



Abstract—Traffic jams are a huge issue in urban streets.

Intersections are one of the critical parts of the street that

causes high amount of congestion if not managed properly.

Solutions where made that revolve around fixed set of

operations that attempt to find optimum time for each traffic

light in the intersection. Several solutions were proposed over

the last years that use a more intelligent and more dynamic than

the previous ones. Some of those approaches, labeled as

Intelligent Traffic Light Control System, are discussed in this

paper. The methods are Webster, Dynamic Webster, Equal

Interval and Optimum Equal. A simulation software will run

those methods in a typical four-phase intersection and generate

a report about their results. Each method is demonstrated and

explained in the context of the simulation software. The

methods are compared with emphasis on cycle interval time and

flow rate. A conclusion is made about what can be improved in

those methods.

Index Terms—Isolated intersection, simulation, webster,

Dynamic Webster (DW), Optimum Equal (OE), Equal Interval

(EI).

I. INTRODUCTION

Traffic congestion in urban cities is a major problem. It

costs the individuals and the government time and money duo

to wasted potentials and even higher probability of

subsequent incidents specifically in developing nations

where vehicular traffic is rapidly increasing [1]. Traffic

Management Systems (TMS) thus implemented to solve this

issue by optimizing the traffic flow to reduce traffic jam.

Better approach has been discovered and improved during

the last years called Intelligent Traffic Light Control System.

Intelligent Traffic Light Control System can produce more

optimal results through manual control of the road

parameters [2]. Then the user sends those parameters to a

microprocessor connected to the traffic lights in a certain

intersection. Different setups where used to adapt to known

road conditions like rush hours [3]. Those methods where

rather fixed solutions that cannot adapt unless the user

manually switches from one set of parameters to another. As

a result, new adaptive control methods where created that

continuously optimize the parameters depending on road

conditions. One of those methods the well-known Webster’s

method. In his formula or algorithm, he used different

concepts to calculate the optimum green time for each traffic

light in an intersection. Another convenience of Intelligent

Traffic Light Control System is the ability to simulate them

Manuscript received July 30, 2013; revised October 5, 2013.

Abdulrahman Al-Kandari and Imad Al-Shaikhli are with the International

Islamic University Malaysia, Computer Department (e-mail:

aam_alkandary@yahoo.com, imadf@iium.edu.my).

Anas Najaa is with the Computer Education Department, Basic Education

Collage, PAAET, Kuwait (e-mail: spidernet12@gmail.com).

using software easily with different options in this paper [4],

[5], some of the previous methods are discussed including

Webster, Equal Interval, Optimum Equal and Dynamic

Webster in section two titled as methods explanation and

flowcharts. The methods are converted in such a way that

they can run on a simulation software of our design. This

simulation software will simulate an intersection and the

street conditions including specified traffic flow, cycle time,

minimum green interval, method or algorithm in use and

other parameters. The simulations in this paper lasted for 30

minutes for each algorithm. The software will generate a

report after the session is completed that includes a lot of

information that from we can conclude the efficiency of the

used method. This discussion of the results is shown in details

in section three titled as discussion and results with great

focus on cycle interval and flow rate. Lastly, conclusion and

future works related to the methods presented in section four.

II. METHODS EXPLANATION AND FLOWCHARTS

Traffic control uses several algorithms to manage the

traffic flow on intersections. Those algorithms have strengths

and weaknesses in different scenarios. In this section, each

method is explained using a flowchart and mathematical

representation of how the green time is distributed among the

four roads in the intersection.

A. Equal Interval

This method is straight forward and the simplest method

(See Fig. 1) of all the four methods currently mentioned.

First, “Green Time” must be calculated by removing Red

Interval and Yellow Interval from the Cycle Time as seen in

(1):

() WT TYI TRI (1)

where WT is Wasted Time, TYI is Total Yellow Interval and

TRI is Total Red Interval.

Then pure green interval is obtained then by subtracting

the full cycle time given to the intersection from the time

wasted on Red and Yellow Intervals, as seen in (2):

() ACI CI WT (2)

where ACI is Actual Cycle Interval, CI is Cycle Interval and

WT is Wasted Time.

Then Green Time is distributed evenly among the four

lanes by simple division, as seen in (3):

4




CI WT
GI (3)

Abdulrahman Al-Kandari, Imad Al-Shaikhli, and Anas Najaa

Comparative Study between Traffic Control Methods

Using Simulation Software

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

424DOI: 10.7763/IJMLC.2013.V3.353

where GI is Green Time and CI is Cycle Interval.

The flow chart for calculating Equal Interval shown in Fig.

1:

Add the
Numbers
together

Waste
Time

Multiply by
Number of

Phases (Four)

Multiply by
Number of

Phases (Four)

Yellow Interval for a
Queue

Red Interval for a
Queue

Cycle Interval

Subtract Waste Time
from Cycle Interval

Actual Cycle
Interval

Divide Actual Cycle
Interval by Number

of lanes (Four)

Green
Interval for
Each Traffic

Light

Fig. 1. Equal interval flow chart.

B. Optimum Equal

This method is just like Equal Intervals method; it gives

each traffic light an equal Green Interval value. The

difference resides in how this method calculates Actual Cycle

Interval as seen in Fig. 2.

The equation multiplies the sum of the queues by the

average cross ratio and subtracts the waste time to get the

Actual Cycle Time as seen in (4):

1 2 3 4
1 2 3 4(() ())

4

r r r r
ACI q q q q WT

  
      (4)

where (q) is the total queue of a road and (r) is the average

cross ratio of the specified road.

What this means is instead of giving static Cycle Interval

that does not scale with traffic load, the system decides to

give Dynamic Cycle Interval that scales with the Queues as

well as the average of the Cross Ratio.

Giving the final form of the equation 5:

4 4

1 1

1
() ()

4
4

i ii i
q r WT

GI
 

 

 

 (5)

where:

(q) is the queue of a road, (r) is the cross ratio of a road

and(i) is the number of the road specified.

It is important to notice that by giving the ability to scale,

an issue is exposed which can lead to the formula giving a

very large number for Green Interval or sometimes a very

small and unreasonable number. Therefore, minimum and

maximum limits are tested against Actual Time before

applying it.

Sum the Queues

Total
Queue
(Total

Number Of
cars in all

lanes)

Sum the Cross
Ratios and dived
by four (Number

of Queues)

Average
Cross Ratio

Multiply Total
Average Cross
Ratio by Total

Queue

Actual
Cycle

Interval

Subtract Waste
Time from Actual

Cycle Interval

Total Green
Interval

Divide by Number
of Queues

Green
Interval

Retrieve the
number of

cars in each
Queue

Retrieve the
Cross Ratio
of Queues

Calculate
Waste Time

Total Green Interval
Bigger than Maximum
Actual Cycle Interval?

Total Green Interval
Smaller than

Minimum Actual
Cycle Interval?

NO

NO

Apply Equal
Interval
Method

YES

YES

Fig. 2. Optimum equal flow chart.

The minimum value of Actual Cycle Time is obtained by

summing all the Minimum Green Intervals of Lanes as seen

in (6):

1 2 3 4MACT MGIQ MGIQ MGIQ MGIQ    (6)

where MACT is Minimum Actual Cycle Time and MGIQ is

Minimum Green Interval of Queue X.

Similarly, if the calculated value exceeds the specified

Cycle Interval for this intersection then, the method will use

instead the Equal Interval method described before as a

solution. As a result, the Actual Cycle Time here will always

be a variable number swinging between the Minimum Actual

Cycle Interval and the Maximum Actual Cycle Interval.

C. Webster

Webster method calculates the actual cycle interval just

like Equal Interval. However, it calculates the Green Interval

depending on the current queue relative to the total queue

number of all traffic lights. This is somehow similar to

Optimum Equal but instead of looking at the intersection as a

whole “Total Queue”, the method will focus on each Queue

and the percentage of cars that exist in it and give it a suitable

value out of the 100% of the Green Interval Time, see Fig. 3:

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

425

Total
Traffics
Queue

Sum Traffic Light
Queues

Divide Traffic
Light Queue of X
by Total Traffics

Queue

Calculate
Actual Cycle

Interval

Percentage of
Cars in Queue X
relative to the

total number of
cars

Actual
Cycle

Interval

Multiply Queue
Percentage by
Actual Cycle

Interval

Green
Interval

Cycle Ended?

YES

Count
Number of

Cars in Each
Queue

Increment X

X > Number of
Queues?

NO

YES

Fig. 3. Webster flow chart.

Fig. 4. Dynamic webster flow chart.

Equation 7 describes how the percentage of cars is

calculated:

4

1 ii

TLQ
PCQ

q





 (7)

where q is the Total cars in a specified road, PCQ is

Percentage of Cars in Queue and TLQ is Traffic Light Queue.
Thus, the actual cycle interval will be divided according to

these percentages as seen in (8):

4

1 ii

TLQ
GI ACT

q


 


 (8)

where q is the Total cars in a specified road.
Note that, this method executes once per cycle. Which

means, the total queue is calculated only when the first traffic

light in the cycle comes in the scene.

D. Dynamic Webster

This is identical to the Webster method except that the

method here in the Green Interval calculation part does not

wait the cycle completion in order to recalculate the total

queue (as the Webster does) instead, it recalculates the total

queue continuously and resets the Green Interval for each

traffic light accordingly, see Fig. 4. The equation is identical

to Webster as seen in (8).

III. DISCUSSION AND RESULTS

The following section contains graphs that show a

comparison between the different algorithms used to control

the traffic flow. The iTraffic simulation software was used to

run the simulations. Before discussing the results a brief

review of the constants, decisive factors and other factors are

discussed to provide a background about the simulation.

A. Constants Used in the Simulation

The simulations have fixed terms except for the Cycle

Interval Time. Table I shows a list of the assumptions made

before running the simulations:

TABLE I. THE FIXED VARIABLES IN THE SIMULATION

Option Value

Number of Tracks 4

RTL Flow (Right To Left) 3600 c/h

LTR Flow (Right To Left) 7200 c/h

TTB Flow (Top To Bottom) 3600 c/h

BTT Flow (Bottom To Top) 1000 c/h

Yellow Interval 3.5 Seconds

Red Interval 1 Second

Minimum Green Interval 2.5 Seconds

U-Turns Disabled

Left Turns Disabled

Right Turns Disabled

Default speed 60 km/h

Simulation Time 30 Minutes

Drawing Thread Sleeping Period 50 Millisecond

Track number is equivalent to lanes number. Currently the

maximum number of tracks or lanes is four. U-Turns and the

ability to turn left or right is excluded from this simulation to

avoid anomalies in results and to focus more on the cross

ratio than the nature of the road or the cars behavior. Drawing

Thread is an Asynchronies method that fires up at predefined

intervals to draw the cars on the screen. The interval or period

set in this simulation is 50 Millisecond. The lower the period

the smother the animation and the more recourses the

software will need. Fifty Millisecond is the default value.

B. Decisive Factor

The methods included in the comparison and there short

terms are:

1) E = Equal Interval

2) OE = Optimum Equal

3) W = Webster

4) DW = Dynamic Webster

Cycle Interval Times used in the comparison are:

60, 90, 120, 150, 180, 210, 240 Seconds

C. Other Factors

There are there factors that can affect the simulation results

indirectly and contribute into the outcome. One of the factors

is the machine performing the simulation. Some computers

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

426

have better capabilities and performance in term of graphics

and processing speed. Since the software uses DirectX to

draw the cars on the screen the computer needs to be able to

handle such load since the number of cars increases

dramatically as the simulation runs for longer times. The

CPU too plays a big role in the calculations and can affect the

simulation results negatively by displaying anomalies in the

data if the Processing speed is too slow.

Another factor is the zooming degree of the road. The

farther you zoom away from the road the more cars the

software is able to load into the lanes. Zooming out increases

the storage of the lanes therefore making the simulation

collect more data, which is better for analysis. Zooming in

decreases the storage capacity of the lanes and reduces the

data that can be collected. The only reason to actually zoom

in if the simulation speed is affected or the computer cannot

handle such load, then zooming in will be a reasonable

solution to reduce the load and collect correct data.

Additionally, a random function adds cars to each road on

random intervals. This provide a more realistic simulation of

the road since adding cars directly and instantly to the road is

not acceptable nor beneficial to the simulation. In addition,

the simulator gives realistic speed to the cars, for example

cars on the left most side of the road will move by the top

speed set for the simulation but cars on the most right side of

the road will move slower because the lane is considered a

safe lane.

D. Charts Discussion

1) Line chart

The following section compares between the four methods

in a single line chart with cycle times of 60, 90, 120, 150, 180,

210 and 240 seconds.

Fig. 5. Line chart that shows number of cars passed using Webster, Dynamic

Webster, Equal Interval and Optimum Equal methods in term of cycle time

or seconds.

The line chart in Fig. 5 displays the major difference

between Equal interval, Optimum Equal, Webster and

Dynamic Webster Algorithms. The X-axis shows the number

of cars and the Y-axis shows the time of the cycles in

seconds. The static cycle algorithms, namely Webster,

Dynamic Webster and Equal interval, work almost at equal

efficiency when the time is short. The starting point of

Webster though is higher than that of Equal Interval duo to

the fact that it distributes green time depending on the

percentage of each queue relative to the total queue while

Equal Interval simply distributes the time equally, in other

words it lacks both dynamic distribution of time and dynamic

adjustment of the cycle time itself. Note that When the time is

short, managing cars becomes easy since the difference

between times given to each road is minor and almost

neglectable; you can only divide 60 seconds that much after

all. The algorithms will not have much room to scale.

After the time increases, some of the algorithms will start

to use the increased time to scale better than other algorithms.

Those algorithms are namely Webster and Dynamic Webster.

The scaling is good enough for 90 seconds. They can handle

sudden burst in flow making them more reliable for real life

scenarios. That being said, equal interval doesn’t seem to

perform quite as well as the other algorithms, in fact it falls

short as it used to perform better with 60 seconds cycle time.

This is duo to the algorithms dividing time in an inefficient

matter. As seen in Table I the number of cars in each road is

different, some of them has 7200 cars flowing each hour,

some have 3600 cars flowing each hour and the BTT road has

1000 cars flowing each hour. Since the simulation ran for

about 30 minutes, the theoretical number of cars that should

flow in each road is half of the amount that should flow each

hour. However, in real life scenario this number is decreased

for several factors that include driver’s behavior, time of the

day and over all road conditions. Therefore, the number of

flowing cars each 3 minutes is something close to the

theoretical number. That being said the reason why equal

interval falls short is obvious, for there is different number of

cars that flow in each lane. Equal interval will give each road

the same amount of time and that is not an efficient solution

when there are different traffic flows for each road.

When the time increases to 120 seconds, the algorithms

start behaving differently. Equal interval has already fell

short before but it rises again to a degree close to Optimum

Equal because almost all the roads have green time close to

their optimal green time, which is ought to happen if you

keep increasing the cycle time. Sadly, this effect does not last

because later on the time wasted on roads with little traffic

flow will be greater than the time saved on the roads with

huge traffic flow as seen in the decline of Equal Interval upon

increasing the cycle time. Webster and Dynamic Webster

behave similarly as they reach the highest spot at 120 seconds

cycle time and then decline as they cannot scale the cycle

time itself. Even though there is a percentage scaling, the

percentage of cars does not translate that well to how many

cars actually pass, as the number of cars increases. Optimum

equal is able to rise unlike other algorithms, which is due to

its dynamic cycle scaling to the number of cars on the roads.

Dynamic cycle means the algorithm can pick a cycle time

from a range that extends from minimal green time to the

maximum cycle time allowed. Optimum equal stops

increasing at 180 seconds mark and remains steady to 240

seconds mark. While dynamic Webster and Webster decline

at a steady rate from 120 seconds to 240 seconds. In addition,

from there on as the number of cars increases the scaling falls

short for every algorithm without a dynamic cycle time.

2) Column chart

The following section compares the four methods

separately, times used are 60, 90, 120 seconds cycle interval.

As seen in Fig. 6, dynamic Webster outperform all other

algorithms at minimum cycle interval of 60 seconds.

Followed by Webster. Note that the difference between DW,

W and OE, E is not huge, only ranging from 200 to 250 cars

duo to the small cycle interval.

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

427

Fig. 6. Column Chart that compares different methods at 60 seconds cycle

time.

As seen in Fig. 7, Optimum Equal improves a little bit than

in 60 seconds cycle time. This improvement keeps scaling as

the cycle time increases, unlike Equal Interval. Also Webster

and Dynamic Webster increases steadily by a range of 100 to

300 cars.

Fig. 7. Column chart that compares different methods at 90 seconds cycle

time.

In Fig. 8, Optimum Equal keeps rising, as it scales better

relatively to other methods, which their flow rate is increased

by a small amount. At the same time, Equal interval reaches

its peak. This means that Equal Interval can no longer get

better if the cycle time increases.

Fig. 8. Column chart that compares different methods at 90 seconds cycle

time.

IV. CONCLUSION AND FUTURE WORK

After running the previous simulations, we can conclude

that dynamic adjustment of cycle time and green time

distribution for each road is the key factor in controlling

traffic flow effectively to reach optimum solution for each

intersection. In this paper, Dynamic Webster and Equal

Interval played a huge role in optimizing traffic flow in

different ways by refreshing queue status each time in

Dynamic Webster and scaling cycle time in Optimum Equal.

Those two methods should be the focus of future work as

they can be further improved by adjusting their algorithms to

avoid there weakness.

APPENDIX

Software used in the simulation is displayed in Fig. 9:

Fig. 9. Software built using VB.NET and SQL.

Sample of the report generated by the simulator is

displayed in Fig. 10:

Fig. 10. Report Sample generated by the Software.

Some of the options the user can control are displayed in

Fig. 11, Fig. 12, Fig. 13 and Fig. 14:

Fig. 11. Options Related to the roads.

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

428

Fig. 12. Options related to the traffic lights.

Fig. 13. Options related to the cars.

Fig. 14. Options related to the drawing engine.

REFERENCES

[1] K. Jraiw, “Urban road transport in Asia's developing countries: Safety

and efficiency strategy,” Transportation Research Record, vol. 1846,

pp. 19-25, 2003.

[2] R. L. Gordon, W. Tighe, Traffic Control System Handbook.

Washington, DC: FHWA-HOP-06-006, U.S. DOT, FHWA, 2005.

[3] F. V. Webster, Traffic Signal Settings, Road Research Technical Paper

No. 39, Road Research Laboratory, Her Majesty’s Stationery Office,

London, U.K., 1958

[4] C. Bielefeldt, D. Bretherton, and C. Toomey, “The role of online urban

signal control in congestion and incident detection and management,”

presented at the IEE Colloquium on Incident Detection and

Management (Digest No: 1997/123), 1997.

[5] O. U. Chinyere, O. O. Francisca, and O. E. Amano, “Design and

simulation of an intelligent traffic control system,” International

Journal of Advances in Engineering & Technology, vol. 1, pp. 47-57,

1963.

International Journal of Machine Learning and Computing, Vol. 3, No. 5, October 2013

429

A. Alkandari was born on January 29, 1981 in

Kuwait. A. Alkandari finished his bachelor degree of

Computer Engineering in Kuwait University, Kuwait

in 2004, and the master degree of Computer

Engineering in Kuwait University, Kuwait in 2011. A.

Alkandari studied Ph.D. of Computer Science in

International Islamic University Malaysia, Malaysia

starting from 2011 to 2014.

He worked on Civil Service Commission, Centre of

Information Systems from February 2005 to end of

May2006 as a project coordinator for" Integrated System"(e-Government),

then Mobile Telecommunication, Kuwait (MTC) as a support engineer from

June 3, 2006 to March 4, 2007. After that, He became a faculty member at

the Public Authority for Applied Education & Training (Telecommunication

& Navigation Institute) on computer department from March 4, 2007 to

September 16, 2008. Finally, He is a faculty member at the Public Authority

for Applied Education & Training (Basic Education Collage) on computer

department from September 16 2008 till today. He is interest in intelligent

systems, traffic engineering, algorithms, smart cities and wireless sensor

network.

Mr. Alkandari is a member of Kuwait Society of Engineers and a member

of Kuwait Information Technology Society.

I. Alshaikhli was born on March 26, 1962 in Iraq.

I. Alshaikhli finished his bachelor degree of Maths

in Iraq in 1985, master degree of Computer Science

in Iraq in 1991, and the Ph.D. of Computer Science

in India in 2000.

He worked as a system analyst since 1985, then

the head of the dept. of Computer Information

System at Al-Rafidain University from 2003 to

2005. After that, He was a faculty member and

dean of College of Computer Eng. and Science,

Gulf University- Kingdom of Bahrain from 2006 to 2010. Finally, He is a

Faculty Member of Computer Science, International Islamic University

Malaysia from 2010 till today. He is interest in cryptography,

steganography, genetic algorithms, neural network and biometrics.

I. Alshaikhli is the editor in chief of JACSTR (Journal of Advanced

Computer Science and Technology Research). He is also a member of

Malaysian Society for Cryptology Research – 2012, the General chair -

ACSAT 2012, a member of the Board of Governors/ DSR-2012.

Associate editor: Pakistan Journal of Engineering, Technology and

Science (PJETS), 2011. He is an IEEE member in Computational

Intelligence. Committee member, PACLING 2011 Malaysia, a member

of Iraqi Computer Society since 1992. He is also a technical program

committee for ISCI 2012.

A. Najaa was born on February 12, 1991 in

Kuwait. A. Najaa finished his bachelor degree of

Computer Education in Public Authority for

Applied Education and Training, Kuwait on 2013.

He worked as a teacher assistant in Eyass Bin

Moath Secondary school. He was one of the

authors who published a paper in IEEEXplore

“SVG and Arabic font challenges and

improvements”. Alahmad, M. A., Al-shaikhli, I.,

and Najaa, A. M., in Proc. Information and

Communication Technology for the Muslim World (ICT4M), 2013 5th

International Conference. He is interest in security, programming,

designing and robotics.

A. Najaa was the vice president of Computer Club for 1 year, PAAET

and a Member of Google Developers Group/Kuwait.

Author’s formal

photo

Author’s formal

photo

Author’s formal

photo

