
 

 

Abstract—It is imperative to reduce load of the underground 

cable channel in coming Mining of Things for thousands of 

sensors. Gas data, for example, acts an essential role in mass 

time-continuous data sets of coalmine monitoring systems, we 

propose a multi-scale 1-bit compressive sensing algorithm in 

this paper to effectively compress data according the statistical 

properties ‘regular pattern’ of gas data sequence. The 

algorithm divides input into non-uniform intervals according 

to the prior attention of the gas monitoring information, then 

signal decision threshold and the compressed scales depend on 

the different attention in order to achieve a large scales of 

compression ratio on redundant data and as much as possible 

to maintain the sensitive information, comparing with the 

traditional 1-bit compressive sensing which brings overload 

quantization distortion during uniform quantization. 

Satisfactory results obtained by simulation and actual field 

applications show, which provides a useful reference to similar 

real monitoring data compression acquisition with compressed 

sampling. 

 

Index Terms—Mining of things (MoT), multi-scale 1-bit 

compressed sensing (MS 1-bitCS), coalmine safety. 

 

I. INTRODUCTION 

Internet of Things (IoT) technology has been widely used 

in open space. ‗Perception mine IoT‘ tries to introduce the 

IoT technology into mine underground Intranet to capture 

the real-time multi-dimensional characteristics of a 

monitored object from the limited space. However, the 

research is just in its beginning. The large number of data 

collected by those sensors makes the bandwidth requires 

rapid increasing in mine IoT, which produces tremendous 

load on the current communication channel, especially 

between the channel of source-sensors to fiber looped 

network as shown in Fig. 1. Part A and part B in gray 

region, the cable-based channel becomes the bottleneck of 

restricting the mine IoT while the cost of updating cable is 

expensive. It‘s all-important to transform signal sampling 

into information collection to reduce the massive sampling 

data with effective data compression method, and release 

the pressure of the cable-based channel. 

 
Manuscript received May 30, 2013; revised August 1, 2013. This project 

supported by: 1) National Natural Science Foundation of China No. 

51204186. 2) National Science and Technology Support Program 

No.2012BAH12B02. 3)The Fundamental Research Funds for the Central 

Universities No. 2010QNB30 

Xu Yonggang and Hua Gang are with School of Information & 

Electronic Engineering, China University of Mining and Technology, 

Xuzhou, Jiangsu, 221008, China (e-mail: feilongxyg@163.com, 

ghua3323@163.com). 

Zhang Yi is with Sience & Thechnology Center, Huaibei Coalmine Grp. 

Ltd., Huaibei, Anhui, China (e-mail: zy@hbcoal.com). 

G
as sen

so
r

T
em

p
eratu

re S
en

so
r

Reader

R

Reader

W

W
in

d
 sp

eed
 sen

so
r

P
ressu

re S
en

so
r

C
O

 S
en

so
r

O
2
 sen

so
r

R
F

ID

R
F

ID
 

W
IF

I

Z
ig

B
ee

A
x

le T
em

p
ratu

re

A
x
le sp

eed
 S

en
so

r

C
rren

t S
en

so
r

D
isp

lacem
en

t S
en

so
r

N
eg

ativ
e P

ressu
re 

V
o

ltag
e sen

so
r

Part A

Part B

Variable Cable Line

Fix Cable Line

Video Mon.

Substation

V

Saftey Mon.

Substation

S

Personnel 

positioning

P

Pump Mon.

Substation

U

Fiber Network

Underground

Fiber

Cable

Wireless

Fiber Network

Ground

Reader

Z

Z
ig

B
ee

W
IF

I

  
Fig. 1. Underground network of coalmine. 

 

The Compressed/Compressive Sensing/Sampling (CS) 

theory [1]-[6] recently sprang up in the field of information 

procession technology is exactly suitable for this special 

scence, which can effectively overcome the drawbacks of 

the traditional compression technology based on Nyquist 

theory. As one important branch of CS theory, 1-bit CS 

[7]-[11] is paid considerable attention because of its obvious 

advantage in processing the one-dimensional time series 

signal, which has become the research focus in this field. 

Safety production monitoring system as an essential one 

of the six systems [12], further more, gas data acts as a core 

role in saftey monitoring data sets. The gas data is a typical 

time series data [13], they reflects the real production 

environment condition, contained with high-dimensional 

complicated information, which can be implemented in 

various data analysis, acts as a significant role in several 

aspects such as system identification, system modeling, 

decision support and so forth. However, most process data 

does not evident variation characteristics, but which 

consumes plenty of network facilities resources during the 

transmission and storage process. For example, the ‗T3‘ gas 

sensor named 022A12_II529 of coal face of Yangzhuang 

coalmine of Huaibei Mining Group Company, when the gas 

warning threshold and alarming threshold are set to 0.3% 

and 1.0% respectively, more than 95% of the data collected 

under 0.3% is the redundant data, which is not the focus of 

the monitoring system. In order to ensure the stability and 

efficiency of the system, this kind of data can therefore be 

largely compressed. 

Gas mutation signal, as a very important monitoring 

signal, has several characteristics such as mutation, 

amplitude abnormal, non-sequence and short duration. Due 

to these characteristics, it is usually implemented in 

reflecting the potential menace in production environment, 

which is the indispensable characteristic signal in signal 

acquisition. Nevertheless, because the signal transient 
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variation can not be effectively traced during the 1-bit CS 

uniform quantization process, the overload quantization 

distortion is imported, which will lead to the gas 

characteristic signal distorted or even lost, the signal 

reconstruction precision is also reduced.To solve the 

problem 1-bit CS has, we propose the multi-scale nonlinear 

compression method ‗Multi-scale 1-bit CS‘ based on 

notability. This method makes the best of prior acknowledge 

dividing the signal into different scales. By implementing 

multi-scale compression method, the compression problem 

in 1-bit CS can be effectively solved. 

II. NOTION AND DEFINITION 

A. Traditional Data Compression Method 

The research of traditional data compression algorithms 

has a history of several decades, according to the statistics 

study, which have up to 30 to 40 kinds of a variety of data 

compression methods. On the basis of two main directions, 

which are distortion of coding and coding modeling, these 

methods can be separately assorted into several categories. 

The methods to compress coalmine mass data are classed by 

[13], [14]: Boxcar method, backward slope method, 

combination of Boxcar and Backward slope method, SDT 

method, PLOT method etc. Literature [13] and [14] and the 

correlate literatures explain the classification and principle 

of data compression algorithms in details separately, so this 

article will not repeat them. 

B. Compressed Sensing 

CS theory is put forward by D.L Donoho, E. Candès, J. 

Romberg and T. Tao [1], [4] in 2006. It indicated that, 

incoherent observation (projection) matrices can be used to 

project the high-dimension signal to low-dimension space, 

provided the signal is compressible or is sparse in some 

region. Afterwards, utilize the small amount of projections 

to solve an optimization problem, and reconstruct the 

original signal with high probability. For a compressible 

signal, it can be reconstructed without distortion by using 

the sampling rate which is much lower than Nyquist 

sampling rate. In other words, the sampling rate does not 

depend on the bandwidth of the signal, but on the structure 

and contents of information within the signal—transform 

the signal sampling into information sampling. In fact, some 

abstract conclusions of CS theory derived from the 

functional analysis and approximation theory. Sparsity and 

incoherence are the two main components of CS theory. 

Former, the premise of CS implementation, is the signal 

itself. The latter is the condition to decide whether the 

measurement plan is feasible. The fundamental CS system is 

shown in Fig. 2. Sparsity representation [1]-[4], [15]-[18], 

measuring matrix design [16] and reconstruction algorithms 

[7]-[11], [17], [19] are the core of CS theory. 
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Fig. 2. Theory framework of CS. 

 

At present, plenty of literatures have given proof of the 

correlative core theory of what is mentioned above in this 

article. CS framework theory has aroused great interest in 

many domestic universities and scientific research 

institutions. This article aims at the characteristic of 

coalmine gas monitoring data and introduces the 1-bit CS 

into practical applications in coalmine. 

 

III. MULTI-SCALE 1-BIT CS ALGORITHM DESIGN 

A. Algorithm Description 

In practice, based on years of mine production 

monitoring, found that for a long time certain types of data 

have certain ‗rules‘ to follow. Therefore, mine monitoring 

can obtain abundant a-priori knowledge. Obviously, a-priori 

knowledge is different according to their operational 

characteristics in different sectors. But for coalmine safety 

monitoring dispatch center, the priori knowledge of gas 

monitoring data can be transformed into a nonlinear, 

discontinuous multi-scale signal. Moreover, the gas data has 

the characteristic of non-negative real number field, to meet, 

: { , 0, 1,2, },   x x N

i ix x i N R        (1) 

According to the a-priori knowledge, the gas 

concentration is divided into different scale ranges, 

assuming a low concentration of gas [12] in accordance with 

the scale of concern can be divided as Table I. 

 
TABLE I: ATTENTION DIVISION OF LOW CONCENTRATION OF GAS 

Concentrations 

of gas (%) 

Security 

Level 
Display Color 

Rules of 

attention 

0～0.29 Safe Black <10% 

0.30～0.59 Warning  Blue 20% 

0.60～0.79 Warning  Orange 40% 

0.8～1.00 Warning  Purple 80% 

>1.00 Alarm Red,flashing,voice 100% 

 

Obviously, the gas concentration is divided into a 

plurality of intervals ranging scale interval, the attention 

given to different scales, with a mathematical description is, 

1

( )





 

i

i i

A x A

s x s
                 (2) 

where , {1, 2, , } iA i N are different segments of attention, 

is is the boundary of threshold segmentation, and, 

1

1

0i i i

i i

s s l

l l





  



              (3) 
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This paper is structured as following. The Section I states 

the background. Section II is related to the basic framework 

and knowledge of compressed sensing and 1-bit compressed 

sensing. Section III, the detail theory and design of the 

Multi-scale 1-bitCS based on the scale of concern are 

introduced, in which the thresholds divide method to 

optimize designed to closer practical. Then corresponding 

numerical experiments are presented in Section IV. Result 

and conclusions are stated in Section V respectively. 

 



 

where , {1, 2, ..., }
i

l i N denotes the scale for different 

interval, according to the amount of information, 

let ( )p x the probability of x , we set the amount of 

information is proportional to the scales of attention with the 

relationship, 

( ) ln ( )A x p x      (4) 

Since the distribution of eigenvalues are randomly 

uncertain, assume that: 

1
( ) '( )f x p x

a b
 


   (5) 

where ( )f x is the probability density, supposing it 

uniformly distributed random probability event, [ , ]ix a b  

indicates the signal dynamic range, and then assume 

quantized output satisfies, 

( ) :q A
A


            （6） 

where   is a curve correction constant, then the quantized 

output satisfies, 

( ( ))
( )

q A x
A x


              (7) 

The compression ratio denoted by ( )x  can be obtained, 

2
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        (8) 

Let (2), (4), (5) into (8), 
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Because ( )p x  is a constant with a-priori probability, 

and ( ) ,p x c c R


  , assume const ( 0)   , 

( )c a b


 


         (10) 

then (9) simplifies to, 

12
'( ) [ , )

i i i

i

g x x s s
A





     (11) 

Thus, the quantization step of signal is inversely 

proportional to the square of the threshold interval signal 

attention, obviously this is consistent with the practical 

enterprise data governance, the higher the attention of data, 

the smaller the quantization step, the smaller the 

compression ratio, even a compression ratio of 1 (no 

compression); for small attention data, man can give a high 

compression. But in practice, data with small attention has 

an absolute high probability; sensitive data has only small 

proportion, which provides possibility for high compression 

ratio. In order to facilitate the calculations in practice, we 

use a piecewise linear approximation method to segmented 

set the threshold, the quantization step obviously is no more 

a constant. 

B. MS 1-bitCS Algorithm Flow 

According the analysis, we improved the 1-bitCS 

algorithm in the multi scales based literature [8] as 

following.  

 
Algorithm MS 1-bit compressed sensing fixed-point iteration 

Input:  Monitoring data (time series) 

Output:  The time series x


 reconstructed by 
1  

1) Initialization: 

Seed: 
0 0 2

. . || || 1,x s t x 
    

Residuals: 
0r  Y  

Maximum number of iterations: Iters,  Residuals Threshold: tol 

Transform increment: 
0 0   

1{0, }w

i k     

Counter: 0k    

2) While (k<Iters or x


k
 >tol) 

1k k    

3) Find the locally quadratic gradient iterative: 

1( ) '( )T

k kf f  YΦ YΦx   

4) Project the gradient onto the unit ball: 

1 1,k k k k kr f f x x    

5) Select the transform increments of the threshold interval 

where x  locates: 

1, . . [ , )i i i ik
s t x s s       

6） Local quadratic gradient descent: 

1k i kh r  x
   

7） Convergence threshold ( 1  norm gradient descent) : 

For all i ,find：
( ) sgn(( ) )max{| | ,0}m

i i ih h





 
 

8） Normalize x

：

2|| ||




x

   

9） When satisfies the condition, go to 10), otherwise go to 2) 

10） Output x


 

 

IV. EXPERIMENTS AND APPLICATIONS 

A. Data Sources 

This paper selects part of the data of Huaibei Mining 

Group Young Mine gas monitoring points HB05_022A12 

2013.4.2 ~ 2013.4.12 as the original data shown as Fig. 7, 

which reflects the true changes of underground gas 

concentration shown in Fig. 3 red line. It shows both of the 

slowly varying gas data, the gas abnormal data, and the 

equipment condition monitoring data (gas sensor 

calibration) [12]. 

B. Experimental Environment 

This experiment uses Matlab2010b, 2G RAM, Intel dual 

core 1.7GHzCPU, WINXP operating system as a simulation 

platform, we use regularized identity dictionary based on 

multi-scale attention, and identity matrix as measurement 

matrix, respectively with hard threshold gradient iteration, 
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and orthogonal matching pursuit (OMP) and compressed 

sensing orthogonal matching pursuit (CoSaMP) algorithm 

combining a-priori knowledge to reconstruct the signal, the 

simulation shown in Fig. 3 to Fig. 6. 

C. Analysis of Experimental Results 

To compare the performance between 1-bit CS literature 

[8] and our proposed method when overload quantization, 

experience selects /m   =0.05,and about 23 miniutes 

samples form original data set, it is shown in Fig. 7 where 

like a maxmum amplitude ‗pulse‘,which exactly includes 

1401 samples indeed. We compare 1-bit CS and MS 1-bit 

CS separately in three aspects which are sparse 

representation of the signal, reconstruction error and 

reconstruction results, shown in Fig. 3 to Fig. 6. The original 

signal,1-bit CS and proposed method sparse projections is 

shown in Fig. 3 respectively, directly non-uniform 

equivalent projects for large coefficients according to priori 

attention, which is different from the traditional 1-bit CS 

incremental projection. Seen from the projection coefficient, 

the protection coefficients of MS 1-bitCS are more than 

which of traditional methods in the place where information 

changes significantly, while exhibits the same performance 

for the sparse small signal. 

The error curve shown in Fig. 4 and the reconstruction 

curve shown in Fig. 6 reflect visually, when signal mutation 

occurs, due to the restriction of quantization 

 = m /  (constant), 1-bit CS has a great error with the 

original signal, which results in abnormal loss of 

information; while MS 1-bitCS can remain this error in a 

very small range (0.02), PSNR=31.8dB, MSE=0.106;  

 

 
Fig. 3. Signal sparse representation under two kinds of algorithms. 

 

 
Fig. 4. Signal sparse representation error. 

 

 
Fig. 5. OMP and CoSaMP reconstruction coefficient. 

 
Fig. 6. Signal reconstruction with 1-bit CS and proposed. 

 
Fig. 7. Gas of T3 face in Yangzhuang coalmine, Huaibei Grp.  

 

When   is reduced, the error 1-bit CS quantified on 

‗exception‘ data increases further, and the error of MS 

1-bitCS is reduced. 

Using OMP and CoSaMP shown in Fig. 5, select 

0.2mk

N
 as the default sparse threshold ( mk is the default 

maximum possible sparse value, N is the length of input 
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signal, use N=1401 in this experiment), get the real sparse 

value k=33. When reconstruct the sparse projection 

coefficients using the random Gaussian observation 

( (3+log( )) 165M O k N / k  , PSNR can achieve 329dB 

and 315dB respectively, to realize exact reconstruction of 

the coefficients. Considering the quantization noise 

introduced error, the PSNR of these two methods of 

reconstruction curve can achieve 44.6dB and 43.3dB and 

exactly reconstruct the original curve, but the time of 

reconstruction should be longer than that of the hard 

threshold gradient projection method. As is shown in Fig. 7, 

this algorithm shows good performance in the actual use in 

Huaibei Mining Group‘s production.  

 

V. CONCLUSION 

According to the prior acknowledge, the monitoring data 

of different intervals can be divided into different scaled  , 

then measured the segmented error separately, and 

implemented the delaminating compression in data with 

different attention, in order to radically realize high 

compressive ratio in safety data and no compression in 

sensitive warning data.  

Through the simulation calculation, the reconstructed 

PSNR of high attention projection coefficient using the 

algorithm was up to 334dB, then the accurate reconstruction 

was realized. Regarding the imported error of quantization 

noise, the construction curve was up to 44.6dB, that suffice 

to reconstruct the original curve and meet the need of the 

enterprise. 

It is worthwhile to explain that, by using OMP and 

CoSaMP methods to reconstruct the coefficient, when the 

sparsity log 0.03 
k

k N
N

, ( log( ))M O k N / k  cannot 

effectively reconstruct spasity, the reconstruction probability 

is high-low. Within the 50 experiments, only 1 successful 

reconstruction, the probability is 2%. When amend the 

formula to (3 log( ))M O k N / k  , within 30 experiments, 

25 successful reconstructions, the probability is 83.3%. 

Therefore the observation matrix design with extreme sparse 

condition still needs to be analyzed theoretically in the 

future. 
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