
  

 
Abstract—Rule-based classifiers trained by Genetic 

Algorithms (GAs) have been one of the most prevailing 
solutions for pattern classification problem. This paper 
introduces an algorithm named Recursive Learning of Genetic 
Algorithms featuring Incremental Attribute Learning 
(RLGA-IAL) developed from the Recursive Learning of 
Genetic Algorithms with Task Decomposition and Varied Rule 
Set (RLGA). Instead of training all the attributes in a batch, 
RLGA-IAL integrates the attributes sequentially. By projecting 
a large multidimensional search space to single-dimensional 
space spaces with integration, it reduces the difficulty in 
deriving the classification rules.Though a series of experiments, 
RLGA-IAL shows a successful and promising performance in 
classification problems with the dimension of the datasets 
ranging from 5 to 60. 
 

Index Terms—Genetic algorithm, high dimensional 
classification, incremental attribute learning, recursive 
learning. 
 

I. INTRODUCTION 
Genetic Algorithms (GAs) have been widely applied in the 

realm of computer science to deal with various challenging 
tasks among which pattern classification problems triggered 
researchers’ enormous interests. As a result, many successful 
GA-based classifiers have been designed and applied in a 
very broad context. Nevertheless, GA-based classifiers 
generally suffer from drawbacks regarding classification 
accuracy and efficiency. Therefore, the Recursive Learning 
of Genetic Algorithms with Task Decomposition and Varied 
Rule Set (RLGA) was proposed to address these issues [8]. 
RLGA has gained significant improvement for the training of 
data under a dimension of 15 but still suffers from 
degradation when it encounters higher order dimensional 
problems. 

Aiming at resolving the above-mentioned problem, this 
paper proposes a new algorithm framework, i.e. the 
Recursive Learning of Genetic Algorithm featuring 
Incremental Attribute Learning (RLGA-IAL) to tackle the 
performance issues of previous GA-based classifiers in 
higher dimensional classification problems (with dimension 
covering 20-60).Byapplying Incremental Attribute Learning 
(IAL), the attributes are incrementally trained and integrated 
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other than learnt in a batch. Hence RLGA-IAL is enabled 
with the capability to decompose the task more effectively 
with an improved performance. 

To give a comprehensive and objective evaluation on our 
proposed algorithm, a series of experiments were conducted 
on a number of benchmark datasets to compare the 
performance of RLGA-IAL, RLGA and canonical GAs; and 
the results indicates that RLGA-IAL can handle higher 
dimensional problems more effectively than the other 
GA-based approaches discussed in this paper. 

 

II. RELATED WORK 
Extensive research has been conducted in the past decade 

on genetic algorithms and their applications in pattern 
classification problems. In this section, a brief review of 
canonical GA-based classifiers, task decomposition 
techniques and the original RLGA will be given. 

A. Genetic Algorithms Based Classifiers 
As one of the major subfields of computational 

intelligence, evolutionary computation with its outstanding 
capability draws enormous attention from researchers, 
among which Genetic Algorithms (GAs) are especially 
prevailing and widely applied in searching and optimization 
problems [10]. One particular application of GAs is on the 
training of rule-based classifiers for pattern classification 
problems, and the most successful attempts on various 
applications in history are the Pittsburgh approach and 
Michigan approach [6]. 

Nevertheless, the merits of GA also coexist with many 
demerits, for example, early convergence. Moreover, 
comparing with artificial neural networks, naive Bayes 
classifier, decision trees, supportive vector machines, and 
other popular machine learning algorithms [1][5][15][17], 
traditional GA classifier have their weaknesses in efficiency 
and classification accuracy, especially when confronting 
higher dimensional problems. 

B. Task Decomposition 
The issue of task decomposition has been discussed in the 

past decades from various perspectives. Most common 
approaches for task decomposition include domain 
decomposition [3],[16], input decomposition[9][11]-[13], 
class decomposition [2][4][14] and hybrid decomposition 
approach [18] which have all gained various achievements on 
different applications. Nearly all decomposition approaches 
are imposed manually by humans’ heuristics rather than 
being done intelligently and automatically according to 
specific problem context. RLGA was thereby proposed to 
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deal with this problem [8]. 

C. Recursive Learning of Genetic Algorithms 
To address the performance issues of GA based classifiers 

in terms of both classification accuracy and efficiency, 
RLGA was proposed in [8].One particular innovative feature 
is the elicitation of local fitness. Traditional Pittsburgh GA 
classifiers generally define their fitness (global fitness) of a 
chromosome on the view of whole search space whereas the 
local fitness is defined as the fitness of a chromosome in a 
local region of search space. It automatically decomposes the 
learning data through applying a number of sub-processes to 
study the partitioned training data. The experimental resultsin 
[8] illustrated the improvement of RLGA over traditional GA 
classifiers. 

 

III. DESIGN OF INCREMENTAL ATTRIBUTE LEARNING 

A. Encoding Mechanism 
The encoding mechanism of RLGA-IAL is inherited from 

the one in RLGA.A chromosome generally encodes a set of 
rules in Pittsburgh approach, however, in RLGA-IAL, each 
chromosome encodes only one classification rule which is 
represented as an IF-ELSE clause. For example, rule: ܨܫሺ ଵܸ  ଵݔ  ଵܸ௫ሻ ∧ ሺ ଶܸ  ଶݔ  ଶܸ௫ሻ …∧ ሺ ܸ  ݔ  ܸ௫ሻ ܶݕ ܰܧܪ ൌ  ܥ

 (1) 

The typical encoding of above rule in RLGA (and other 
Pitts GAs Classifiers) is fully described in Table I. 

 
TABLE I: ENCODING MECHANISM FOR CLASSIFICATION RULE 

Antecedent Gene 1 … Antecedent Gene n Consequence Gene

Act1 V1min V1max … Actn Vnmin Vnmax C 

B. Global Fitness, Local Fitness and Coverage 
Normal rule-based classifiers trained by GA generally use 

the following fitness function, and this is what we named as 
Global Fitness: ݂ீ  ൌ ேೌ ൌ ே௨  ௧௬ ௦௦ௗ ௧௧௦்௧ ே௨  ௧௧௦     (2) 

RLGA uses the idea of Local Fitness instead: 

݂ ൌ ேಲೌ್ ൌ ே௨  ௧௬ ௦௦ௗ ௧௧௦ே௨   ௧௧௦  (3) 

 
Apart from Local Fitness, RLGA also introduced a concept 

of coverage: ݁݃ܽݎ݁ݒ ൌ  ேಲೌ್ேೌ ൌ ே௨   ௧௧௦்௧ ே௨  ௧௧௦      (4) 

For the chromosomes that share the same local fitness, we 
generally prefer the one that covers more patterns, i.e. has a 
higher coverage. 

C. Integration of New Attributes 
Here Fig. 1 gives an intuitive idea of how the integration 

actually works. Part (a) of the diagram illustrates the process 
of forming a new rule based on a previously generated rule 
with an incoming rule whereas Part (b) shows how this 

process help to form a new population based on the original 
population and incoming elements. 

 
 

Fig. 1.  Formation of a new chromosome and a new population. 
 

D. Order of Attributes and Discriminating Ability 
The order of attributes to be integrated is crucial for 

RLGA-IAL. To determine the order of the attributes to be 
added into the chromosomes, we use the idea of 
Discriminating Ability (DA) [7]. DA is measured by the 
training classification accuracy achieved by applying Normal 
GA classifier to the dataset that has only a single active 
attribute. 

 

IV. EXPERIMENTS AND ANALYSIS 

A. Cross-Validation 
The cross-validation method is applied to test the 

performance of various algorithms. It focuses on how the 
classifier model can generalize to an independent data set and 
thereby can be treated an accurate indicator to assess how the 
classifiers will perform in practice. The technique of K-fold 
cross-validation is the type of cross-validation we utilized in 
this paper. It first randomly partitions the original datasets 
into K subsets, among which only one subset is preserved as 
the testing data set and remainingK-1are merged into a 
training data set. This process is repeated K times, with each 
of the K subsets used exactly once as the testing data.The 
results of K-fold are finally averaged to produce one final 
result. We have K = 10 throughout the whole experiment 
process. Furthermore, each fold has 10 runs and thereby we 
have 10 × 10 = 100 runs on each benchmark in total. All the 
experimental results shown in the following sections are 
taken as the average of these 100 runs of experiments. 

B. Experimental Results 
This section presents a series of experimental results, 

including a full list of classification accuracy with intuitive 
diagrams and analysis on typical benchmark datasets. All the 
experiments were conducted on a PC with Intel® CoreTM2 
DuoE7500CPU2.93GHz/2.94GHzwith2.0GBRAMand32-bit
Windows7PremiumOperatingSystemunderWekaSoftware 
(version 3.6.5). The benchmark datasets used are retrieved 
from the UCI (University of California, Irvine) Machine 
Learning Repository. 

The experimental results shown in Table II give an overall 
idea on the performance of three classification algorithms. 
This table is sorted in ascending order based on the attributes 
number (also counts in the class attribute). Both Table II and 
Fig. 2 mainly focused on classification accuracy. Note that, 
since the parameters are important to the performance of all 
the classifiers, they have been tuned to reasonable value to 
deliver relatively good results under their capacity. The 

(a) (b) 
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parameters, especially RuleNumber, PopulationSize are set to 
a comparable level in order to guarantee the fairness for all 
algorithms. The features of these classifiers should be taken 
into consideration as well. For instance, we have 
RuleNumber = 100 & PopulationSize = 100 for Normal GA, 
whereas we need at least PopulationSize = 1000 for RLGA 
because each RLGA chromosome encodes only one rule. 
However, setting PopulationSize = 100 might be sufficient 
for RLGA-IAL, as it needs to invoke Normal GA when an 
integration of attribute occurs and this process might generate 
a number of chromosomes itself.  

 
TABLE II: EXPERIMENTAL RESULTS ON TESTING CLASSIFICATION 

ACCURACY 

Benchmark 
(Attr. No.) 

Normal GA† RLGA‡ RLGA-IAL§ 
CR¶ UR CR UR CR UR 

Iris (5) 
Yeast (9) 
Glass (10) 
Cancer-Wisc (10) 
Cancer (10) 
Wine (14) 

93.47 
42.30 
58.02 
95.15 
69.81 
86.85 

0.00 
0.00 
0.05 
0.14 
4.67 
0.84 

93.60 
48.15 
65.04 
95.84 
64.49 
91.17 

0.47 
3.28 
1.82 
0.01 
0.18 
1.53 

93.73
41.95
54.29
93.96
65.57
87.85

2.13
10.78
2.58
0.31
0.21
1.86

Labor (17) 
Vote (17) 
Zoo (18) 
Lymphography (19) 
Vehicle (19) 
Hepatitis (20) 
Segment (20) 

75.97 
61.91 
54.55 
72.06 
42.83 
76.32 
44.33 

1.83 
34.29 
25.16 
1.87 
1.28 
8.31 
7.40 

78.40 
74.26 
44.51 
67.58 
70.14 
71.15 
96.81 

4.93 
21.24 
54.09 
14.81 
0.24 

11.03 
0.17 

72.53
87.87
93.09
77.33
58.43
77.07
87.72

3.60
8.35
4.04
0.62
6.00
1.35
7.34

Horse-Colic (23) 
Autos (26) 
Ionosphere (35) 
Anneal (39) 
Sonar (61) 

64.89 
42.50 
62.59 
77.31 
26.41 

18.70 
3.79 
24.61 
0.41 
60.46 

76.79 
60.28 
73.17 
0.00 
0.00 

0.97 
21.49 
20.29 
100.00 
100.00 

77.28
81.33
85.24
97.55
66.47

0.68
1.46
2.40
0.89
1.83

¶ CR stands for Classification Rate and UR stands for Unclassified Rate. All 
of them are in percentage. These notations are the same in the coming 
sections.  
† Mutation Rate = 0.01, Crossover Rate = 1.0, Population Size = 100, 
Survival Rate = 0.5, Active Rate = 0.5. For Attr No. ≤ 15 we set Rule Number 
= 30 and for Attr No. > 15 we set Rule Number = 100.  
‡ Rule Number Per Expert = 1, Mutation Rate = 0.01, Crossover Rate = 1.0, 
Survival Rate = 0.5, Active Rate = 0.1. For Attr No. ≤15 we set Population 
Size = 100 and for AttrNo. > 15 we set Population Size = 1000  
§ Rule Number Per Expert = 1, Mutation Rate = 0.01, Crossover Rate = 1.0, 
Population Size = 100, Survival Rate = 0.5, Active Rate = 0.1, Attr Order = 

Descending.  

 
Fig. 2. Classification rate for all datasets. 

 
 [8] mentioned the fact that RLGA has better performance 

compared with normal GA in lower dimensional problems. 
This point is vetted by our experimental results except for the 
Cancer datasets. Nevertheless, as the number of attributes 
increases, its performance is no longer dominant among three. 

Meanwhile, the number of instances is another determinant 
factor on the performance of RLGA. Upon datasets with 
fewer instances, such as Zoo, RLGA can hardly achieve 
higher classification accuracy even encompass a reasonable 
size of population (1000 in this case). Assigning RLGA with 
a larger population size does not help. For higher order 
dimensional problems, the advantage of RLGA-IAL 
becomes obvious.  

Generally speaking, the algorithms could be ranked as 
RLGA-IAL>RLGA>Normal-GA based on an overall 
estimation of their performance. Nevertheless, there are 
always some exceptions. For example, the winner on Cancer 
benchmark is actually the Normal-GA. Note that RLGA’s 
performance on segment dataset is exceptional where 
RLGA-IAL ranks 2nd. 

C. Result Analysis  
A brief description of each dataset will be given along with 

experimental results covering classification accuracy and 
training time. The classification rate is shown with the SD 
(standard deviation) value. For simplicity, the Classification 
Rate, Incorrect Rate, Unclassified Rate and Training Time 
are abbreviated as CR, IR, UR and Time separately. The rates 
are all in percentage and the Time is in seconds. Moreover, 
the pop stands for the population size for different RLGA 
classifier. 
1) Ionosphere, anneal, and sonar 

Ionosphere, Anneal and Sonar were taken from the group 
of higher-order dimensional datasets that have attributes 
number 35, 39 and 61 separately (see Table III). They are the 
highest dimensional dataset we used as benchmarks and are 
thereby the major interests of us.  RLGA-IAL shows its 
capacity when the dimension number increases, especially 
when the number of attributes exceed a limit of 20. Especially 
for the last two benchmark datasets, while RLGA has 
degraded to 0, the performance of RLGA-IAL still 
maintained a relatively good record. In addition, the 
experimental results show that RLGA’s performance greatly 
relies on the instance number. It also suggests that the number 
of instances could be very helpful for RLGA to compensate 
its inability in higher dimensional problem. This also shows 
that, RLGA-IAL is effective in dealing with situations 
lacking enough training instances. 

2) Lower dimensional data 
Another interesting fact we can observe from the 

experimental results is that RLGA-IAL performs inferior to 
RLGA in lower dimensional data. There are many possible 
causes for this. Firstly, the information possessed by each 
attribute is apparently problem-dependent, and a uniform 
solution is not necessarily a winner for all. Due to the nature 
of RLGA-IAL, it gradually decomposes the problem in the 
incremental learning process. Therefore it is possible that not 
all attributes are utilized for the classification. This is an 
inevitable tradeoff if we want to keep the automatic task 
decomposition feature of RLGA. With instances removed 
from training set, some useful attributes are even still not 
integrated. Lower dimensional data tend to possess more 
information in each attribute, and there are rarely redundant 
attributes. Accordingly, RLGA-IAL might not be that 
effective in some lower dimensional problems. 
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TABLE III: EXPERIMENTAL RESULTS ON IONOSPHERE, ANNEAL & SONAR 
BENCHMARK 

Ionosphere CR(SD) IR UR Time 
Normal-GA 
RLGA (pop=100) 
RLGA (pop=500) 
RLGA (pop=1000) 
RLGA-IAL 

62.59 
10.53 
42.78 
73.17 
85.24 

12.79 
1.39 
5.05 
6.54 

31.70 

24.61 
88.09 
52.17 
20.29 
1.83 

27.71 
0.02 
9.32 

28.50 
99.63 

Anneal CR(SD) IR UR Time 
Normal-GA 
RLGA (pop=100) 
RLGA (pop=500) 
RLGA (pop=1000) 
RLGA-IAL 

77.31 
0.00 
0.00 
9.66 

97.55 

22.28 
0.00 
0.00 
0.34 
0.89 

0.41 
100.00 
100.00 
90.00 
1.98 

146.45 
4.71 

21.31 
29.31 
198.93 

Sonar CR(SD) IR UR Time 
Normal-GA 
RLGA (pop=100) 
RLGA (pop=500) 
RLGA (pop=1000) 
RLGA-IAL 

26.41 
0.00 
0.00 
0.00 

66.47 

13.13 
0.00 
0.00 
0.00 

31.70 

60.46 
100.00 
100.00 
100.00 

1.83 

20.46 
0.01 
0.15 
0.3 

105.90 

 
3) Order of Attributes in Incremental Learning Process  

One issue that cannot be overlooked is the ordering of 
attributes for attribute integration in the incremental learning 
process. As explained before, the Discriminating Ability (DA) 
is the criteria to rank the attributes. The default option for 
ordering attributes is based on the descending order of DA, 
that is, we integrate attribute from the one with the highest 
DA to the one with the lowest.  

Although previous research has been conducted to show 
the descending order is best under IAL [9], whether it is the 
case for RLGA remains an open question. Since the 
theoretical foundation is not there, we need to conduct a 
series of experiments. Here we take two benchmarks, i.e. 
Anneal and Segment, for testing. The experimental results 
focus on CR, UR and training Time. Other than descending 
order, the orders that are also investigated include ascending 
order (reverse of descending order), natural order (original 
attribute order) and random order.  

Intuitively, descending order should have the best 
performance, because the attribute that has higher DA can 
discriminate the instances better. Ideally, we can classify 
with fewer attributes rather than the full attribute set and most 
possible subset of attributes are those that possess higher DAs. 
When a portion of instances are perfectly learnt by the 
classifier, the instances can be removed from original training 
set and thereby simplifying the classification task as a whole. 
With these considerations in mind, we will see how the 
number of remaining patterns changes along with the 
attribute integration process.  

Both results from Anneal and Segment in Table IV show 
the “Descending Order” is the best among all four ways. 
They result in best classification rate with minimum training 
time. “Ascending Order”, on the opposite, always delivers 
the worst result. The random order and natural order 
generally lie between ascending and descending, but they do 
not give much correlative information. This is in accord with 
our previously mentioned point of view that it is actually the 
information held by each attribute hold determines its 
usefulness. The experiments are conducted without specific 
domain knowledge, and thereby the DA could retrieve some 
of the knowledge for the data possess.  

More information can be found in Fig. 3 about the 
relationship between the number of remaining patterns and 

the number of attributes already integrated. The instances are 
learnt fastest with descending order of attribute integration, 
and natural order, random order and ascending order come 
next. Interestingly, this is not the case for Segment dataset. 
Although the general trend is similar, the descending order is 
not the best among four in terms of speed. Therefore, we can 
conclude that the effect of attribute ordering can be actually 
problem-dependent. 

 

 
Fig. 3. Effect of attribute integration ordering on anneal & segment 

 
TABLE IV: EFFECT OF ATTRIBUTE INTEGRATION ORDERING ON ANNEAL & 

SEGMENT 
 Anneal Segment 

Order CR(SD) UR Time CR(SD) UR Time 

Natural 
Ascending 
Descending
Random 

90.65 
51.79 
97.55 
75.92 

9.24
47.49
1.98
22.13

228.24 
268.19 
198.93 
256.52 

61.30 
39.61 
87.72 
81.23 

3.40 
4.98 
7.34 
3.04 

369.29
426.92
350.58
412.20

 

V. DISCUSSION  

A. Strengths of RLGA-IAL  
In the previous section, the experimental results were 

presented with some insightful discussions. The overall 
performance of RLGA-IAL is shown to be effective in the 
problems that are of our interests. The results are in 
accordance with our expectations that the problems of RLGA 
in higher order dimensional problems can be tackled by 
integrating it with Incremental Attribute Learning (IAL).  

Although the search space of a higher dimensional 
problem is much larger than the ones with fewer attributes, 
the performance of RLGA-IAL remains at a consistent level 
without any parameters fine tuned. This is one major 
advantage of RLGA-IAL, that it only requires limited 
memory even with higher dimension problem. This is 
contrary to the performance of RLGA and Normal GA, as the 
number of rules in Normal-GA and the population size in 
RLGA need to be significantly increased accordingly.  

Even more impressive is the fact that the RLGA can cope 
with IAL perfectly. IAL is especially effective with RLGA’s 
automatic task decomposition feature, as the task can be 
gradually simplified in the incremental learning process. 
Therefore, partial solutions are composed by experts with 
only a subset of attributes. When new attributes are integrated 
to each expert, it only needs to address a simplified problem. 
In this manner, we accomplish a feature selection for 
instances in specific domain. This project also confirms that 
the RLGA’s potential has not been fully exploited and it 
could possibly become one of the most powerful rule-based 
classifiers trained by Genetic Algorithms. Moreover, the 
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power of IAL is also proved to be effective under different 
circumstances. The hybrid between input dimension 
decomposition accomplished by IAL and automatic task 
decomposition achieved by RLGA leads to the excellent 
performance of RLGA-IAL.  

B. Existing Weaknesses and Future Development  
Although RLGA-IAL has a number of merits, its current 
status still shows several weaknesses. Efficiency is one of the 
major issues, as GA-based classifiers generally suffer higher 
time cost, RLGA-IAL has no improvement in this aspect. The 
experiments shown in last section actually imply that, 
although RLGA-IAL results in best classification rate, it also 
consumes most time. In fact, incrementally training each 
attribute is inevitably time consuming and the efficiency and 
accuracy is a tradeoff. Meanwhile, over exploiting each 
attribute might have a negative effect. The learnt patterns in 
the training set are generally removed in order to simplify the 
training task, but it may also prevent instances to be fully 
utilized in the coming training process.  

C. Future Development  
This paper has shown the promising performance of 

RLGA-IAL. The integration process occurs linearly which 
means the attribute is integrated one after another. The speed 
of this process is overall on the order of the attribute number. 
Suppose we change the integration style from linear to binary, 
which means the attributes can be aggregated as a binary tree, 
the speed can be reduced to the logarithmic order. Also, we 
could integrate multiple attributes each time other than only 
one of them. This will possibly boost the efficiency as a 
whole.  

The effect of the ordering of integration attributes is still 
not fully understood. Although the experiments showed the 
DA is a useful metric, whether it is the best candidate remains 
to be an open question. Meanwhile, as previously mentioned, 
current solution on ranking attributes is time-consuming. 
Therefore, other possible solutions to this problem could be 
investigated further.  

Last but not least, the most difficult part lies in seeking the 
theoretical foundation of our work. Although we gained some 
insights, we are still seeking a well-laid theoretical 
foundation.  

VI. CONCLUSION  
To conclude, automatic task decomposition of 

classification can be implemented in the training process of 
each attribute through RLGA-IAL. Moreover, IAL could also 
enhance the searching capability with relatively limited 
population size. The future work involves determining other 
possible metrics to order the attributes and also further 
improve the efficiency of RLGA-IAL.  

ACKNOWLEDGMENT  
This research is supported by National Natural Science 

Foundation of China under Grant 61070085. 

REFERENCES 
[1] R. Anand, K. Mehrotra, and S. Ranka, “Efficient classification for 

multiclass problems using modular neural networks,” IEEE Trans. on 
Neural Networks, vol. 6, pp. 117-124, January 1995. 

[2] R. Anand, K. Mehrotra, and S. Ranka, “Efficient classification for 
multiclass problems using modular neural networks,” IEEE Trans. on 
Neural Networks, vol. 6, no.1, pp. 117-124, 2002. 

[3] J. H. Ang, S. U. Guan, K. C. Tan, and A. A. Mamun, “Interference-less 
neural network training,” Neurocomputing, vol. 71, pp. 3509-3524, 
October 2008. 

[4] C. Bao, T. N. Neo, and S. U. Guan, “Reduced pattern training in pattern 
distributor networks,” Journal of Research and Practice in Information 
Technology, vol. 39, pp. 273–286, 2007. 

[5] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of 
supervised learning algorithms,” in Proc. 23rd international 
conference on Machine learning, 2006. 

[6] A. L. Corcoran and S. Sen, “Using real-valued genetic algorithms to 
evolve rule sets for classification evolutionary computation,” in 
Proc.1st IEEE World Congress on Computational Intelligence, 1994. 

[7] S. U. Guan, F. Zhu, “Ordered incremental training with genetic 
algorithms,” International Journal of Intelligent Systems, vol. 19, 
pp.1239–1256, 2004. 

[8] L. Fang, S. U. Guan, and H. F. Zhang, “Recursive learning of genetic 
algorithms with task decomposition and varied rule set,” International 
Journal of Applied Evolutionary Computation, vol. 2, no. 4, 2011. 

[9] N. García-Pedrajas, C. Hervás-Martínez and J. Muñoz-Pérez, 
“Multi-objective cooperative coevolution of artificial neural networks 
(multi-objective cooperative networks),” Neural Networks, vol. 15, 
no.10, pp.1255–1274, 2002. 

[10] D. E. Goldberg. Genetic Algorithms in Search Optimization and 
Machine Learning, Addison Wesley, 1989, pp. 41. 

[11] S. U. Guan and S. Li, “Incremental learning with respect to new 
incoming input attributes,” Neural Processing Letters, vol. 14, no.3, pp. 
241–260, 2001. 

[12] S. U. Guan and J. Liu, “Incremental ordered neural network training,” 
Journal of Intelligent Systems, vol. 13, no.1, 2002. 

[13] S. U. Guan and K. Ramanathan, “Percentage-based hybrid pattern 
training with neural network specific crossover,” Journal of Intelligent 
Systems, vol. 16, pp.1–26, 2007. 

[14] S. U. Guan and F. Zhu, “Class decomposition for GA-based classifier 
agents--a Pitt approach,” IEEE Transactions on Systems, Man, and 
Cybernetics. Part B, Cybernetics, vol. 34, no. 1, pp. 381–392, 2004. 

[15] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation 
of fuzzy classier systemsfor multidimensional pattern classication 
problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part 
B: Cybernetics, vol. 29, no. 5, pp. 601–618, Oct 1999. 

[16] K. Ramanathan and S. U. Guan, “Recursive pattern based hybrid 
supervised training,” Engineering Evolutionary Intelligent Systems, 
vol.82, pp.129–156, 2008. 

[17] L. Rokach and O. Maimon, “Top-down induction of decision trees 
classifiers-a survey,” IEEE Transactions on Systems, Man, and 
Cybernetics, Part C, vol. 35, no 4, pp. 476–487, 2005. 

[18] C. H. Tan, S. U. Guan, and K. Ramanathan, “Recursive hybrid 
decomposition with reduced pattern training,” International Journal of 
Hybrid Intelligent Systems, vol. 6, no. 3, pp. 135–146, 2009. 

 
 
Haofan Zhang received his B.Sc. from the University of Liverpool. He is 
currently a postgraduate student at University of Waterloo, Canada. 

 
Sheng-Uei Guan received his M.Sc. & Ph.D. from the University of North 
Carolina at Chapel Hill. He is currently a professor in the computer science 
and software engineering department at Xi'an Jiaotong-Liverpool University 
(XJTLU). He is also affiliated with Xi’an Jiaotong University as an adjunct 
faculty staff. Before joining XJTLU, he was a professor and chair in 
intelligent systems at Brunel University, UK.  

 
Mengjun Xu is currently an undergraduate student at Xi’an Jiaotong– 
Liverpool University.  

 

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

806


