
  

  
Abstract—Given an undirected graph G1 = (V1, E1), a com-

plete undirected and weighted graph G2 = (V2, E2, c) and a set of 
customers’ demands. The goal is to design connections based on 
customers’ demands with the smallest network cost to protect 
the network against all failures. This problem is NP-hard. This 
paper proposes a genetic algorithm for solving the Survivable 
Network Design Problem (SNDP). We experiment our proposed 
algorithm on random [12] and real world instances [1]. The 
experimental results are reported to show the efficiency of 
proposed algorithm comparing to the Branch and Price algo-
rithm [1]. 
 

Index Terms—Survivable network design, genetic algorithm, 
branch-and-price. 
 

I. INTRODUCTION 
The birth of network, especially the appearance of Internet, 

marked an important turning-point in the field of information 
technology and communications. Hence, network has 
brought more and more useful in all of life areas such as 
economic, culture, military, etc. So, sometimes, only a net-
work failure also can cause serious consequences, particu-
larly about economic. This sets a requirement for the network 
providers is how to ensure the reliability for their products. It 
is also the reason for defining Survivable Network Design 
Problem (SNDP).  

Later, along with the birth and the ongoing development of 
optical network, and now is multilayer optical network, 
SNDP has switched to a new stage and improved tremen-
dously. The advantages of optical network (such as heavy 
flow, less signal decline, etc) make it more and more popular 
than the traditional one. And so, SNDP for optical network is 
becoming essential and gaining much more attention. In this 
paper, we will propose new approach for solving SNDP for 
multiplayer optical network which is the latest model of this 
problem and called the Multilayer Survivable Optical Net-
work Design Problem (MSONDP). 

MSONDP problem is defined as the following: Given an 
undirected graph G1 = (V1, E1) and a complete undirected and 
weighted graph G2 = (V2, E2, c) such that V1  V2, E1   E2 
and c is edge weight of G2. G1 represents the logical layer, G2 
represents the physical layer and each value in c is cost of a 
corresponding edge in G2. In this problem, a set of demands T 
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is required by customers. Each demand ti in T consists of two 
node-disjoint paths ),( 21

ii LL that connect the source node oi 
to the destination node di in G1, where Li

1 is working path and 
Li

2 is backup path. The goal of the problem is to design 
connections based on customers’ demands with the smallest 
network cost to protect the network against all failures. In the 
other word, it is to find two node-disjoint paths mapping of 

21 , ii LL  in graph G2 for each ti such that total cost of all de-
mands is minimal. 

We can formulate the problem as following: 
Find an appropriate connection for each demand in cus-

tomer’s set of demands so as to minimize: 
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where c(ti) is cost of the i-th demand, |T| is the number of 
customers’ demands. 

To solve this problem, we have to build a set of paths sat-
isfying all demands to minimize the total network cost. 

This is a new model of SNDP and according to [1], it is a 
NP-hard problem even for one demand. Up to now, only 
research group of Sylvie Borne research this problem and 
publish their results in [1]. So, in this paper, we propose a 
genetic algorithm for solving MSONDP, called 
GAMSONDP. In our genetic algorithm, a chromosome 
represents a pair of paths (L1, L2) and so, an individual has |T| 
chromosomes. Taking advantages of the complete graph, we 
encode an individual by an ordered nodes list of its paths. 
And a new characteristic of GAMSONDP is that we use two 
crossover and three mutation operation types simultaneously 
to bear new individuals more diversely, which makes GA 
more effective. We experiment with the data which used in [1] 
and compare the result with Branch and Price in [1].  

The rest of this paper is organized as following: Section II 
describes the related works. In section III, we present the 
proposed algorithms to solve MSONDP. Our experiments 
and computational and comparative results are given in 
section IV. The paper concludes with section V with some 
discussions on the future extension of this work. 
 

II. RELATED WORKS 
Since the survivability is an essential necessity in any 

network system, there have many research works about this 
topic. Many models of problem were researched and solved 
by specific algorithms. There are two approaches for solving 
SNDP [3]: exact and approximate algorithms. 

In 2006, S. Borne et.al studied survivable IP-over-optical 
network design problem [2]. They gave a 0-1 integer pro-
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gramming formulation for this problem, described some 
valid inequalities and discussed separation algorithms for 
these inequalities, simultaneously, introduced some reduc-
tion operations. Basing on these, they proposed 
Branch-and-cut algorithm to solve. They experiment with the 
random instances which are generated with 10 to 45 nodes 
and the number of edges is 10, 15, 20 and 30. The real in-
stances they used to test were provided by the French tele-
communications operator France Télécom. These instances 
have 18 to 60 nodes and 31 to 102 edges. However, their 
algorithm only can solve small test sets (less than 35 nodes 
and 30 edges in random instances, less than 60 nodes and 102 
edges in real instances). With larger problem instances, the 
running time is quite long (about 5 hours) and some of them 
could not be solved. 

After that, in 2009, S. Borne et. al. proposed 
Branch-and-Cut and Branch-and- Cut- and-Price algorithm 
based on the path formulation for solving the multilayer 
capacitated survivable network design problem [9]. However, 
they only solved with graphs having 10 nodes, 20 edges and 
the number of demands is 20. 

Adrian Zymolka defined the cost-efficient design of sur-
vivable optical telecommunication networks problem [8]. 
Then, he proposed Branch-and-Price with four branching 
rules after modeling this problem in integer linear program 
[8]. His problem was separated into two individually hard 
sub-problems, one of which  is to rout the connection with 
corresponding dimensioning of capacities and the and the 
other is to seek for s conflict-free assignment of  available  
wavelengths to the light paths (a common characteristic of 
optical network) using  a minimum number of involved 
wavelength converters. The first problem was solved by three 
steps algorithm as follows: 1. A preprocessing transforming 
the hardware model accordingly; 2. The application of 
DISCNET as main optimization routine; 3. A 
post-processing to adapt solutions for the original problem. 
With the second one, deriving linear program formulation, he 
proposed an exact Branch-and-Price method to solve.  That is 
an integer linear programming approach for exact solution.  

In 2011, MSONDP was proven to be NP-hard by S.Borne 
et.al [1]. They formulated this problem in terms of 0-1 linear 
program based on path variables. Then, they discussed the 
pricing problem and proved that it reduces to a shortest path 
problem. Using this, they proposed a Branch-and-Price al-
gorithm. However, this is an exact approach for NP-hard 
problem, so they can only offer solutions for the maximum 
input is 17 nodes on G1, 20 nodes on G2 and 25 demands. 

So, MSONDP was only defined by S.Borne in 2011 [1], 
which shows this is a new model of SNDP. And for now, 
there have not any effective algorithms to solve this model 
with the large test sets.  Moreover, it is NP-hard problem, so, 
in this paper, we propose Genetic Algorithm for solving it 
and we hope our algorithm could solve large problem in-
stances. 

 

III. PROPOSED ALGORITHM 
In this section, we propose genetic algorithm, 

GAMSONDP, to solve MSONDP. As mentioned in section 1, 
one of the goals of MSONDP is to find two node-disjoint 
paths mapping of Li

1, Li
2 in completed graph G2. So, we 

describe find-path algorithm first. And then, GAMSONDP 
will be presented specifically.  

A. Find-Path Algorithm 
This is a way to build our initial solution for the problem. 

Then, using GA, we improve individuals to reach the best 
ones as possible in this population.  

The main idea of the find-path algorithm is simple.  As-
sume, we find a path from A to B. We will choose x nodes (x

N∈ ) that are different from both A and B in the graph G2 

randomly and insert them between A, B. This operation is 
ensured to give us a solution because G2 is the completed 
graph. However, if both the node set V and x is too great, the 
path from A to B will be over many nodes, which makes the 
algorithm not effective about run time. To improve that, we 
take x from {0, 1, 2}. Then, the find-path algorithm has the 
pseudo code as follow: 

1 pathMulti <- A;  
2 if (|V|-2) < 3 then 
3          x= random(|V|-2)  
4          if x = 0 then pathMulti <- B 
5          else  
6                for i = 0 to x do 
7                      C <- random(V\{A,B}) 
8                      path <- C 
9                end for 
10               pathMulti <- B 
11         end if 
12 else 
13         x = random({0,1,2})  
14         if x = 0 then 
15                pathMulti <- B 
16         else  
17                for i = 0 to x do 
18                    C <- random(V\{A,B}) 
19                    path <- C 
20                    end for 
21                   pathMulti <- B 
22       end if 
23 end if 
24 return pathMulti 
 

If Li has more two nodes, we will apply above algorithm 
for two consecutive nodes respectively, and then combine 
them with note that each node is only used once.  And now, 
we will present GAMSONDP. 

B. Individual Representation 
In our algorithm, each individual, which is a solution of the 

problem, has |T| chromosomes and each chromosome has two 
genes called working gene and backup gene. These two genes 
encode for two node disjoint paths corresponding with L1 and 
L2 of a demand and are represented by a list of nodes in those 
two paths.  

We initialize population by two ways as follows: The first, 
we create individuals randomly. The other way: first, we 
create an empty individual with |T| empty chromosomes. 
Then, we insert node lists of each demand into corresponding 
chromosome respectively. After that, we use above find-path 
algorithm to create individuals for initial population. 

Fig. 1 depicts an individual representation. This individual 
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has k chromosomes. Chromosome t1 encodes demand t1 that 
has L1

1 = {4, 1, 3} and L1
2 = {4, 2, 6, 3}. Number 4 and 3 are 

bold to show that they are the source and destination nodes. 
The other numbers represent nodes required to go through. It 
is the same to the other chromosomes. 

 
Fig. 1.  An example of the individual representation 

C. Selection 
As mentioned above, an individual is a solution of the 

problem, i.e. it gives us for a way to design network with a 
specific cost. Obviously, the lower cost is, the better solution 
is, in other words, the more adaptable the individual is. Fit-
ness function, therefore, can be calculated through cost 
function as (1): 

| |
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So, fitness function will be: 
1

F
totalCost

=                                  (2) 

When the stop condition of GAMSONDP is satisfied, an 
individual having the maximum F value is the best solution 
for the problem. 

D. Crossover Operator 
In this subsection, we implement crossover operator. It is 

an important operator affecting the efficiency of GA strongly. 
We propose two different crossover operators as follow: 

The first one is called chromosome crossover operator. Its 
idea is to choose two different individuals in the population 
then random a “cut-point”. The “cut-point” divides the 
number of chromosomes of each parent individual into two 
parts. Joining the first part of the parent 1 with the second part 
of the parent 2 together and inversely, we create two new 
children. If these children coincide with all of individuals in 
the current population, they will not be admitted. Fig. 2 
shows chromosome crossover operator. 

 
Fig. 2. Chromosome crossover operator 

The other crossover type is path crossover operator. The 
idea of this crossover type is that a new individual is born by 
taking working gene of a parent and backup gene of the other 
parent. The number of each individual’s chromosomes is 
divided into two equal parts. In the first half part, all of the 
parent 1’s working genes are copied to the child, and backup 
genes of the child are copied from the parent 2, and do in-
versely with the other part. 

 
Fig. 3.  Path crossover operator without conflict 

 
If conflict occurs in any chromosomes, these chromo-

somes keep their initial backup genes. This is unavailable 
replacement.  

 

 
Fig. 4.  Path crossover operator with conflict. 

E. Mutation Operator 
Obviously, by using above crossover operators, we just 

bear new individuals, but not change nodes of genes, i.e no 
new paths are created. This can make us not to find global 
solution for the problem. So, we use mutation operator to 
improve that. Below, we implement four mutation types: 
gene mutation, chromosome replacement mutation, individ-
ual renew mutation 1 and individual renew mutation 2. 

Gene mutation: we implement operations: replace a node, 
add a node and delete a node. Note that in replace and delete 
operations, replaced or deleted node must be different from 
all nodes in  and  and added node must be unused by the 
other genes of the mutated chromosome.  

Chromosome replacement mutation: we choose an indi-
vidual and its chromosome randomly then replace the chosen 
chromosome by another. 

 
Fig. 5.   Mutation operator 

 
In individual renew mutation 1: after choosing a random 

individual, the first one-third of the number of its chromo-
somes is copied to its child then cost of edges that the copied 
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chromosomes equal 0. The remaining is created by heuristic 
that used edges will be chosen first.  

Individual renew mutation 2 is similar to Individual renew 
mutation 1, only replace the first one-third by the final 
one-third. 

Note that, it always tests a new individual to guarantee that 
there have two identical ones. If a new individual existed in 
the current population, we will implement again. 

 

IV. EXPERIMENTAL RESULTS 

A. Problem Instances 
In our experiments, we used both random and real world 

instances. Random instances can be found at TSP library [12] 
and real world ones are based on S.Borne’s Gravitory model 
[1]. Denote problem instances as namen2_n1_k, in which 
name is ‘a’ if it is random instance and is ‘g’ or ‘Germany’ if 
it is real world instance; n2, n1 is respectively the number of 
nodes in G2 and G1; and k is the number of demands. We 
tested our algorithms with 45 random and 44 real world 
instances. The smallest data set we experimented is a6_4_2 
and the biggest is a60_55_150 for both random and real 
world instances. 

B. Experiment Setup 
We experiment proposed algorithms GAMSONDP and 

compare its performance with Branch-and-Price algorithm in 
[1]. 

C. System Setting 
In our algorithm, the population size is 600. 300 individ-

uals are initialized randomly and 300 individuals are initial-
ized by find-path algorithm. The maximum number of gen-
erations is 800, crossover rate in each generation is 40% 
(each of crossover types rate is 20%) and mutation rate is 30% 
(where gene mutation rate equals chromosome replace mu-
tation rate is 5%, the others, each of them is 10%). 
Our system is run 20 times for each problem instances. The 
programs were run on a machine with Intel Pentium G840 
2.80 Ghz, RAM 4G DDR3, HDD 160G Seagate and were 
installed by Java language. 

D. Computational Results 
Fig. 6 and 7 show that: 

• On the random instances, the best results found by 
GAMSONDP are equivalent to ones of 
Branch-and-Price [1] in 17/35 test sets. 

• On the real world instances, the best results found 
by GAMSONDP are equivalent to ones of 
Branch-and-Price [1] in 16/35 real test sets.  

• The equivalent results found by both 
GAMSONDP and Branch-and-Price gather in 
small data sets (having 8, 10 nodes) and in data 
sets with small number of demands.  

Table I and II show that the best and the average costs 
found by GAMSONDP on 9 random test sets and 10 real 
world test sets. These problem instances could be solved by 
GAMSONDP but could not be solved by Branch-and-Price 
[1].  

Fig. 6, 7 and Table I, II shows that deviation of the results 
found by GAMSONDP over 20 running times are small. That 
is prove that the stability of GAMSONDP. 

 
Fig. 6. Comparison between the best and average results found by 

GAMSONDP and Branch-and-Price [1] over 20 running times on the 
random instances. 

 
 

 
Fig. 7. Comparison between the best and average results found by 

GAMSONDP and Branch-and-Price [1] over 20 running times on the real 
world instances. 

 

TABLE I: THE BEST AND THE AVERAGE RESULTS FOUND BY GAMSONDP 
OVER 20 RUNNING TIMES ON THE RANDOM INSTANCES WHICH ARE COULD 

NOT BE SOLVED BY BRANCH-AND-PRICE [1]. 

Instance GAMSONDP    Best GAMSONDP Average 
a20_18_2 302.277 308.892 
a20_18_40 2925.073 2940.400 
a20_18_80 3697.477 3840.442 
a40_35_2 790.975 797.357 
a40_35_40 6926.569 7143.377 
a40_35_80 11588.495 11879.296 
a60_55_2 1051.291 1079.554 
a60_55_40 9549.607 9696.495 
a60_55_80 16842.176 17026.222 
a60_55_150 27864.841 28493.118 

 

TABLE II: THE BEST AND THE AVERAGE RESULTS FOUND BY GAMSONDP 
OVER 20 RUNNING TIMES ON THE REAL WORLD INSTANCES WHICH ARE 

COULD NOT BE SOLVED BY BRANCH-AND-PRICE [1]. 

Instance    GAMSONDP    Best   GAMSONDP Average
Germany20_18_2 14.274 14.274
Germany20_18_40 79.484 82.878
Germany20_18_80 115.789 119.987
Germany40_35_2 12.918 12.918
Germany40_35_40 92.062 99.138
Germany40_35_80 168.715 174.438
Germany60_55_2 12.067 12.417
Germany60_55_40 114.176 115.518
Germany60_55_80 178.285 189.292
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V. CONCLUSION 
In this paper, we proposed a new genetic algorithm for 

solving MSONDP called GAMSONDP.  We experimented 
on 45 random and 44 real world instances. With each data set, 
we run 20 times to take the best and average solutions.  The 
results show that our algorithm is effective. It can solve big 
data sets that Branch-and-Price [1] does not. Besides, on 
small instance sets, our algorithm can give equivalent costs to 
Branch-and-Price with more than 50% test sets. 

In the future, we are planning to improve the algorithm to 
reduce running time and to achieve optimal results on small 
data sets more. We also hope that we can solve this problem 
with larger test sets by these approaches as well as different 
ones.  
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