

Abstract—Among all the technologies in creating a good

poker agent, estimating winning probability is a key issue. In
this paper, we propose an approach to estimating winning
probability for Texas Hold’em poker. We design a data
structure using both the observable data from the current
board and the history. A Support Vector Machine classifier is
trained and 5-fold cross-validation is employed. We create a
poker agent with some decision making strategies to compete.
Experimental results show that our method has outperformed
three other agents in precision of estimating winning
probability.

Index Terms—Opponent modeling, support vector machine,
texas hold’em poker, winning probability.

I. INTRODUCTION
Nowadays, many papers have been published and

competitions like the Annual Computer Poker Competition
have attracted many researchers' interest [1]. The following
are some most important properties of poker [2].
1) Imperfect information. This property creates a necessity

for using and coping with deception and ensures a
theoretical advantage of using randomized mixed
strategies.

2) Non-deterministic dynamics. This means that the cards
we get are stochastic.

3) Partial observable. We can’t always know the opponent's
hole cards, even when a game is over.

4) Multi-players. There are two and mostly more than two
players.

Poker research has led to the investigation of a wide range
of new algorithms and approaches [3].

Knowledge-based systems: It requires experts with
domain knowledge to aid the design of the system. There are
two typical categories, which are including rule-based expert
systems and formula-based methods. For the former, a
collection of if-then rules is created for various scenarios. For
the latter, inputs of a numerical representation of the hand
strength and pot odds are accepted by the system and a
probability triple is given for a betting decision making [4].

Monte-Carlo simulation: It involves choice of random
samples in the game tree and playing until a leaf node
reached where we know the payoff value. It generally
requests a lot of time and computing resource in simulation
[5].

Game theoretic equilibrium solutions: It's a method of

Manuscript received November 16, 2012; revised January 8, 2013. This

work was supported in part by the National Science Foundation of China
(Grant Nos.61035003, 61170180).

The authors are with the State Key Laboratory for Novel Software
Technology, Department of Computer Science and Technology at the
Nanjing University, Nanjing, China (e-mail: easerene@gmail.com).

studying strategic decision making and optimal strategies.
The field of game theory provides tools to study situations
where multiple agents compete and interact within a
particular environment. Nash equilibrium is a generally
solution in game. In current computer poker research,
Counterfactual regret minimization described by M.B.
Johanson is a promising algorithm, which has been used in
both heads-up limit and no limit poker agents [6]-[7].

Case-base reasoning: It is a type of method using
algorithms like the k-Nearest Neighbor algorithm where a set
of cases are stored and maintained that encode knowledge of
previously situations and solutions [8].

Evolutionary algorithms and Neural Networks: It tries
to evolve strong poker agents via evaluating. In these agents,
the algorithm gives the next action [9].

Bayesian Network: It is a directed acyclic graph where
each node in it represents a variable associated with
conditional tables. The goal of the graph is to forecast the win
rate in a certain condition [10].

Support Vector Machine Classifier: J. Pfund shows us
the use of Support Vector Machine classifier in poker
research [11]. They use the classifiers to tell which action to
choose.

Apart from these fields, more and more contributions have
focused on opponent modeling nowadays. The more you
know your opponents, the more higher rate you will win.
Opponent modeling has been studied since 1998 [12].
However, not until recent years has it obtained so much
attention [13].

As is summarized by AAJ van der Kleij, there are two
essential tasks: predicting the opponent's action and
estimating the winning probability [4]. But past papers as
have been listed above mainly focus on the opponent's
actions based on styles, distributions or states [13].
Meanwhile, there are two data sources: data from the current
inning and the previous innings. However, present
contribution mainly uses data from the current inning online.
It has been ignored for these two parts integrated. From that
we design a data structure using both data from the current
inning and the previous innings to estimate the winning
probability. We train a Support Vector Machine classifier
and do 5-fold cross-validation to see the precision in
estimating whether a certain hand in a inning will win. This
classifier can achieve the winning probability of a certain
hand. With this classifier we create a poker agent with some
simple decision-making strategies and use this to compete
with other three different poker agents. Results show that our
method has a precision higher than 75% in average in
estimating whether a certain hand will win. It is effective on
building a poker agent.

In Section II, we will give a brief introduction of Texas
Hold’em poker. After that, we show the details of our data

Estimating Winning Probability for Texas Hold'em Poker

Wenkai Li and Lin Shang

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

70DOI: 10.7763/IJMLC.2013.V3.275

structure design, the classifier and agent design. Section IV
presents the experiment results with some analysis. The final
section contains a conclusion and some directions for future
work.

A. Texas Hold’em Poker
Texas Hold'em poker: In Texas Hold'em pokers there are 4

steps in a round, which are pre-flop, flop, turn and river [2].
During the pre-flop all players at the table are dealt two cards
face-down called hole cards. Before any betting takes place,
two forced bets are contributed to the pot: the small blind and
the big blind. The big blind is typically double that of the
small blind. Then the first round of betting is followed. Next
the dealer places three community cards face-up in the
middle of the table, that is the flop step. This is followed by
the second round of betting. Then it is the turn step, and a
further more card face-up is added to the community cards,
following by the third round of betting. At the last step, the
river, the fifth face-up card is added to the community cards
followed by the last round of betting. A showdown occurs
after the river where the remaining players reveal their hole
cards and the player with the best hand wins all the wagers in
the pot. If two or more players have the same best hand then
the pot is split amongst the winners. The possible betting
actions are described as follows:

 Fold: A player contributes no further wagers to the pot.
This will abandon their hand and any right to contest the
wagers that have been added to the pot.

Check/Call: A player commits the minimum amount of
wagers in order to stay. A check requires a commitment of
zero further wagers, whereas a call requires an amount
greater than zero.

Bet/Raise: A player commits greater than the minimum
amount of wagers necessary to stay. When the player can
check, but decides to invest further wagers in the pot, this is
known as a bet. When the player can call, but decides to
invest further wagers in the pot, this is known as a raise.

Limit game: In a limit game all bets are in increments of a
certain amount.

No limit game: In a no limit game players can wager up to
the total amount of chips they possess in front of them.

II. OUR METHOD
In this paper, we aim to combine both data from the current

board and the history to estimate the winning probability
when our agent facing a certain opponent. Firstly, we design
a data structure using both the observable data from the
current inning and the previous innings. Then we train
Support Vector Machines classifier and do 5-fold
cross-validation to see the precision in estimating whether a
certain hand in a inning will win. This classifier can tell the
winning probability of a certain hand in a inning. With this
classifier we create a poker agent with some simple
decision-making strategies and use this agent to compete
with other three different poker agents. While the
competition is going on, we use data from previous innings to
update our classifier. Fig. 1 shows the relation between the
classifier and the agent.

Fig. 1. The flow chart of Our Agent Design

In our agent, the classifier is used to estimate winning

probability. We will store data when a game comes to a
showdown. This data will be used to construct the input data
of our classifier. At the same time, we use this data to update
the priori probability of our classifier. In the decision making
part of our agent, it chooses a strategy like this:
1) If the winning probability is high enough (In our

implementation, if the probability is bigger than 0.7 we
think it is high enough. Here 0.7 means our agent will
win in seventy percent of cases.), we will choose to raise;

2) If the classifier tells it will win but the winning probably
isn't so high(In our implementation, if the probability is
smaller than 0.7 but bigger than 0.5, we think it will win
but the winning probably isn't so high. That is to say, in
fifty to seventy percent of cases, our agent will win.), we
will choose to call;

3) In other situations, we will choose to fold.
In the following part of this section, we will show the

Classifier and how to estimate Winning Probability at first.
After that we will present the details of the data structure
design.

A. Estimating Winning Probability and Classifier
In our experiments, we use LIBSVM as our classifier [14].

It is a library for Support Vector Machines developed since
the year 2000. It suits our goal quite well. In our experiment,
we give it an input data and it will tell us whether we will win
with reliability. The reliability is a probability. We use this
probability as the winning probability.

B. Data Structure Design
The whole data structure combines two parts: the Current

Part and the Historical Part. The Current Part has 129
attributes. It is used to represent the data which can be
obtained from the current inning. The Historical Part has
2172 attributes. It is used to represent the data which can be
obtained from previous innings. There are 2301 attributes in
our final data structure. The final data structure is shown in
Fig. 2.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

71

Fig. 2. The Whole Data Structure

1) The current part

In our method, we use the current board data to construct
the Current Part. In an inning there are three critical data we
can use: our agent's hole cards, the board cards, the actions
sequence of all the players.

As there are 52 cards at most, we use 52 bytes to represent
them. Each of the byte will be 1 or 0, in which 1 means a
certain card exist while 0 means not. For the hole cards and
the board cards, we use 104 bytes to represent them.

In a 2 player limit Texas Hold’em, there are at most four
raise actions in a single stage. That is to say, adding the
probable call actions at the beginning and the end of a stage,
there will be six actions at most in a stage. For all the actions
in four stages, we use 24 bytes to represent them. Each one of
these 24 bytes will be 1 or 0, in which 1 means the action is
raise while 0 means call. We don't consider fold action,
because once there is an agent takes fold action this inning
will be over.

In addition, as the position has some influence on the
player's action decision, we use a byte to represent it. This
byte takes values of 1 or 0. If this byte is 0, the opponent will
be the first to take action. If not, our agent will be the first to
take action.

Adding all these bytes together, the Current part has 129
bytes as shown in Fig. 3.

Fig. 3. The Current Part of Data Structure Design

2) The historical part

The Historical Part keeps a record of the historical data
about the opponent in the previous innings. It records
scenarios when the opponent's cards are in different hand
ranks. We classify the hand rank into 12 ranks based on
traditional partition of hand ranks which could be seen in
Table I. The new ranks could be seen in Table I.

We can represent the Historical Part as a 12 dimensional
array. Each dimensional represents a scenario when the
opponent has a certain rank of cards. In each dimension, just
as what the Current Part has, there are bytes to represent the
opponent's position, our agent's hole cards, the board cards
and the action sequence. The Historical part has 52 bytes to
represent the opponent agent's hole cards, which is what the
Current Part doesn't have. That is to say, the Historical part

has 2172 (= 181 × 12) bytes together as is shown in Fig. 4.

TABLE I: THE 12 HAND RANKS

Hand Example
High card Low ♠J♥9♦7♣5♦2
High card Middle ♠A♥J♦7♣5♦2
High card High ♠Q♥J♦10♣9♦2
One pair Low ♦10♥10♠8♣7♦5
One pair High ♦A♥A♠10♣7♦5
Two pair ♦Q♠Q♦9♥9♣4
Three of a kind ♦7♠7♣7♥6♣3
Straight ♦Q♠♦10♣9♥8
Flush ♦A♦Q♦J♦9♦6
Full house ♥Q♦Q♣Q♠5♠5
Four of a kind ♦Q♥Q♣Q♠Q♦9
Straight flush ♦K♦Q♦J♦10♦9

Fig. 4. The Historical Part of Data Structure Design

III. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment Setup
In our experiments, we will do:

1) Firstly, to prove that our data structure design is effective
for a certain agent, we use a single agent's log data to
train our classifier and do 5-cross validation. It is
assumed as usual that if the precision rate is high enough,
for example bigger than 70%, our data structure design is
effective.

2) Secondly, to prove that our data structure design is
effective when facing a new player whose log data can’t
be obtained ahead, we train a classifier with multiple
players' log data that could be obtained in advance. We
suppose that a new opponent's strategy should be similar
with some agents that we have seen before. So if our data
structure is effective the 5-cross validation results of our
classifier will good. In this paper, we choose the
ACPC(Annual Computer Poker Competition)'s log data
for this experiment [1]. The ACPC's log data is described
in Fig. 5.

Fig. 5. The ACPC's Log's format

3) At last, an agent integrated with our classifier is

necessary. If our agent could be at the same level with or

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

72

better than other agents, it will prove that our method is
effective. In our experiments, we use three other agents
for comparison. These agents are:
A Simple Random Strategy Agent The Simple
Random Strategy Agent which we used as an opponent
doesn't care what cards it has, it will just choose to fold,
call or raise randomly.
A Rule-based Agent In our Rule-based Agent, we use
the hand rank of the agent's card hand to make decision.
Depending on the psychological confidence on winning
or losing of a certain hand rank, the Rule-based Agent
will choose to fold, call or raise. In our implementation,
if the hand rank of the agent's card hand is stronger than
{\bf three of a kind}, it will choose to raise. If the hand
rank of the agent's card hand is stronger than one pair, it
will choose to call. In other situations, it will choose to
fold.
A Bayesain Network Agent The Bayesain Network
Agent uses a Bayesian decision network to model the
program's poker hand, the opponent's hand and the
opponent's playing behavior conditioned upon the hand,
and betting curves to randomize betting actions. It is an
implementation based on Korb and his partners' work on
BPP agent [9].

In our experiments, we use LIBSVM as our classifier [14].
It is a library for Support Vector Machines developed since
the year 2000. In our experiments, the classification results
will show whether we will win with reliability. The reliability
is a probability which is known as the winning probability.

The following parts B and C will show the results of these
three tasks.

B. Results and Analysis
1) 5-cross Validation Results

Precision results when using a single player's log for
training is shown in Table II.

TABLE II: USING A SINGLE PLAYER’S LOG FOR TRAINING

Rounds 40,000 60,000 200,000
precision 63.57% 82.13% 79.07%

From that, we can see that our method has high

performance when using a special agent's log data for
training. The results prove that, a Support Vector Machine
classifier using our data structure is effective at estimating
whether a hand will win or lose. It also proves that our data
structure design is effective.

Precision results when using multiple players' log for
training is shown in Table III.

TABLE III: USING MULTIPLE PLAYERS’ LOG FOR TRAINING

Rounds(1000) 100 400 900 1,000 1,200
Precision(%) 61.20 60.27 60.29 61.22 61.03

As shown in Table III, when using multiple players' log for

training, our classifier can make right estimation on win or
lose in at least 60% of cases. This shows that will be effective
to use plenty of agents log data, which could be collected in
advance. This data will be employed to train a classifier and
used to estimate winning probability when our agent

competes with a new agent.
2) Competition Results

In the following tables, the numbers in the Win rows is a
ratio between the money our agent wins and the small blind.
If the number is positive/negative, it means our agent
wins/loses some money.

Table IV shows the match results between our agent and
the Simple Random Strategy Opponent.

TABLE IV: OUR AGENT VS THE SIMPLE RANDOM STRATEGY OPPONENT

Rounds 2,000 20,000 200,000
Win -0.341 -0.060 +0.312

Table V shows the match results between our agent and the

Rule-based Agent.

TABLE V: OUR AGENT VS THE RULE-BASED AGENT

Rounds 2,000 20,000 200,000
Win -0.630 -0.283 +0.110

Table VI shows the match results between our agent and

the Bayesain Network Agent.

TABLE VI: OUR AGENT VS THE BAYESAIN NETWORK AGENT

Rounds 2,000 4,000 6,000 80,000
Win -0.623 -0.406 -0.175 -0.015

The competition results indicate our method is effective to

create an agent and our data structure design makes our
classifier more stable. It also justifies our suppose that a new
opponent's strategy will be similar with some agents that we
have seen before. And these agents' log data could be
collected in advance.

C. Discussion
From the 5-cross validation precision results using a single

player's log for training we can see that our method has high
performance when using a special agent's log data for
training. The results prove that, a Support Vector Machine
classifier using our data structure is effective at estimating
whether a hand will win. It also shows that our data structure
design is effective.

The results using multiple players' log for training show
that our classifier can achieve right estimation on win or lose
in at least 60% of cases. This means it is effective to use
plenty agents' log data.

The competition results indicate that our method is
effective to create an agent and our data structure design
makes our classifier more stable. It also implies that a new
opponent's strategy should be similar with some agents that
we have seen before, while these agents' log data could be
collected in advance.

IV. CONCLUSIONS AND FUTURE WORK
In this paper, we design a data structure using both the

observable data from the current inning and the previous
innings. Using this data structure, we train a Support Vector
Machine classifier and do 5-fold cross-validation to see the
precision on estimating whether a certain hand in a inning

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

73

will win. This classifier can achieve the winning probability
of a certain hand in a inning. With this classifier we create a
poker agent with some simple decision-making strategies and
use this agent to compete with other three different poker
agents. As the results show, our data structure design is
effective. Using multiple players' log for training, our
classifier can make right estimation on win or lose in at least
60% of cases. Our agent design can achieve nearly the same
accuracy comparing with other agents. It indicates our
method is effective and our data structure design makes our
classifier more stable. Meanwhile, it implies that a new
opponent's strategy should be similar with some agents that
we have seen before, while these agents' log data could be
collected in advance.

For the future, we will work on the following:
1) More comprehensive decision-making strategies In

the implementation of our agent, we just divide the
probability of winning into three parts and make a
decision to fold, call or raise accordingly. More
comprehensive strategies like adding Monte Carlo
simulations is essential in order to see the real potential
of our method in creating computer poker players.

2) Real-world training data and competition Training
with real competition data is interesting to compete with
human poker experts.

ACKNOWLEDGMENT
We would like to thank Ruobing Li and Yujing Hu for

their helps in experiments and Bing Xue for her comments
and help for improving the paper.

REFERENCES
[1] The annual computer poker competition. [Online]. Available:

http://www.computerpokercompetition.org/, 2010.

[2] D. Billings, “Algorithms and assessment in computer poker,”
University of Alberta, 2006.

[3] J. Rubin and I. Watson “Computer poker: A review,” Artificial
Intelligence, 2011.

[4] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron “The challenge
of poker,” Artificial Intelligence, pp. 201–240, 2002.

[5] AAJ van der Kleij, Monte Carlo Tree Search and Opponent Modeling
through Player Clustering in no-limit Texas Hold’em Poker, 2010.

[6] M. B. Johanson “Robust strategies and counter-strategies: Building a
champion level computer poker player,” in Masters Abstracts
International, 2007.

[7] D. P. Schnizlein, State translation in no-limit poker, University of
Alberta, 2009.

[8] A. Sandven and B. Tessem “A case-based learner for poker,” in Proc.
The Ninth Scandinavian Conference on Artificial Intelligence (SCAI
2006), Helsinki, Finland, 2006.

[9] H. Quek, C. Woo, K. Tan, and A. Tay “Evolving Nash-optimal poker
strategies using evolutionary computation,” Frontiers of Computer
Science in China, pp. 73–91, 2009.

[10] A. E. Nicholson, K. B. Korb, and D. Boulton “Using bayesian decision
networks to play texas hold’em poker,” International Computer Games
Association (ICGA) Journal (Unveröffentlichter Entwurf). Monash
University, Victoria, Australien, 2006.

[11] J. Pfund, “Support Vector Machines in the Machine Learning Classifier
for a Texas Hold’em Poker Bot,” 2007.

[12] D. Billings, D. Papp, J. Schaeffer, and D. Szafron “Opponent modeling
in poker,” in Proceedings of the National Conference on Artificial
Intelligence, 1998, pp. 493–499.

[13] T. C. Schauenberg, “Opponent modeling and search in poker,”
University of Alberta, 2006.

[14] C. C. Chang and C. J. Lin “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
pp. 27:1–27:27, 2011.

Wenkai Li was born on April 20, 1987 in Xiantao of
Hubei Province, China. He received his B.Sc. degree
in chemistry from School of Chemistry & Chemical
Engineering of Nanjing University, China, in 2009.
Now he is a third year master major in machine
learning and data mining at Department of Computer
Science & Technology of Nanjing University, China.

International Journal of Machine Learning and Computing, Vol. 3, No. 1, February 2013

74

