
  

  
Abstract—Imbalance in data classification is a frequently 

discussed problem that is not well handled by classical 
classification techniques. The problem we tackled was to learn 
binary classification model from large data with accuracy 
constraint for the minority class. We propose a new 
meta-learning method that creates initial models using 
cost-sensitive learning by logistic regression and uses these 
models as initial chromosomes for genetic algorithm. The 
method has been successfully tested on a large real-world data 
set from our internet security research. Experiments prove that 
our method always leads to better results than usage of logistic 
regression or genetic algorithm alone. Moreover, this method 
produces easily understandable classification model. 
 

Index Terms—Imbalanced data, classification, genetic 
algorithm, logistic regression. 
 

I. INTRODUCTION 
High emphasis on data collecting and subsequent analysis 

leads to discovery of new problems related to processing 
various types of data. In this paper we focus on the 
imbalanced data learning problem, which has drawn a lot of 
attention over past years. We present a new approach to 
handle highly imbalanced binary data classification with 
accuracy constraints on one of the classes. The example of 
such a constraint is reaching 95% accuracy on the minority 
class. Our method combines cost-sensitive logistic regression 
with the use of genetic algorithm. We provide experiments 
and evaluation on highly imbalanced real-world data from 
our internet security research. The presented results clearly 
show advantages of our proposed method compared to the 
using logistic regression and genetic algorithm separately. 
Moreover, the resulting model generated by the method is 
easily interpretable (compared to, e.g., Neural Network) and 
is suitable for very fast prediction. 

 

II. PROBLEM DEFINITION AND RELATED WORK 
In the following paragraphs we describe our problem in 

greater detail, as well as basic principles and other proposed 
methods our work is based on.  

 
Manuscript received February 4, 2012; revised April 17, 2013. This work 

was supported by the research funding TAČR TA01010858, BUT FIT grant 
FIT-S-11-2, the Research Plan No. MSM 0021630528 and the 
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070. 

The authors are with the Department of Information Systems, Faculty of 
Information Technology, IT4Innovations Centre of Excellence, Brno 
University of Technology, Božetěchova 1/2, 612 66 Brno, Czech Republic  
(e-mail: ihlosta@fit.vutbr.cz, istriz@fit.vutbr.cz, ikupcik@fit.vutbr.cz, 
zendulka@fit.vutbr.cz, hruska@fit.vutbr.cz). 

A. Imbalanced Data Classification 
When we talk about imbalanced data, we consider data 

with a significant disproportion in the occurrence of instances 
of each class. Types of data imbalance are widely described 
in [1]. Experiments performed on imbalanced data sets have 
shown that such type of data may often have negative impact 
on the learning phase of most standard classification 
algorithms. The algorithm is overwhelmed by the number of 
majority class instances which may lead to not discovering 
the minority class.  

The main problem in dealing with imbalanced data 
classification is the default inability of most common 
classifiers to recognize the minority class properly. Another 
problem is their inability to consider different costs of 
misclassification. To solve these problems, many methods 
have been proposed. Basically, there are two most popular 
approaches that can be used when dealing with imbalanced 
data classification.  

Sampling is the basic approach we can choose to alter the 
data imbalance. There are two types of sampling – 
under-sampling and over-sampling. Majority class 
under-sampling leads to lower between-class imbalance by 
removing a set of majority class examples from the algorithm 
training set. The issue here is how to choose the set of 
majority class examples for the removal. Approaches differ 
from a random selection to more complex informed methods, 
which produce generally better results. Minority class 
oversampling also leads to lower data imbalance but instead 
of decreasing the number of majority class instances, the 
minority class occurrence is increased by adding or 
generating new minority class examples. Techniques for 
oversampling vary from basic copying of existing tuples to 
more complex generating methods, like SMOTE [2], which 
are able to create new synthetic examples fitting to the 
minority class, and widen the decision region for the 
classifier. Other informed methods are also presented in [3].  

Sampling can solve the problem of data imbalance from 
the point of the actual data distribution, but it still does not 
take into account possible costs of misclassification. 
Cost-sensitive methods have been proposed to address this 
issue and according to various studies focused on certain 
specific imbalanced learning domains [4], [5], cost-sensitive 
learning is superior to sampling methods. The basic concept 
in the context of cost-sensitive learning methodology is the 
cost-matrix. The cost-matrix essentially represents a 
numerical penalty of misclassifying an example. The main 
objective of cost-sensitive methods is to create a model that 
minimizes the overall cost on the training set. MetaCost 
framework, described in [6], presents a simple and effective 
way for existing classifiers to adopt a cost-sensitive learning 
approach in a form of cost-sensitive wrapper, which can be 
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applied onto various data mining systems without prior 
knowledge of their structure. Another way of creating a 
cost-sensitive classifier may be integrating such functionality 
directly inside the classifier itself, or apply misclassification 
costs to the data set in a form of data space weighting.  

However, problems with optimal settings may occur while 
using cost-sensitive or sampling methods. Usually, it is 
impossible to determine ideal method and its setting for 
further unknown data classification. Because of this, building 
classifier ensembles has become a popular practice. 
Ensembles are essentially groups of classifiers that are 
trained on different training sets. These training data sets may 
vary in cost-matrix values, or in the data themselves when 
using different sampling settings. Unseen data are then 
classified by all generated classifiers and the result is decided 
either by simple majority voting or by other advanced 
methods (e.g., different voting weights). Studies [7], [8] 
confirm that classifier ensembles may dramatically improve 
classification accuracy.  

In contrast to previously mentioned techniques, our 
proposed method combines the use of logistic regression with 
genetic algorithm. Following sections give an insight on how 
both of these techniques work. 

B. Logistic Regression 
Logistic regression (LR) is a machine learning model for 

binary classification. The method can handle both numeric 
and categorical variables. Given a learned model, the value of 
the output variable is computed by applying the logistic 
function to linear combination of attribute values and weight 
vector. The function is defined as follows: 
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The logistic function converts the input value to 
interval ሾ0; 1ሿ. The result describes a confidence value for a 
given case being of the class 1. Typically, threshold t = 0.5 
is applied to determine whether an examined example 
belongs to class 0 or 1.  

In the training phase, the algorithm tries to solve the 
unconstrained optimization problem of the following 
objective function:  
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where ߣ stands for a regularization. L1 (∑ |ୀଵݓ| ) and L2 
(∑ ଶ)ୀଵݓ  are two common regularization used in logistic 
regression. L1 is usually used when the feature space is 
sparse, otherwise the use of L2 is recommended. 

The logistic regression can handle imbalanced data in two 
ways: a) The threshold moving technique moves the 
threshold closer to 0 or 1 resulting in increase of accuracy on 
the class to which the threshold is further away from, which is 
typically the rarer class. b) The second technique wraps LR 
with a cost-sensitive framework. The approach used in [9] 
sets different C parameter in Equation (2) for examined 
classes. Usually, the greater value of C is set in the case of the 
rarer class.  

C. Genetic Algorithm 
Genetic algorithm (GA) is a random optimization method 

based on a principle of natural selection and biological 
evolution. The examined problem is encoded into a set of 
special genome-like structures. These structures are 
essentially data strings representing our original binary 
encoded data instances. The core part of any genetic 
algorithm is a fitness function. Fitness function is able to rank 
data genomes, ideally, with regards to the desired result of the 
algorithm. The set of genomes is called a population. The 
algorithm works iteratively, creating a new altered 
population in each step, towards the best (highest ranked by 
the fitness function) possible population. However, as the 
algorithm is nondeterministic, some kind of stopping 
criterion should be implemented.   

Generally, genetic algorithm uses selection, crossing and 
mutation techniques to produce a new population. Pure 
selection enables the algorithm to simply copy excellent 
individuals from the old population to the new one. Crossing 
usually combines two individuals by splitting those into 
(mostly two) parts and joining them together to create 
different individuals. Mutation produces new genome by 
randomly altering parts of the old one with regards to 
alternation constrains (e.g., random new value has to be valid 
in the changed attribute’s domain). Crossing and mutation are 
applied randomly and probability of their occurrence is often 
adjustable by initial algorithm parameters.  

Use of the genetic algorithm for data mining has been 
proposed in [10]. Potential of this approach lies in the search 
performance of the algorithm, which is very easy to 
parallelize. There is also no need for dividing data into 
training and testing sets as the algorithm trains and tests itself 
on the same data set. Nowadays, genetic algorithm is often 
used as an optimization technique for other data mining 
methods, mostly for feature subset selection [11], in hybrid 
decision structures [12], or for rule induction [13]. 

D. Evaluation Metrics 
In classification, accuracy and error rate are commonly 

used metrics for evaluating classifier. However, for 
imbalanced learning, these metrics can be misleading due to 
their emphasis on the influence of the majority class. Because 
of this, other metrics need to be used. Some of the most used 
are AUC (Area under ROC Curve) and Geometric mean 
(G-Mean) metric from [14], which is defined as follows: 

ܩ     − ݉݁ܽ݊ =  √ܴܶܲ × ܴܶܰ = ට ்்ାிே × ்ே்ேାி,   (3) 

where TP, FP, TN and FN are values from the confusion 
matrix, i.e. number of True/False Positives and True/False 
Negatives. TPR stands for True Positive Rate, or sometimes 
called Sensitivity and Recall, and it represents the accuracy 
on positive examples. TNR is True Negative Rate or 
Specificity, representing the accuracy on negative examples. 

 

III. THE PROPOSED METHOD 
Modern approaches already combine genetic algorithm 

with logistical regression; however, presented methods use 
the genetic algorithm mostly just as an optimization 
technique for adjusting costs in cost-matrix, or reduction of 
feature space [11], [15]. We propose a different approach 
where both methods are used subsequently to achieve better 
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results than other techniques.  
In this section we present the proposed method for 

imbalanced classification based on LR and GA. First, the 
overall method concept is presented and then both LR and 
GA parts are described in more detail. 

A. The LR/GA Method 
Our method consists of several consequential blocks. The 

whole concept can be best understood from the method 
visualization in Fig. 1. The method processes labeled input 
data and returns optimized model satisfying user accuracy 
constraints. These constraints can be specified for the 
accuracy of one, both, or neither of the classes. If such model, 
satisfying all given constraints, doesn’t exist, the method 
returns an empty result. 

The main task of the LR block is to find a set of logistic 
regression models, i.e., attribute weights, bias and a threshold. 
These models are found with respect to a given accuracy 
constraints and class imbalance in analyzed data. 

The GA block utilizes those models and uses them as the 
initial candidate solution for the genetic algorithm 
optimization task. Using specific fitness function and 
mentioned initial candidates, the algorithm starts to find the 
global optimum, again with respect to given constraints. The 
main advantage of our approach compared to other methods, 
described in section II, is speed. We are forced to analyze 
millions of records in short time periods with very high 
accuracy constraint on the minority class classification; 
moreover, the final model application to unseen data has to be 
swift and as simple as possible. The required speed and 
simplicity of model application is one of the reasons we 
didn’t choose to use classifier ensembles. Another huge 
advantage of our proposed method is a comprehensible result 
model. In comparison with neural networks or SVMs, the 
method presents an easy-to-read and understandable model 
that can be easily applied to unseen data, or implemented as a 
part of another application or system. 

  

 
Fig. 1. LR/GA Method schema. 

B. Logistic Regression Block 
The LR block uses the combination of cost-sensitive LR 

learning and threshold moving to find an initial solution for 
the GA block. To perform cost-sensitive learning, the block 
expects a set of costs for the rarer class to be delivered with 
the input data.  This set defines interval borders. Inside each 
of these intervals, the local maximum of the G-mean metric is 
found with respect to specified constraints. This optimization 
technique is simple and it expects that the objective function 
is convex or concave on the given interval. The goal is not to 
find a real maximum but only its rough estimate. Each 
interval is binary split until the maximum value increases by 
given difference. The usage of more initial costs, and thus 
more intervals where the maximum is searched, allows 
dealing with local maxima and in addition the learned models 
for GA can vary widely, which helps the optimization.  

The value of the G-mean metric for a given cost is 
computed as follows: First, the LR model is learned with C 
parameter set to the selected cost value. Then, the model is 
applied to testing data to get the confidence vector. The 
threshold moving technique is then used to find the maximum 
G-mean metric value. For each evaluated threshold, the 
confusion matrix and G-mean value are computed. The 
accuracy constraints can be used to find this solution faster 
and the interval is divided to bins with an equal size. The final 
models are then sorted by the G-mean value and they are 
ready for use in the GA block. 

C. Genetic Algorithm Block 
On input, GA block is given models from the LR block and 

its main purpose is to make these models more accurate with 
regards to given class restrictions. It iteratively creates 
populations of genomes that, in our case, represent groups of 
differently weighted models. The core part of the GA block is 
the fitness function, which ranks all generated models. We 
can alter the fitness function in such way it reflects all our 
preferences and restrictions. This technique has great impact 
on the quality of produced models. Based on our experiments, 
described in section IV, all tested regression models have 
been improved by the use of genetic algorithm. 

Although, GA is based on random data modification, there 
are many ways we can alter the optimization process. Custom 
heuristics can be easily applied to the mutation and crossing 
methods; moreover, it is possible to experiment with sizes of 
initial population, crossing and mutation probabilities, or the 
number of population cycles.  

Our fitness function requires the model to fulfill all required 
restriction rules; subsequently we rank our models based on 
their overall classifying accuracy while favoring minority 
class by applying cost-sensitive accuracy computation.  

As we aim to make the algorithm as efficient as possible, 
we use massive parallelization – all operations executed over 
single genomes are performed in parallel.  

 

IV. EXPERIMENTS 
Experiments were performed over a large data set from our 

internet security research. Examined data are labeled with 
two highly imbalanced classes. Characteristics of analyzed 
data are summarized in Table I: 
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TABLE I: SOURCE DATA CHARACTERISTICS 
Data Cases Attributes Attribute type Class ratio 

5 000 000 120 Binary 1 : 99 

 
The main goal was to achieve at last 99.0% accuracy when 

classifying minority class examples. There were no further 
restrictions regarding the majority class, however, there are 
no obstacles for defining such restrictions in our method. The 
final solution was built to maximize the majority class 
accuracy while still satisfying the minority class accuracy 
restriction.  

Our experiments show the behavior of the proposed 
method under several parameter settings and their influence 
on its accuracy and run time. Performed experiments were 
divided into two parts, examining the properties of the LR 
block and GA block separately. 

A. The LR Block 
The main task of the LR block is to provide set of initial 

solutions that are good enough as starting models for the 
subsequent GA block.  

1) Qualitative metrics 
In order to provide best candidates for the GA block, both 

AUC and G-mean qualitative metrics were examined. For 
approximate AUC computation, it is necessary to evaluate 
the model using several thresholds. On the other hand, 
G-mean is computed only for one threshold. Both AUC and 
G-mean of the best threshold for 30 different costs have been 
compared. The results show that there is high correlation 
(above 99%) between the two, which can be seen in Fig. 2. 
Our experiments also showed that the run time for the AUC 
computation for given thresholds is considerably longer than 
for finding the threshold with maximal G-mean. 
 

 
Fig. 2. G-mean and AUC values for different costs. 

 
2) LR block results 

We examined two candidate model learning strategies for 
the LR block. The first one uses constraints, i.e., 99.0% 
accuracy on the minority class classification. The second one 
only finds the unconstrained maximum of the G-mean metric, 
thus making models that don’t have to satisfy given 
constraints. For both strategies we used the same initial costs 
for the LR learning phase (ranging from 1 to 1000). The final 
comparison of both strategies is described by Fig. 3. We can 
see that G-mean values are higher for unconstrained solutions; 
this is due to the fact that G-mean penalizes solutions where 
one class achieves very high accuracy at the expense of the 
other.  

Additionally, the best three candidate models are listed in 

Table II and Table III. These tables reveal that neither of 
these models satisfies given constraints; however, all of them 
were successfully provided for our GA block. 

In all experiments, we used L2 regularization for learning 
the model. We also examined L1 regularization with very 
similar results but longer learning time. 

It’s worth mentioning that besides LR we tried to deploy 
similar processes using SVMs (Support Vector Machines) and 
neural networks, however, on our examined data set, both 
learning algorithms were unable to finish in a reasonable time 
frame. In addition, random forest with under-sampling and 
naive Bayes algorithms were compared to our solution, with 
all of them being beaten by cost-sensitive logistic regression.  

 

 
Fig. 3. G-mean metric comparison for constrained and unconstrained 

learning strategy. 
 

  TABLE II: TOP 3 MODELS FOR CONSTRAINED STRATEGY 
Cost Threshold TPR TNR G-mean

32 0.90 0.482 0.991 0.696 
225 0.70 0.480 0.990 0.689 
175 0.75 0.466 0.466 0.680 

 
  TABLE III: TOP 3 MODELS FOR UNCONSTRAINED STRATEGY 

Cost Threshold TPR TNR G-mean 

13 0.70 0.777 0.881 0.828 
25 0.55 0.779 0.872 0.824 
33 0.50 0.777 0.874 0.824 

 

B. The GA Block 
As previously mentioned, our GA block processes input 

models generated by the LR block and aims to improve on 
them with regards to specified constraints. In all performed 
experiments (over 1000), the use of genetic algorithm 
improved upon received initial models. In Table IV we can 
see a few real examples of models whose accuracy has been 
improved by the subsequent use of GA block.  
 

TABLE IV: ORIGINAL MODELS COMPARED WITH OPTIMIZED RESULTS 
ID Orig. TPR Orig. TNR GA Opt. TPR GA Opt. TNR

1 0.479 0.989 0.592 0.990 
2 0.783 0.869 0.597 0.990 
3 0.480 0.990 0.579 0.990 

 
All optimized models satisfy given minority class accuracy 

restriction, i.e., at least 99% classification accuracy. When 
presented with LR model with similar TNR, the GA block 
always improves both – TNR and TPR values. In the second 
showed experiment the TNR value is much lower than 
requested so TPR is naturally higher. Our experiments also 
confirm the idea from previous section that models generated 
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by logistic regression with high accuracy constraints may 
lead to worse results than models generated without those 
restrictions, or with lower constraints. 

Regarding the course of the GA itself, introduced to 
models from LR block, the population improvements are 
most significant at the beginning of the optimization phase, 
which is generally expected. With further iterations, the 
resulting models converge to their maximum value. An 
example of such evolution can be seen in Table V. 
 

TABLE V: GA ALGORITHM EVOLUTION 
Population no. TPR TNR 

50 0.562 0.990 
100 0.573 0.990 
200 0.584 0.990 
400 0.590 0.990 
1000 0.592 0.990 

 
As we can see, TPR rises dramatically at the beginning of 

the optimization process, later on the raise is less and less 
significant and after some time we should find a model with 
best possible accuracy. We can experimentally determine an 
approximate number of repopulation cycles in which there is 
the potential of our optimization maxed out.  
 

V. CONCLUSION 
In this paper, we proposed a new hybrid method for 

classification of large imbalanced data in regards to specified 
accuracy constraints. The method is based on cost-sensitive 
logistic regression for generating initial models for genetic 
algorithm optimization. The method was tested on large and 
highly imbalanced data with more than 5 million records and 
class imbalance ratio 1:99. Performed experiments showed 
that proposed method produces better results than both the 
logistic regression and genetic algorithm separately. 

In the future work, we would like to focus on applying 
different optimization techniques such as Particle Swarm 
Optimization. Also, we would like to add the support for 
semi-supervised learning, i.e., exploiting data cases with 
unknown classes, which could extend the final model and 
increase its accuracy. 
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