
Abstract—To predict protein-protein docking sites in a 
massive protein dataset, we built a cloud computing based 
computing pipeline. This pipeline conforms to Elastic 
MapReduce. The implementation of this pipeline includes three 
components. First, the cloud computing is based on the 
application of the open source hadoop platform. Second, the 
pipeline combines several existing protein-protein docking site 
methods. Third, the pipeline takes advantage of network 
computing resource to predict protein-protein docking sites by 
distributed data processing services. The results show our 
method can highly improve the performance of protein-protein 
docking site prediction. 

 
Index Terms—Cloud-computing; protein docking site; 

pipeline. 

 

I.  INTRODUCTION  
A protein-protein docking site is a three-dimensional 

structure composed of known receptors and ligands. The 
study of protein-protein docking sites not only reveals the 
relationship between protein and protein, but also 
contributes to protein engineering such as molecular design 
and computer-aided drug design [1]. 

The computation of protein docking sites is to establish a 
large number of compounds of three-dimensional structures 
from the database, and to discover the target molecule 
docking sites including rigid body docking, semi-flexible 
docking and flexible docking. The major problems of the 
existing methods for predicting protein-protein docking sites 
are the limitation of existing computation capacity and the 
high cost of computing resources. 1 

Some efforts have used parallelization or graphics 
processing unit (GPU) to accelerate the calculation, but they 
require access to a specific type of hardware resource. Due 
to the flexibility and scalability of computing models, cloud 
computing has become the main tool to deal with massive 
data analysis and processing. The virtual cloud-computing is 
a scalable web-based dynamic platform which manages the 
flexible network equipment resources of dynamic 
deployment of physical equipment resources including 
storage, computing, management and dynamical creation of 
files. It can help us process the large-scale computing 
resources. 

Various molecular docking software has been widely used, 
such as: ZDOCK [2], RosettaDock [3] and so on. Each 
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method has either extinguished strengths or drawbacks. 
Effective combination of these tools would achieve a better 
result. Considering the distributed computing, flexible 
storage and scalable management, we attempt to use the 
cloud computing platform to predict the protein docking 
sites from large scale datasets not only to save energy of the 
method but also to improve stability and availability of the 
application. 

In order to improve the prediction of protein docking sites, 
we apply the MapReduce [4] which is a distributed 
computing architecture firstly proposed by Google to solve 
the large amount of data and to convert the result into the 
file system or database. We design a pipeline by combining 
diverse public prediction tools of protein docking sites to get 
the highly reliable protein docking site candidates. 

 

II. METHOD 

A. Architecture 
In this paper, we use Cloudera [5] which contributes to 

Hadoop [6] and related Apache projects to provide a virtual 
cloud platform and distributed computing platform. Hadoop 
is an open source software framework that supports data-
intensive distributed applications licensed under the Apache 
v2 license [7].  

We design a pipeline to combine the existing methods to 
improve the accuracy of protein-protein docking site 
prediction based on Hadoop. We facilitate the graphical 
management interface of Hadoop for large data processing. 
The architecture is shown in Fig. 1.  

 

 
Fig. 1.  The architecture of the cloud-computing platform 

 
The distributed computing environment is based on the 

Map-Reduce framework to process large scale data and 
Cloudera Desktop to provide a web-based interface. 
Hadoop's file system (HDFS) is tailored to the huge sort 
tasks under Hadoop. All related programs are expressed as a 
series of maps to reduce phase’s operation on the dataset.  
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1) Load files part 
We use a java program to dynamically parse PDB [8] 

files for all the coordination files on the query protein pairs. 
All the coordination files are partitioned into chunks and 
stored on the HDFS.  

2) Algorithm part of Mapper 
A Mapper is a short program that runs during the 

mapping phase, which performs the algorithm once it 
receives a partition data and outputs the intermediate result. 
A Mapper consists of a primary key and a value. The 
primary key is the name of the algorithm to identify the 
input data. The secondary key is the index to the partition of 
the files. We combine three existing software to achieve a 
higher accuracy of protein-protein docking site prediction 
than each individual method from the short protein-protein 
docking data. Each of the three methods is transferred by the 
key part.  

A Reducer is a short program that runs during the 
reducing phase, which is designed to collect all the 
intermediate results, converted by mapping the same key, 
and output the result to the HDFS.  

In the platform, the pipeline automatically generates the 
primary and the secondary key between the mapper and 
reducer phases. The implementation of the mapper-reducer 
phase is extremely efficient that outputs billions 
coordination data and protein-docking sites. The major 
process and the roles in the architecture and the steps of the 
process are explained as the following. 

First, the worker in the cloud-computing runs the Mapper 
and Reducer program. The driver script in the server detects 
a worker node and allocates a process to the worker. Second, 
the key/value pair of the Mapper is written to the local disk 
of the worker node, and then the worker notifies the server. 
The key for each sub-file is distributed to all workers in the 
cluster through the Hadoop's file caching facility. Third, we 
used HDFS method to copy all the outputs of the reducing 
phases from distributed file system to the master local 
filesystem.  

B. Pipeline 
Based on the platform of the cloud-computing, we design 

a pipeline that combines existing software, which takes 
advantage of all successful methods. The flow chart of the 
pipeline is shown in Fig. 2. 

Our pipeline for protein docking site predict 
An in-house java program module is used to dynamically 

parse the data from the protein data bank (PDB) and 
generate ion contains the following methods:  

1) ZDOCK [2] is completed by the Boston University 
research team. It utilizes FFT method for rigid docking, the 
docking structure of the geometric complementarities, de-
salvation energy and electrostatic interactions for rough 
scoring screening. In order to more accurately evaluate the 
scoring results, the subsequent development of ZRANK61 
adopts more accurate scoring method. 

2) RosettaDock [3] is developed by Professor Baker et al 
at Washington University. It uses a Monte Carlo algorithm 
to optimize the molecular structure. It includes the process 
of side-chain, rigid minimum and the final score, and 
evaluates the performance of the different stages using 
different scoring functions. 

3) HADDOCK [9] is completed by Professor Bonvin et al 
of Utrecht University. It combines the energy optimization 
and the molecular dynamics simulations for molecular 
docking. First the conformational search is through rigid 
energy optimization and semi-flexible simulated annealing. 
Then the structure is further improved by the simulations of 
significant water-bearing molecular dynamics. 
 

 
Fig. 2.  The flow chart of the pipeline 

 
The pipeline of the open-source EMR is divided into three 

parts: the first part is a virtual cloud environment, the second 
is cloud storage, and third part is the distributed computing 
environment. 

If the server receives the coordinate files in the Hadoop, 
the Mapper and Reducer program is invoked. In order to 
send subtasks to the other worker, we need to serialize the 
data and assign to the mapping task. The mapping worker 
first reads the key/value pairs, and then performs protein-
docking mapping function. 

The mapping workers output a set of protein-docking 
sites which include a primary key and a secondary key. The 
primary key and the secondary key allow reducers to collect 
separate partitions to be processed in parallel. It also ensures 
that each reducer worker receive prediction of protein-
protein docking sites in a sorted order. The reduce worker 
traverse all the sorted data and then pass the data to the 
protein-docking reducing function in the pipeline.  

The implementation of the pipeline includes the following 
five steps: 

 a big file which includes the coordinates of protein pairs. 
The Hadoop uses Input Data Format to divide the big file 
into small input files which record Key and Value.  

where DA is the coordinate dataset for protein A and DB 
is the coordinate dataset for protein B. 

All the sub-dataset is an automatic conversion. The Map 
Reduce library is used to copy all the three algorithms to 
each worker node. When a sub node returns errors, Hadoop 
will automatically restart the task on the cached copy of its 
input data. 

1.  Set the same parameters to the three algorithms for 
the prediction of docking sites.  
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2. The Map process defines the data structure (key, 
value) on the Map operation. The Map process is applied to 
each input dataset in parallel. Each of them has a (k2, v2) 
queue as Equation 1.  

        ( ) ( )1 1 2 2, ,Map k v list k v⎯⎯→                   (1) 

Then the data blocks are distributed to different nodes 
(worker nodes). Each worker node has three methods 
mentioned above. 

3. The Reduce process is applied to collect dataset and 
combine the results,  and then sort the results of the same 
method using keys as Equation 2. 

( )( ) ( )2 2, list list 3, 3k v k v⎯⎯→                     (2) 

where v3 is a dataset and k2 includes the identifier for each 
method. Then the Map Reduce framework collects the output 
queue in the same key data, put them together, and build a 
different key named data collection. 

4. The query protein data are executed by each method 
separately. Protein-protein docking sites are then exported 
and distributed to different workers to achieve better data 
reliability. The procedure is shown in Table I. 

 
TABLE I: THE PROCEDURE OF THE MAPPER-REDUCER 

5. 6.Input 7.Output 

8.Map 9.<K1, V1> 10.List (<k2,V2>) 

11.Reduce 12.<K2, list(v2)> 13.List (<K3,V3>) 

�

Once output the candidate docking site from each 
algorithm, the in-house scripts will be used to find the 
overlap docking sites from each method and refine lists of 
docking sites from each protein-docking algorithm. The 
cloud computing is shown in Fig. 3. 

 

 
Fig. 3. The general plot of distributed computing 

 

III. EXPERIMENTAL RESULTS 
In this paper, we employ the Desktop Cloudera which is 

an access control interface to provide a simple interface 
based on the Firefox browser. Installation of Hadoop virtual 
server template is one of the critical points to build the EMR 
framework which is a good virtual cloud environment to 
quickly create a Hadoop virtual server node. 

We installed CentOS operating system in the virtual 
processor, 1GB virtual memory and 60GB virtual hard disk 
space. We installed Cloudera platform tools that are 
summarized in the following major steps.  

#./ jdk-6u16-Linux-i586-rpm.bin 
# cp Cloudera-cdh2.repo  /etc/yum.repos.d/Cloudera-cdh2.repo  
# yum -y install Hadoop-0.20-conf-pseudo //install Cloudera 
#yum -y install Hadoop-0.20-conf-pseudo-desktop //install desktop 

 
The interface of the Cloudera starts with user login. The 

interface after login includes the four main functional 
modules of the Desktop launch menu in the upper right 
corner of the interface: the Cluster the Health Dashboard, 
File Brower, the Job Browser and the Job Designer. 

The File Brower will display the uploading request for a 
plain text file in .txt file format. Clicking Job Designer will 
activate the algorithm of the pipeline for data input (INPUT) 
and output parameters to complete the new the protein-
protein docking Job tasks created. 

After install the Hadoop virtual server template, each 
node has been installed Linux operating system and Hadoop 
package. Users only need to configure Hadoop distributed 
environment which achieves a large scale data processing. 
Each node can view Hadoop web tools and display the 
current job progress.  

Running the Job task will automatically create a folder 
showing the progress of the task execution and results, and 
the final data processing results are saved to the folder. 
Users can also view the results of data through the result sets 
which are downloaded to the local system.  

The results of the example are shown in Figure 5. The 
above results were computed on a Hadoop 0.20 cluster with 
7 worker nodes located in our laboratory. Centos 5.5 with 4 
GB of physical memory and 70 GB of local storage are 
available for the Hadoop Distributed File system (HDFS) 
and connected via gigabit Ethernet. The data set we used is 
shown in Fig. 4. 

 
Fig. 4. The candidate data set of the three methods 

 
In order to illustrate the accuracy and efficiency of our 

pipeline over each of the three methods, we docked the PDB 
structures on 117 cases and the results are shown in Table II. 

 
TABLE II: THE COMPARISON OF CORRECT INTERFACE RESIDUE CONTACT 

PAIRS PREDICTED 
 Contact % 

Pipeline 87 
ZDOCK 74 

HADOCK 72 
RosettaDock 70 

IV. CONCLUSION 
In this paper we present a cloud computing environment 

setup by MapReduce and Hadoop which are leveraged to 
efficiently parallelize the existing protein-protein docking 
algorithms.  
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Our method achieves a better accuracy on the datasets 
than each individual method. We analyze the refine list 
based on three methods. Our method is flexible to increase 
or decrease the number of the clusters for rapid completion 
of the prediction of the protein-protein docking sites. When 
the task is completed, the computing resources will recover 
and be assigned to other applications.  
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