
Abstract—To predict protein-protein docking sites in a
massive protein dataset, we built a cloud computing based
computing pipeline. This pipeline conforms to Elastic
MapReduce. The implementation of this pipeline includes three
components. First, the cloud computing is based on the
application of the open source hadoop platform. Second, the
pipeline combines several existing protein-protein docking site
methods. Third, the pipeline takes advantage of network
computing resource to predict protein-protein docking sites by
distributed data processing services. The results show our
method can highly improve the performance of protein-protein
docking site prediction.

Index Terms—Cloud-computing; protein docking site;

pipeline.

I. INTRODUCTION
A protein-protein docking site is a three-dimensional

structure composed of known receptors and ligands. The
study of protein-protein docking sites not only reveals the
relationship between protein and protein, but also
contributes to protein engineering such as molecular design
and computer-aided drug design [1].

The computation of protein docking sites is to establish a
large number of compounds of three-dimensional structures
from the database, and to discover the target molecule
docking sites including rigid body docking, semi-flexible
docking and flexible docking. The major problems of the
existing methods for predicting protein-protein docking sites
are the limitation of existing computation capacity and the
high cost of computing resources. 1

Some efforts have used parallelization or graphics
processing unit (GPU) to accelerate the calculation, but they
require access to a specific type of hardware resource. Due
to the flexibility and scalability of computing models, cloud
computing has become the main tool to deal with massive
data analysis and processing. The virtual cloud-computing is
a scalable web-based dynamic platform which manages the
flexible network equipment resources of dynamic
deployment of physical equipment resources including
storage, computing, management and dynamical creation of
files. It can help us process the large-scale computing
resources.

Various molecular docking software has been widely used,
such as: ZDOCK [2], RosettaDock [3] and so on. Each

Manuscript received September 25, 2012; revised November 11, 2012.

This work was supported by NSF CAREER (CCF-0845888) and NSF
Science & Technology Center grant CCF-0939370.

The authors are with the Department of Systems and Computer Science,
Howard University, Washington, DC 20059, USA. (e-mail:
hli@scs.howard.edu; jeanclaudetounkara@gmail.com;
chunmei@scs.howard.edu.)

method has either extinguished strengths or drawbacks.
Effective combination of these tools would achieve a better
result. Considering the distributed computing, flexible
storage and scalable management, we attempt to use the
cloud computing platform to predict the protein docking
sites from large scale datasets not only to save energy of the
method but also to improve stability and availability of the
application.

In order to improve the prediction of protein docking sites,
we apply the MapReduce [4] which is a distributed
computing architecture firstly proposed by Google to solve
the large amount of data and to convert the result into the
file system or database. We design a pipeline by combining
diverse public prediction tools of protein docking sites to get
the highly reliable protein docking site candidates.

II. METHOD

A. Architecture
In this paper, we use Cloudera [5] which contributes to

Hadoop [6] and related Apache projects to provide a virtual
cloud platform and distributed computing platform. Hadoop
is an open source software framework that supports data-
intensive distributed applications licensed under the Apache
v2 license [7].

We design a pipeline to combine the existing methods to
improve the accuracy of protein-protein docking site
prediction based on Hadoop. We facilitate the graphical
management interface of Hadoop for large data processing.
The architecture is shown in Fig. 1.

Fig. 1. The architecture of the cloud-computing platform

The distributed computing environment is based on the

Map-Reduce framework to process large scale data and
Cloudera Desktop to provide a web-based interface.
Hadoop's file system (HDFS) is tailored to the huge sort
tasks under Hadoop. All related programs are expressed as a
series of maps to reduce phase’s operation on the dataset.

Prediction of Protein-Protein Docking Sites Based on a
Cloud-Computing Pipeline

Hui Li, Jean-Claude Tounkara, and Chunmei Liu

Servers

Coordinate
files

Virtual cloud

Reduce

…

Sub task 1

Network

worker

Map Sub task 2
Sub task 3

Reduce
Reduce

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

79810.7763/IJMLC.2012.V2.240

1) Load files part
We use a java program to dynamically parse PDB [8]

files for all the coordination files on the query protein pairs.
All the coordination files are partitioned into chunks and
stored on the HDFS.

2) Algorithm part of Mapper
A Mapper is a short program that runs during the

mapping phase, which performs the algorithm once it
receives a partition data and outputs the intermediate result.
A Mapper consists of a primary key and a value. The
primary key is the name of the algorithm to identify the
input data. The secondary key is the index to the partition of
the files. We combine three existing software to achieve a
higher accuracy of protein-protein docking site prediction
than each individual method from the short protein-protein
docking data. Each of the three methods is transferred by the
key part.

A Reducer is a short program that runs during the
reducing phase, which is designed to collect all the
intermediate results, converted by mapping the same key,
and output the result to the HDFS.

In the platform, the pipeline automatically generates the
primary and the secondary key between the mapper and
reducer phases. The implementation of the mapper-reducer
phase is extremely efficient that outputs billions
coordination data and protein-docking sites. The major
process and the roles in the architecture and the steps of the
process are explained as the following.

First, the worker in the cloud-computing runs the Mapper
and Reducer program. The driver script in the server detects
a worker node and allocates a process to the worker. Second,
the key/value pair of the Mapper is written to the local disk
of the worker node, and then the worker notifies the server.
The key for each sub-file is distributed to all workers in the
cluster through the Hadoop's file caching facility. Third, we
used HDFS method to copy all the outputs of the reducing
phases from distributed file system to the master local
filesystem.

B. Pipeline
Based on the platform of the cloud-computing, we design

a pipeline that combines existing software, which takes
advantage of all successful methods. The flow chart of the
pipeline is shown in Fig. 2.

Our pipeline for protein docking site predict
An in-house java program module is used to dynamically

parse the data from the protein data bank (PDB) and
generate ion contains the following methods:

1) ZDOCK [2] is completed by the Boston University
research team. It utilizes FFT method for rigid docking, the
docking structure of the geometric complementarities, de-
salvation energy and electrostatic interactions for rough
scoring screening. In order to more accurately evaluate the
scoring results, the subsequent development of ZRANK61
adopts more accurate scoring method.

2) RosettaDock [3] is developed by Professor Baker et al
at Washington University. It uses a Monte Carlo algorithm
to optimize the molecular structure. It includes the process
of side-chain, rigid minimum and the final score, and
evaluates the performance of the different stages using
different scoring functions.

3) HADDOCK [9] is completed by Professor Bonvin et al
of Utrecht University. It combines the energy optimization
and the molecular dynamics simulations for molecular
docking. First the conformational search is through rigid
energy optimization and semi-flexible simulated annealing.
Then the structure is further improved by the simulations of
significant water-bearing molecular dynamics.

Fig. 2. The flow chart of the pipeline

The pipeline of the open-source EMR is divided into three

parts: the first part is a virtual cloud environment, the second
is cloud storage, and third part is the distributed computing
environment.

If the server receives the coordinate files in the Hadoop,
the Mapper and Reducer program is invoked. In order to
send subtasks to the other worker, we need to serialize the
data and assign to the mapping task. The mapping worker
first reads the key/value pairs, and then performs protein-
docking mapping function.

The mapping workers output a set of protein-docking
sites which include a primary key and a secondary key. The
primary key and the secondary key allow reducers to collect
separate partitions to be processed in parallel. It also ensures
that each reducer worker receive prediction of protein-
protein docking sites in a sorted order. The reduce worker
traverse all the sorted data and then pass the data to the
protein-docking reducing function in the pipeline.

The implementation of the pipeline includes the following
five steps:

 a big file which includes the coordinates of protein pairs.
The Hadoop uses Input Data Format to divide the big file
into small input files which record Key and Value.

where DA is the coordinate dataset for protein A and DB
is the coordinate dataset for protein B.

All the sub-dataset is an automatic conversion. The Map
Reduce library is used to copy all the three algorithms to
each worker node. When a sub node returns errors, Hadoop
will automatically restart the task on the cached copy of its
input data.

1. Set the same parameters to the three algorithms for
the prediction of docking sites.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

799

2. The Map process defines the data structure (key,
value) on the Map operation. The Map process is applied to
each input dataset in parallel. Each of them has a (k2, v2)
queue as Equation 1.

 () ()1 1 2 2, ,Map k v list k v⎯⎯→ (1)

Then the data blocks are distributed to different nodes
(worker nodes). Each worker node has three methods
mentioned above.

3. The Reduce process is applied to collect dataset and
combine the results, and then sort the results of the same
method using keys as Equation 2.

()() ()2 2, list list 3, 3k v k v⎯⎯→ (2)

where v3 is a dataset and k2 includes the identifier for each
method. Then the Map Reduce framework collects the output
queue in the same key data, put them together, and build a
different key named data collection.

4. The query protein data are executed by each method
separately. Protein-protein docking sites are then exported
and distributed to different workers to achieve better data
reliability. The procedure is shown in Table I.

TABLE I: THE PROCEDURE OF THE MAPPER-REDUCER

5. 6.Input 7.Output

8.Map 9.<K1, V1> 10.List (<k2,V2>)

11.Reduce 12.<K2, list(v2)> 13.List (<K3,V3>)

�

Once output the candidate docking site from each
algorithm, the in-house scripts will be used to find the
overlap docking sites from each method and refine lists of
docking sites from each protein-docking algorithm. The
cloud computing is shown in Fig. 3.

Fig. 3. The general plot of distributed computing

III. EXPERIMENTAL RESULTS
In this paper, we employ the Desktop Cloudera which is

an access control interface to provide a simple interface
based on the Firefox browser. Installation of Hadoop virtual
server template is one of the critical points to build the EMR
framework which is a good virtual cloud environment to
quickly create a Hadoop virtual server node.

We installed CentOS operating system in the virtual
processor, 1GB virtual memory and 60GB virtual hard disk
space. We installed Cloudera platform tools that are
summarized in the following major steps.

#./ jdk-6u16-Linux-i586-rpm.bin
cp Cloudera-cdh2.repo /etc/yum.repos.d/Cloudera-cdh2.repo
yum -y install Hadoop-0.20-conf-pseudo //install Cloudera
#yum -y install Hadoop-0.20-conf-pseudo-desktop //install desktop

The interface of the Cloudera starts with user login. The

interface after login includes the four main functional
modules of the Desktop launch menu in the upper right
corner of the interface: the Cluster the Health Dashboard,
File Brower, the Job Browser and the Job Designer.

The File Brower will display the uploading request for a
plain text file in .txt file format. Clicking Job Designer will
activate the algorithm of the pipeline for data input (INPUT)
and output parameters to complete the new the protein-
protein docking Job tasks created.

After install the Hadoop virtual server template, each
node has been installed Linux operating system and Hadoop
package. Users only need to configure Hadoop distributed
environment which achieves a large scale data processing.
Each node can view Hadoop web tools and display the
current job progress.

Running the Job task will automatically create a folder
showing the progress of the task execution and results, and
the final data processing results are saved to the folder.
Users can also view the results of data through the result sets
which are downloaded to the local system.

The results of the example are shown in Figure 5. The
above results were computed on a Hadoop 0.20 cluster with
7 worker nodes located in our laboratory. Centos 5.5 with 4
GB of physical memory and 70 GB of local storage are
available for the Hadoop Distributed File system (HDFS)
and connected via gigabit Ethernet. The data set we used is
shown in Fig. 4.

Fig. 4. The candidate data set of the three methods

In order to illustrate the accuracy and efficiency of our

pipeline over each of the three methods, we docked the PDB
structures on 117 cases and the results are shown in Table II.

TABLE II: THE COMPARISON OF CORRECT INTERFACE RESIDUE CONTACT

PAIRS PREDICTED
 Contact %

Pipeline 87
ZDOCK 74

HADOCK 72
RosettaDock 70

IV. CONCLUSION
In this paper we present a cloud computing environment

setup by MapReduce and Hadoop which are leveraged to
efficiently parallelize the existing protein-protein docking
algorithms.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

800

Our method achieves a better accuracy on the datasets
than each individual method. We analyze the refine list
based on three methods. Our method is flexible to increase
or decrease the number of the clusters for rapid completion
of the prediction of the protein-protein docking sites. When
the task is completed, the computing resources will recover
and be assigned to other applications.

REFERENCES
[1] W. Wang, X. Zhou, W. He, Y. Fan, Y. Chen, and X. Chen, “The

interprotein scoring noises in glide docking scores, ” Proteins, vol.
80, pp. 169-83, 2010.

[2] R. Chen, L. Li, and Z. Weng, “ZDOCK: an initial-stage protein-
docking algorithm, ” Proteins, vol. 52, pp. 80-7, 2003.

[3] S. Lyskov and J. J. Gray, “The RosettaDock server for local protein-
protein docking, ” Nucleic Acids Res, vol. 36, pp. W233-8, 2008.

[4] S. G. Jeffrey Dean, “MapReduce: simplified data processing on large
clusters,” in Communications of the ACM - 50th anniversary issue:,
vol. 51, 2008, pp. 107-113.

[5] A. Vance, “Bottling the Magic Behind Google and Facebook,” The
New York Times. , vol. 16, 2009.

[6] D. cutting, “Apache Hadoop is a new way for enterprises to store and
analyze data., ” Cloudera, 2010.

[7] S. Y. X. R. Z. D. Y. T. M. Jiong Xie, J. Manzanares, and A. Xiao
Qin, “Improving MapReduce performance through data placement in
heterogeneous Hadoop clusters,” presented at Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, Atlanta, GA, 2010.

[8] H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne,
K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, P. Fagan, J.

Marvin, D. Padilla, V. Ravichandran, B. Schneider, N. Thanki, H.
Weissig, J. D. Westbrook, and C. Zardecki, “The Protein Data
Bank, ” Acta Crystallogr D Biol Crystallogr, vol. 58, pp. 899-907,
2002.

[9] S. J. de Vries, M. van Dijk, and A. M. Bonvin, “The HADDOCK
web server for data-driven biomolecular docking,” Nat Protoc, vol. 5,
pp. 883-97, 2010.

Hui Li is currently a Postdoctoral Fellow at the
Department of Systems and Computer Science in
Howard University. He received his PhD in Computer
Science from Beijing School of Computer Science,
University of Technology, Beijing in 2009. His
research interests include computational biology,
bioinformatics, pattern recognition and algorithm.

Jean-claudeToutara is currently a master student of
Department of Systems and Computer Science at
Howard University. He will get his M.S. in Computer
Science at Howard University in 2012. He is
interested in Artificial Intelligence of Experts
Systems and Computational Biology.

Chunmei Liu is currently an Associate Professor of
the Department of Systems and Comp uter Science at
Howard University. She got her Ph.D.. in Computer
Science from the University of Georgia; Athens, GA
in 2006. Her research interests include Graph Theory,
Computational Biology, Algorithms, and Complexity.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

801

