
  

  
Abstract—We introduce a new clustering algorithm which is 

based on the combination of GA and a new technique called 
split-and-fusion. GA is used to find the initial cluster while split 
and fusion refines the cluster by continuously breaking apart 
and merging patterns existing in the cluster. The whole process 
is repeated until all patterns have been clustered. The algorithm 
then merges the smallest-sized cluster with other clusters until 
termination condition is met. In the last step, a heuristic 
equation is used to evaluate the termination criteria. 
Experimental results show that the algorithm is accurate in 
clustering real-world datasets such as Iris and Wine datasets. 
 

Index Terms—Genetic algorithm, clustering, hybrid learning, 
high-dimensional space; 
 

I. INTRODUCTION 
Clustering problem is an optimization problem in which 

the solution is found by organizing similar data sets into 
groups [1]. Similarities among the data sets can be based on 
geometrical distance or descriptive concepts (such as gender, 
hobbies, etc.), depending on the type of attributes in the data 
sets. In addition, clustering problem is categorized as 
unsupervised learning problem since it is concerned with 
finding commonalities in structures among given data sets. In 
clustering problem, optimal number of clusters is not known, 
unlike its similar counterpart - classification problem. 

In order to solve the clustering problem, many new 
algorithms had been introduced, each with differing 
effectiveness. Those algorithms include the original 
clustering algorithms, evolutionary algorithms, and the 
hybrids of the two types [2]. 

One of the most well-known evolutionary algorithms is 
called Genetic Algorithm, abbreviated as GA. Like what the 
name implies, GA borrows the idea of natural selection in 
order to find the optimal solution to its problem [3]. The 
algorithm itself works by iterating through several 
biologically-inspired processes such as: Initialization, 
Selection, and Reproduction; it only ends when the 
Termination condition has been fulfilled. One important 
component of GA is the fitness function, which is used to 
evaluate the effectiveness of current solution. In each 
iteration, GA tries to find the solution which has better fitness 
compared to the previous iteration, which means that 
designing a good fitness function is crucial. 

In most clustering problem, the fitness evaluation can be 
distance-based, with the closer data points being more likely 
to be clustered together. One of the most popular distance 
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metric used is the Euclidean distance. This approach has 
shown to work in cases where the number of attributes is low; 
however, it becomes less effective as the number of attributes 
grows [4]. This can happen because the distance between any 
two data points converges with larger number of attributes. 
Furthermore, in high dimensions (attributes), all data points 
become less similar to each other, making it difficult to find 
the similarities among the data points. This phenomenon is 
known as the Curse of Dimensionality [5]. Additionally, 
distance-based measurement also forces clustering 
algorithms to find clusters that have circular shape [6]. Last 
but not least, difference in standard deviation among the 
attributes could skew the distance calculations. 

Existing researches have shown that GA works quite 
effectively in combination with current Clustering algorithms 
such as k-means Clustering [3] and Hierarchical Clustering 
[7]; however, the problem with high-dimensions clustering is 
still yet to be solved. 

This research aims to design a working Genetic algorithm 
based method which is able to accurately cluster the similar 
data points in high dimensional data space. This also implies 
that the research aims to find the fitness function which can 
evaluate the closeness of two high dimensional data points. 

 

II. PROBLEM FORMULATION 
Let X = [x1, x2, x3 … xn] be the representation of the whole 

data sets, with xi being an instance of X and n being the total 
number of instances. Each instance of X will be defined over 
d dimensions. The algorithm will take X as an input and try to 
group each instances of X into k clusters. As stated before, 
since the value of k is not known, different algorithms are 
likely to result in different number of clusters. The optimal 
value of k is found when there is a significant pattern 
difference among the different clusters while dissimilarities 
among data sets in each cluster are minimized. To illustrate: 

TABLE I: IRIS DATA SET 

Cluster 
Attribute Number 

1 2 3 4 

1 
5.1 3.5 1.4 0.2 
4.9 3 1.4 0.2 

2 
7 3.2 4.7 1.4 

6.4 3.2 4.5 1.5 

3 
6.3 3.3 6 2.5 
6.5 3 5.8 2.2 

 
The table above shows 6 instances from iris data set [8]. In 

the table, there are 3 clusters and 4 dimensions (attributes). 
The sample seems to be well-clustered as there is an obvious 
pattern difference among the clusters by looking at both 
attribute 3 and 4. Additionally, most instances in each cluster 
are relatively close to one another in all attributes. 
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III. HYBRID OF GA AND SPLIT-FUSION ALGORITHM 
Flow of the clustering algorithm is as shown: 
 

 
Fig. 1. Flowchart describing the GA and split-fusion hybrid algorithm. 

A. Genetic Algorithm 
In this algorithm, the GA processes (Initialization, 

Selection, Crossover, and Mutation) is used to find the best 
divider line for the data sets. The divider line is defined as 
vector of size d, with d being the number of 
attributes/dimensions of the dataset, plus a constant c and a 
Boolean variable b. The divider line itself functions similar to 
a vector dot product. As an example, for an instance defined 
as [a1, a2, a3 … ad] and the divider line defined as [l1, l2, l3 … ld, 
c, b], the calculation will be: ܼ = ܽଵ × ݈ଵ + ܽଶ × ݈ଶ + ܽଷ × ݈ଷ … + ܽௗ × ݈ௗ +  ܿ   (1) 

If the value of Z is larger than zero and the Boolean value b 
is positive (true), then the instance is placed into the 
ACCEPTED cluster, otherwise it is placed into the 
REJECTED. Conversely, if the Boolean value is negative 
(false), the instance will be REJECTED; it will be 
ACCEPTED only if the value of Z is less than zero. The best 
divider line is the one which will result in the cluster with the 
best GA fitness value.  

The GA fitness calculation uses the concept of majority 
voting for calculation, and is based on the distance to the 
centroid of the ACCEPTED cluster relative to the 
REJECTED cluster.  

For each instance, the fitness calculation is: 

ݕ     =  ∑ ݁ݎ݀ ௜݆/(݀݁ݎ ௜݆ + ݀ܽܿܿ௜)௜∈஺஼஼        (2) 

y is calculated using (2) if majority of attributes are closer 
to centroid of ACCEPTED cluster; otherwise: 

ݕ     =  −(∑ ݀ܽܿܿ௜/(݀݁ݎ ௜݆ + ݀ܽܿܿ௜))௜∈ோா௃          (3) 

dacc refers to the absolute distance between the instance’s 
attribute and ACCEPTED centroid’s attribute. Conversely, 
drej is the absolute distance between the instance’s attribute 
and REJECTED centroid’s attribute. The value of dacc is 
inversely correlated with value of drej. 

ACC in here refers to the number of attributes that are 
closer to the centroid of the ACCEPTED cluster and ݅ refers 
to one of the ACC attributes (in the first equation); therefore, 
if the majority of attributes of an instance are closer to the 
ACCEPTED, y will be positive, otherwise it will be a 
negative value. Since the algorithm needs a fitness function 
for the cluster and not for each instance, the cluster fitness is 
defined as: 

ݏݏ݁݊ݐ݂݅    = ∑ ௜ܻ௜∈஺஼஼ா௉்ா஽                (4) 

Basically, fitness is the sum of fitness of each instance in 
the ACCEPTED cluster. 

The whole GA processes will be looped until the 
ACCEPTED cluster’s fitness in (4) no longer increases. 

B. Split and Fusion 
After the whole GA processes are completed, all the 

instances belonging to the ACCEPTED cluster are removed 
from the original dataset and evaluated for splitting fitness 
before the actual splitting is done. The splitting fitness S is 
calculated as: 

For each attribute ݆ ∈  is the set containing all ܦ) ܦ
attributes): 

௝݀ = ∑ (−௜∈஺஼஼ா௉்ா஽ ݀ܽܿܿ௜௝)          (5) ܵ =  (6)    (௝݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏℎ݈݂ܽ ℎ݅݃ℎ݁ ݌݋ܶ)∑

In other words, the splitting fitness is the sum of the top 50 
percent attributes that are closest to the cluster centroid.  

Other than the splitting fitness mentioned above, there is 
also another fitness value S2 that is used; its calculation is: ܵଶ =  (7)   (௝݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏ݁ݓ݋݈ ℎ݈݂ܽ ݌݋ܶ)∑

If S uses the attributes that are closest to the centroid, S2 
uses attributes that are furthest away from the centroids. 

Similar to the splitting fitness, the split method is also 
based on attribute value. First the algorithm will find the 
attribute that can be used for splitting base: 

For each attribute ݆ ∈  is the set containing all ܦ) ܦ
attributes): 

      ௝݁ = ∑ ห݀ܽܿܿ௜௝ห௜∈஺஼஼ா௉்ா஽      (8) 

If (ܵଶ/ܵ <=  5) then (8) is used, otherwise: 

  ௝݁ = ∑ ห݀ܽܿܿ௜௝ห௜∈஺஼஼ா௉்ா஽ /(หܿ݁݊݅݋ݎݐ ௝݀ห + ห ௝݅ห)      (9) 

If S2 value in (7) is significantly larger than S in(6), it 
shows that there is significant difference among the attributes’ 
standard deviation; in order to resolve this issue, the value of ௝݁ in (9) will be divided by the sum of (centroid’s attribute 
value and the instance’s attribute value). 

The attribute that will be used for the splitting base will be 
the attribute which has the highest value of ௝݁. Each instance 
in the ACCEPTED cluster is then split into 2 clusters; the 
first cluster contains all instances whose selected attribute is 
higher than the centroid’s, and the second cluster contains the 
remaining instances. The algorithm will then try to adjust the 
each of the centroid’s attribute value by shifting all the 
instances among the 2 clusters until the centroids’ values no 
longer change. This part of splitting algorithm is similar to 
the k-means method. 

After splitting, the splitting fitness S2 of each of the 2 
clusters is calculated. If the average of the 2 values is higher 
than the S2of original cluster, then the split is considered 
successful, otherwise the algorithm will roll back to its 
pre-split state. The algorithm will keep on repeating the 
splitting phase for the whole clusters until rollback occurs. 

Splitting will turn the original cluster into many smaller 
clusters. The next part of the algorithm will merge the 
clusters that are deemed too small back into the larger-sized 
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ones. Heuristic-based equation is used for deciding on 
whether the cluster is small enough: 

ݐ݈݅݉݅        = ܺ/ඥܺ/5       (10) 

X is the total number of instances in the original data set. 
Basically, any cluster with size lesser than limit in (10) will 
be broken down into individual instances and each instance 
will be merged with the cluster whose centroid is closest to it. 
The closeness calculation is also based on the top 50 percent 
attributes that are furthest away from it, similar to S2in (7). 
The equation is as such: 

For each attribute ݆ ∈  is the set containing all ܦ) ܦ
attributes) and ݅ ∈  :(C is the set containing all clusters) ܥ 

௜௝ݐݏ݅݀      = ห ௝݅ −  ௜௝ห      (11)݀݅݋ݎݐ݊݁ܿ

If (ܵଶ/ܵ <=  5), (11) is used; otherwise: 

௜௝ݐݏ݅݀  = (ห ௝݅ − ௜௝ห݀݅݋ݎݐ௜௝ห)/(หܿ݁݊݀݅݋ݎݐ݊݁ܿ + ห ௝݅ห)  (12) 

Distance to cluster ݅ is then calculated as: ݀݅ܿ݊ܽݐݏ ௜݁  = (௜௝ݐݏ݅݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏℎ݈݂ܽ ℎ݅݃ℎ݁ ݌݋ܶ)∑ (13) 

Each instance will be merged with the cluster with smallest 
distance value. To summarize the split and fusion phase: 

 
Fig. 2. Flowchart describing the Split-Fusion phase. 

The split and fusion phase will be repeated as long as there 
is an instance that is left un-clustered. 

C. Heuristic-Based Fusion 
The split and fusion phase will result in several clusters; 

the heuristic-based fusion aims to find the optimal number of 
clusters by continuously fusing the smallest-sized cluster 
until the termination condition is reached. The termination 
condition in this case is when the post-fusion average value 
of S in(6) for all clusters multiplied by 0.9 is lower than the 
pre-fusion average value of S. (v is pre-fusion S and v2is 
post-fusion S) 

         (0.9 × (ଶݒ >  (14)        ݒ

While the above-condition is true, the algorithm will keep 
on fusing the smallest cluster. 

 

IV. EXPERIMENTAL RESULTS 
The whole algorithm is programmed in Java language. 

Using the real world datasets such as iris and wine dataset [8], 
30 experiments are conducted on each dataset. Diagrams are 
taken from [9]. 

TABLE II: Experiment Results 
Algorithm Number of Mis-clustered Patterns 

 Iris (150 patterns, 3 
clusters) 

Wine (178 patterns, 3 
clusters) 

Hybrid of GA and 
Split-Fusion 8 17 

Recursive SOMs 8 51 

 
Fig. 3. Iris dataset samples projected over 2 dimensions. Each color (blue, 

black, and green) represent a cluster.  

 

 
Fig. 4.Wine dataset samples projected over 2 dimensions. Each color (blue, 

black, and green) represent a cluster. 
 

V. CONCLUSION 
Experimental results have shown that the algorithm is 

capable of clustering real-world dataset accurately. Iris 
dataset is considered the benchmark dataset for clustering 
and it seems that the algorithm can cluster accurately; the 
same can be said for the more challenging wine dataset.  

However, since the algorithm is reliant on heuristics, the 
size of initial dataset may significantly affect the final 
clustering results. If the size is too large, the algorithm may 
create more clusters than needed; on the other hand, if the 
size is too small, lesser clusters will be formed. In order to 
improve the overall accuracy of the algorithm, the heuristics 
equations need to be improved. 
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