

Abstract—Given an undirected graph G1 = (V1, E1), a com-

plete undirected and weighted graph G2 = (V2, E2, c) and a set of
customers’ demands. The goal is to design connections based on
customers’ demands with the smallest network cost to protect
the network against all failures. This problem is NP-hard. This
paper proposes a genetic algorithm for solving the Survivable
Network Design Problem (SNDP). We experiment our proposed
algorithm on random [12] and real world instances [1]. The
experimental results are reported to show the efficiency of
proposed algorithm comparing to the Branch and Price algo-
rithm [1].

Index Terms—Survivable network design, genetic algorithm,
branch-and-price.

I. INTRODUCTION
The birth of network, especially the appearance of Internet,

marked an important turning-point in the field of information
technology and communications. Hence, network has
brought more and more useful in all of life areas such as
economic, culture, military, etc. So, sometimes, only a net-
work failure also can cause serious consequences, particu-
larly about economic. This sets a requirement for the network
providers is how to ensure the reliability for their products. It
is also the reason for defining Survivable Network Design
Problem (SNDP).

Later, along with the birth and the ongoing development of
optical network, and now is multilayer optical network,
SNDP has switched to a new stage and improved tremen-
dously. The advantages of optical network (such as heavy
flow, less signal decline, etc) make it more and more popular
than the traditional one. And so, SNDP for optical network is
becoming essential and gaining much more attention. In this
paper, we will propose new approach for solving SNDP for
multiplayer optical network which is the latest model of this
problem and called the Multilayer Survivable Optical Net-
work Design Problem (MSONDP).

MSONDP problem is defined as the following: Given an
undirected graph G1 = (V1, E1) and a complete undirected and
weighted graph G2 = (V2, E2, c) such that V1 V2, E1 E2
and c is edge weight of G2. G1 represents the logical layer, G2
represents the physical layer and each value in c is cost of a
corresponding edge in G2. In this problem, a set of demands T

Manuscript received September 15, 2012; revised November 14, 2012.

This work was partially supported by the project “Models for next genera-
tion of robust Internet”, grand number 12/2012/HĐ-NĐT, funded by the
Ministry of Science and Technology, Vietnam. The Vietnam Institute for
Advanced Study in Mathematics provided part of the support funding for this
work.

The authors are with Ha Noi University of Science and Technology,
School of Information and Communication Technology (e-mail: binhht@
soict.hut.edu.vn; greeny255@gmail.com).

is required by customers. Each demand ti in T consists of two
node-disjoint paths),(21

ii LL that connect the source node oi
to the destination node di in G1, where Li

1 is working path and
Li

2 is backup path. The goal of the problem is to design
connections based on customers’ demands with the smallest
network cost to protect the network against all failures. In the
other word, it is to find two node-disjoint paths mapping of

21 , ii LL in graph G2 for each ti such that total cost of all de-
mands is minimal.

We can formulate the problem as following:
Find an appropriate connection for each demand in cus-

tomer’s set of demands so as to minimize:

| |

1

()
T

i
i

totalCost c t
=

= ∑ (1)

where c(ti) is cost of the i-th demand, |T| is the number of
customers’ demands.

To solve this problem, we have to build a set of paths sat-
isfying all demands to minimize the total network cost.

This is a new model of SNDP and according to [1], it is a
NP-hard problem even for one demand. Up to now, only
research group of Sylvie Borne research this problem and
publish their results in [1]. So, in this paper, we propose a
genetic algorithm for solving MSONDP, called
GAMSONDP. In our genetic algorithm, a chromosome
represents a pair of paths (L1, L2) and so, an individual has |T|
chromosomes. Taking advantages of the complete graph, we
encode an individual by an ordered nodes list of its paths.
And a new characteristic of GAMSONDP is that we use two
crossover and three mutation operation types simultaneously
to bear new individuals more diversely, which makes GA
more effective. We experiment with the data which used in [1]
and compare the result with Branch and Price in [1].

The rest of this paper is organized as following: Section II
describes the related works. In section III, we present the
proposed algorithms to solve MSONDP. Our experiments
and computational and comparative results are given in
section IV. The paper concludes with section V with some
discussions on the future extension of this work.

II. RELATED WORKS
Since the survivability is an essential necessity in any

network system, there have many research works about this
topic. Many models of problem were researched and solved
by specific algorithms. There are two approaches for solving
SNDP [3]: exact and approximate algorithms.

In 2006, S. Borne et.al studied survivable IP-over-optical
network design problem [2]. They gave a 0-1 integer pro-

Genetic Algorithm for Solving Multilayer Survivable
Optical Network Design Problem

Huynh Thi Thanh Binh, and Ha Dinh Ly

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

81210.7763/IJMLC.2012.V2.243

gramming formulation for this problem, described some
valid inequalities and discussed separation algorithms for
these inequalities, simultaneously, introduced some reduc-
tion operations. Basing on these, they proposed
Branch-and-cut algorithm to solve. They experiment with the
random instances which are generated with 10 to 45 nodes
and the number of edges is 10, 15, 20 and 30. The real in-
stances they used to test were provided by the French tele-
communications operator France Télécom. These instances
have 18 to 60 nodes and 31 to 102 edges. However, their
algorithm only can solve small test sets (less than 35 nodes
and 30 edges in random instances, less than 60 nodes and 102
edges in real instances). With larger problem instances, the
running time is quite long (about 5 hours) and some of them
could not be solved.

After that, in 2009, S. Borne et. al. proposed
Branch-and-Cut and Branch-and- Cut- and-Price algorithm
based on the path formulation for solving the multilayer
capacitated survivable network design problem [9]. However,
they only solved with graphs having 10 nodes, 20 edges and
the number of demands is 20.

Adrian Zymolka defined the cost-efficient design of sur-
vivable optical telecommunication networks problem [8].
Then, he proposed Branch-and-Price with four branching
rules after modeling this problem in integer linear program
[8]. His problem was separated into two individually hard
sub-problems, one of which is to rout the connection with
corresponding dimensioning of capacities and the and the
other is to seek for s conflict-free assignment of available
wavelengths to the light paths (a common characteristic of
optical network) using a minimum number of involved
wavelength converters. The first problem was solved by three
steps algorithm as follows: 1. A preprocessing transforming
the hardware model accordingly; 2. The application of
DISCNET as main optimization routine; 3. A
post-processing to adapt solutions for the original problem.
With the second one, deriving linear program formulation, he
proposed an exact Branch-and-Price method to solve. That is
an integer linear programming approach for exact solution.

In 2011, MSONDP was proven to be NP-hard by S.Borne
et.al [1]. They formulated this problem in terms of 0-1 linear
program based on path variables. Then, they discussed the
pricing problem and proved that it reduces to a shortest path
problem. Using this, they proposed a Branch-and-Price al-
gorithm. However, this is an exact approach for NP-hard
problem, so they can only offer solutions for the maximum
input is 17 nodes on G1, 20 nodes on G2 and 25 demands.

So, MSONDP was only defined by S.Borne in 2011 [1],
which shows this is a new model of SNDP. And for now,
there have not any effective algorithms to solve this model
with the large test sets. Moreover, it is NP-hard problem, so,
in this paper, we propose Genetic Algorithm for solving it
and we hope our algorithm could solve large problem in-
stances.

III. PROPOSED ALGORITHM
In this section, we propose genetic algorithm,

GAMSONDP, to solve MSONDP. As mentioned in section 1,
one of the goals of MSONDP is to find two node-disjoint
paths mapping of Li

1, Li
2 in completed graph G2. So, we

describe find-path algorithm first. And then, GAMSONDP
will be presented specifically.

A. Find-Path Algorithm
This is a way to build our initial solution for the problem.

Then, using GA, we improve individuals to reach the best
ones as possible in this population.

The main idea of the find-path algorithm is simple. As-
sume, we find a path from A to B. We will choose x nodes (x

N∈) that are different from both A and B in the graph G2

randomly and insert them between A, B. This operation is
ensured to give us a solution because G2 is the completed
graph. However, if both the node set V and x is too great, the
path from A to B will be over many nodes, which makes the
algorithm not effective about run time. To improve that, we
take x from {0, 1, 2}. Then, the find-path algorithm has the
pseudo code as follow:

1 pathMulti <- A;
2 if (|V|-2) < 3 then
3 x= random(|V|-2)
4 if x = 0 then pathMulti <- B
5 else
6 for i = 0 to x do
7 C <- random(V\{A,B})
8 path <- C
9 end for
10 pathMulti <- B
11 end if
12 else
13 x = random({0,1,2})
14 if x = 0 then
15 pathMulti <- B
16 else
17 for i = 0 to x do
18 C <- random(V\{A,B})
19 path <- C
20 end for
21 pathMulti <- B
22 end if
23 end if
24 return pathMulti

If Li has more two nodes, we will apply above algorithm
for two consecutive nodes respectively, and then combine
them with note that each node is only used once. And now,
we will present GAMSONDP.

B. Individual Representation
In our algorithm, each individual, which is a solution of the

problem, has |T| chromosomes and each chromosome has two
genes called working gene and backup gene. These two genes
encode for two node disjoint paths corresponding with L1 and
L2 of a demand and are represented by a list of nodes in those
two paths.

We initialize population by two ways as follows: The first,
we create individuals randomly. The other way: first, we
create an empty individual with |T| empty chromosomes.
Then, we insert node lists of each demand into corresponding
chromosome respectively. After that, we use above find-path
algorithm to create individuals for initial population.

Fig. 1 depicts an individual representation. This individual

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

813

has k chromosomes. Chromosome t1 encodes demand t1 that
has L1

1 = {4, 1, 3} and L1
2 = {4, 2, 6, 3}. Number 4 and 3 are

bold to show that they are the source and destination nodes.
The other numbers represent nodes required to go through. It
is the same to the other chromosomes.

Fig. 1. An example of the individual representation

C. Selection
As mentioned above, an individual is a solution of the

problem, i.e. it gives us for a way to design network with a
specific cost. Obviously, the lower cost is, the better solution
is, in other words, the more adaptable the individual is. Fit-
ness function, therefore, can be calculated through cost
function as (1):

| |

1

()
T

i
i

totalCost c t
=

= ∑

with:

w
() () ()i e thei th orking path e thei thbackup path

c t c e c e
∈ − ∈ −

= +∑ ∑
 where:

cos
()

0

initial t of e if e is not used
c e

if e was used
=
⎧
⎨
⎩

So, fitness function will be:
1

F
totalCost

= (2)

When the stop condition of GAMSONDP is satisfied, an
individual having the maximum F value is the best solution
for the problem.

D. Crossover Operator
In this subsection, we implement crossover operator. It is

an important operator affecting the efficiency of GA strongly.
We propose two different crossover operators as follow:

The first one is called chromosome crossover operator. Its
idea is to choose two different individuals in the population
then random a “cut-point”. The “cut-point” divides the
number of chromosomes of each parent individual into two
parts. Joining the first part of the parent 1 with the second part
of the parent 2 together and inversely, we create two new
children. If these children coincide with all of individuals in
the current population, they will not be admitted. Fig. 2
shows chromosome crossover operator.

Fig. 2. Chromosome crossover operator

The other crossover type is path crossover operator. The
idea of this crossover type is that a new individual is born by
taking working gene of a parent and backup gene of the other
parent. The number of each individual’s chromosomes is
divided into two equal parts. In the first half part, all of the
parent 1’s working genes are copied to the child, and backup
genes of the child are copied from the parent 2, and do in-
versely with the other part.

Fig. 3. Path crossover operator without conflict

If conflict occurs in any chromosomes, these chromo-

somes keep their initial backup genes. This is unavailable
replacement.

Fig. 4. Path crossover operator with conflict.

E. Mutation Operator
Obviously, by using above crossover operators, we just

bear new individuals, but not change nodes of genes, i.e no
new paths are created. This can make us not to find global
solution for the problem. So, we use mutation operator to
improve that. Below, we implement four mutation types:
gene mutation, chromosome replacement mutation, individ-
ual renew mutation 1 and individual renew mutation 2.

Gene mutation: we implement operations: replace a node,
add a node and delete a node. Note that in replace and delete
operations, replaced or deleted node must be different from
all nodes in and and added node must be unused by the
other genes of the mutated chromosome.

Chromosome replacement mutation: we choose an indi-
vidual and its chromosome randomly then replace the chosen
chromosome by another.

Fig. 5. Mutation operator

In individual renew mutation 1: after choosing a random

individual, the first one-third of the number of its chromo-
somes is copied to its child then cost of edges that the copied

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

814

chromosomes equal 0. The remaining is created by heuristic
that used edges will be chosen first.

Individual renew mutation 2 is similar to Individual renew
mutation 1, only replace the first one-third by the final
one-third.

Note that, it always tests a new individual to guarantee that
there have two identical ones. If a new individual existed in
the current population, we will implement again.

IV. EXPERIMENTAL RESULTS

A. Problem Instances
In our experiments, we used both random and real world

instances. Random instances can be found at TSP library [12]
and real world ones are based on S.Borne’s Gravitory model
[1]. Denote problem instances as namen2_n1_k, in which
name is ‘a’ if it is random instance and is ‘g’ or ‘Germany’ if
it is real world instance; n2, n1 is respectively the number of
nodes in G2 and G1; and k is the number of demands. We
tested our algorithms with 45 random and 44 real world
instances. The smallest data set we experimented is a6_4_2
and the biggest is a60_55_150 for both random and real
world instances.

B. Experiment Setup
We experiment proposed algorithms GAMSONDP and

compare its performance with Branch-and-Price algorithm in
[1].

C. System Setting
In our algorithm, the population size is 600. 300 individ-

uals are initialized randomly and 300 individuals are initial-
ized by find-path algorithm. The maximum number of gen-
erations is 800, crossover rate in each generation is 40%
(each of crossover types rate is 20%) and mutation rate is 30%
(where gene mutation rate equals chromosome replace mu-
tation rate is 5%, the others, each of them is 10%).
Our system is run 20 times for each problem instances. The
programs were run on a machine with Intel Pentium G840
2.80 Ghz, RAM 4G DDR3, HDD 160G Seagate and were
installed by Java language.

D. Computational Results
Fig. 6 and 7 show that:

• On the random instances, the best results found by
GAMSONDP are equivalent to ones of
Branch-and-Price [1] in 17/35 test sets.

• On the real world instances, the best results found
by GAMSONDP are equivalent to ones of
Branch-and-Price [1] in 16/35 real test sets.

• The equivalent results found by both
GAMSONDP and Branch-and-Price gather in
small data sets (having 8, 10 nodes) and in data
sets with small number of demands.

Table I and II show that the best and the average costs
found by GAMSONDP on 9 random test sets and 10 real
world test sets. These problem instances could be solved by
GAMSONDP but could not be solved by Branch-and-Price
[1].

Fig. 6, 7 and Table I, II shows that deviation of the results
found by GAMSONDP over 20 running times are small. That
is prove that the stability of GAMSONDP.

Fig. 6. Comparison between the best and average results found by

GAMSONDP and Branch-and-Price [1] over 20 running times on the
random instances.

Fig. 7. Comparison between the best and average results found by

GAMSONDP and Branch-and-Price [1] over 20 running times on the real
world instances.

TABLE I: THE BEST AND THE AVERAGE RESULTS FOUND BY GAMSONDP
OVER 20 RUNNING TIMES ON THE RANDOM INSTANCES WHICH ARE COULD

NOT BE SOLVED BY BRANCH-AND-PRICE [1].

Instance GAMSONDP Best GAMSONDP Average
a20_18_2 302.277 308.892
a20_18_40 2925.073 2940.400
a20_18_80 3697.477 3840.442
a40_35_2 790.975 797.357
a40_35_40 6926.569 7143.377
a40_35_80 11588.495 11879.296
a60_55_2 1051.291 1079.554
a60_55_40 9549.607 9696.495
a60_55_80 16842.176 17026.222
a60_55_150 27864.841 28493.118

TABLE II: THE BEST AND THE AVERAGE RESULTS FOUND BY GAMSONDP
OVER 20 RUNNING TIMES ON THE REAL WORLD INSTANCES WHICH ARE

COULD NOT BE SOLVED BY BRANCH-AND-PRICE [1].

Instance GAMSONDP Best GAMSONDP Average
Germany20_18_2 14.274 14.274
Germany20_18_40 79.484 82.878
Germany20_18_80 115.789 119.987
Germany40_35_2 12.918 12.918
Germany40_35_40 92.062 99.138
Germany40_35_80 168.715 174.438
Germany60_55_2 12.067 12.417
Germany60_55_40 114.176 115.518
Germany60_55_80 178.285 189.292

0.000
200.000
400.000
600.000
800.000

1000.000

a6
_4

_2
a8

_6
_6

a1
0_

8_
4

a1
0_

8_
15

a1
2_

10
_5

Co
st

Random Instances

Branch and
Price

GAMSOND
Best

GAMSOND
Average

15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

g6
_4

_2
g8

_6
_5

g8
_6

_1
5

g1
0_

8_
10

g1
0_

8_
20

g1
2_

10
_8

Co
st

Real world Instances

Branch and
Price

GAMSOND
Best

GAMSOND
Average

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

815

V. CONCLUSION
In this paper, we proposed a new genetic algorithm for

solving MSONDP called GAMSONDP. We experimented
on 45 random and 44 real world instances. With each data set,
we run 20 times to take the best and average solutions. The
results show that our algorithm is effective. It can solve big
data sets that Branch-and-Price [1] does not. Besides, on
small instance sets, our algorithm can give equivalent costs to
Branch-and-Price with more than 50% test sets.

In the future, we are planning to improve the algorithm to
reduce running time and to achieve optimal results on small
data sets more. We also hope that we can solve this problem
with larger test sets by these approaches as well as different
ones.

ACKNOWLEDGMENT
We would like to thank Prof. Raoutia Taktak for providing

us the materials related to their works on MSONDP problem.

REFERENCES
[1] Sylvie Borne, Virginie Gabrel, R idha Mahjoub, and Raoutia Taktak,

“Multilayer Survivable Optical Network Design,” presented at Inter-
national Network Optimization Conference (INOC), Hamburg, June
13-16, 2011.

[2] S. Borne , E. Gourdin, B. Liau, and A.R Mahjoub, “Design of
survivable IP-over-optical network,” Springer Science and Bussiness
Media, pp. 41-73, 2006.

[3] H. Kerivin and A.R Mahjoub , Design of survivable networks: A
survey, Networks 46(1) , 2005.

[4] Thomas Bucsics, “Metaheuristic Approaches for Designing Survivable
Fiber-Optic Networks,” Master’s thesis, Institute for Computer
Graphics and Algorithms, the Vienna University of Technology, 2007.

[5] Colin R. Reeves and Jonathan E. Rowe, Genetic algorithms-principles
and perspectives. Kluwer Academic Publishers, 2003.

[6] Muhammad S. Javed, Krishnaiyan Thulasiraman, and Guolian (Larry)
Xue, “Logical Topology Design for IP-over-WDM networks: A Hy-

brid Approach for Minimum Protection Capacity,” presented at the
IEEE 17th ICCCN, St.Thomas U.S Virgin Islands, August 3-7, 2008.

[7] TSPLIB [Online]. Available:
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
/tsp/

[8] Adrian Zymolka, “Design of Survivable Optical Networks by Math-
ematical Optimization,” Ph.D. dissertation, Mathematik und
Naturwissenschaften, Technischen Universit¨, Berlin, 2007.

[9] S. Borne, E. Gourdin, O. Klopfenstein and A. R. Mahjoub, “The
Multilayer Capacitated Survivable IP Network Design Problem: Valid
Inequalities and Branch – and – Cut” presented at International Net-
work Optimization Conference (INOC), Pisa, Italy, April 26-29, 2009.

[10] Kulathumani Vinodkrishnan, Arjan Durresi, Nikhil Chandhuk, Raj
Jain, Ramesh Jagannathan, and Srinivasan Seetharaman, “Survivabil-
ity in IP over WDM networks,” in Journal of High Speed Networks,
2nd ed. vol. 10, IOS Press, 2011, pp. 79-90.

[11] D. Wagner, U. Pferschy, P. Mutzel, G. R. Raidl, and P. Bachhiesl, “ A
directed cut model or the design of the last mile in real-world fiber
optic networks” presented at International Network Optimization
Conference (INOC), Spa, Belgium, April 22-25, 2007.

Huynh Thi Thanh Binh was born in 26 Sept 1975 at
Ha Noi, Viet Nam. She has received Master and PhD
degree in Computer Science field at Ha Noi University
of Science and Technology on 1999 and 2011. Her
research is genetic algorithm.
 Dr. Huynh Thi Thanh Binh is now lecturer at Ha Noi
University of Science and Technology, School of
Information and Communication Technology. She is

also researcher at Vietnam Institute for Advanced Study in Mathematic form
July 2012 to Dec 2012.

Dr. Binh is member of IEEE (from 2006 to now). Now, she is treasure of
IEEE Viet Nam Chapter. Dr. Binh also is member of ACM form 2006 to
2011. Dr. Binh has served as the organizing chair of the SoICT2011,
SoICT2012, a program commitee of the international conference
ICCCI2012, ICCASA2012, KSE2012, reviewer of International Journal
Intelligent Information and Database Systems.

Dinh Thi Ha Ly was born in 25 May 1992 at Bac Ninh, Viet Nam. She is
now student at Ha Noi University of Science and Technology.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

816

