen et al. [8]. They are 

decomposed to meaningful components without 

over-segmentation and remain good boundaries between 

each component. 

 

      
(a) man                              (b) hand 

 

 
(c) dolphin 

Fig. 11. Some results of decomposition. 

 

B. Cow Model of Different Resolutions 

        
(a) mesh of high resolution model  (b) mesh of low resolution model 

 

      
(c) skeleton of high resolution model (d) skeleton of low resolution model 

 

   
(e) result of high resolution model (f) result of low resolution model 

Fig. 12. Comparison between the cow model with different resolutions. 

Two models of the cow with different resolutions are given 

in Fig. 12, the high resolution one has 75524 faces and the 

low resolution one has 33244 faces. Thought the results are 

all fine, it’s obvious that the high resolution one get a better 

performance. Though our algorithm can avoid noise, but the 

trend of mesh distribution can affect the result. The skeleton 

of the low resolution extracted a skeleton that breaks the 

body to two parts and get a too long skeleton for the head, 

which finally make the decomposition result worse than the 

high resolution one. 

C. Some Bad Results 

 

   
(a) original model        (b) skeleton    (c) decomposition 

Fig. 13. Decomposition of the portrait sculpture. 

 

   
(a) original mesh                   (b) skeleton 

 

 
(c) decomposition 

Fig. 14. Decomposition of the cup. 

 

In this experiment, we try a portrait sculpture model with 

54874 faces. Result is shown in Fig. 13. The skeleton we 

extracted consists of only one skeletal edge, and the whole 

model is taken as a whole. Then we decomposed a cup model 

with 30492 faces. The result is shown in Fig. 14. The main 

body of the cup is concave, and the skeleton we get for the 

main body is totally incorrect.  

Our method works badly with a concave model or a model 

which is too connective to break down. 

 

VI. CONCLUSION 

In this paper, a 3D mesh decomposition method using 

skeleton and fuzzy clustering is proposed. A simple modified 

edge collapse method is used to extract skeleton, and then the 

skeleton is used as a representative to a patch to do fuzzy 

clustering. First we get the meaningful components and then 

extract edges from the fuzzy areas. Our algorithm can always 

get a good performance for convex meshes. As the skeleton 

extracting is the base of the method, any convex model can be 
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decomposed into meaningful components with good 

boundaries and no over-segmentation. Our future work will 

mainly focus on skeleton extraction for concave models. 
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