

Abstract—We introduce a new clustering algorithm which is

based on the combination of GA and a new technique called
split-and-fusion. GA is used to find the initial cluster while split
and fusion refines the cluster by continuously breaking apart
and merging patterns existing in the cluster. The whole process
is repeated until all patterns have been clustered. The algorithm
then merges the smallest-sized cluster with other clusters until
termination condition is met. In the last step, a heuristic
equation is used to evaluate the termination criteria.
Experimental results show that the algorithm is accurate in
clustering real-world datasets such as Iris and Wine datasets.

Index Terms—Genetic algorithm, clustering, hybrid learning,
high-dimensional space;

I. INTRODUCTION
Clustering problem is an optimization problem in which

the solution is found by organizing similar data sets into
groups [1]. Similarities among the data sets can be based on
geometrical distance or descriptive concepts (such as gender,
hobbies, etc.), depending on the type of attributes in the data
sets. In addition, clustering problem is categorized as
unsupervised learning problem since it is concerned with
finding commonalities in structures among given data sets. In
clustering problem, optimal number of clusters is not known,
unlike its similar counterpart - classification problem.

In order to solve the clustering problem, many new
algorithms had been introduced, each with differing
effectiveness. Those algorithms include the original
clustering algorithms, evolutionary algorithms, and the
hybrids of the two types [2].

One of the most well-known evolutionary algorithms is
called Genetic Algorithm, abbreviated as GA. Like what the
name implies, GA borrows the idea of natural selection in
order to find the optimal solution to its problem [3]. The
algorithm itself works by iterating through several
biologically-inspired processes such as: Initialization,
Selection, and Reproduction; it only ends when the
Termination condition has been fulfilled. One important
component of GA is the fitness function, which is used to
evaluate the effectiveness of current solution. In each
iteration, GA tries to find the solution which has better fitness
compared to the previous iteration, which means that
designing a good fitness function is crucial.

In most clustering problem, the fitness evaluation can be
distance-based, with the closer data points being more likely
to be clustered together. One of the most popular distance

Manuscript received September 25, 2012; revised November 11, 2012.
This work was supported in part by the National Natural Science Foundation
of China under Grant 61070085.

Barry Juans and Sheng-Uei Guan are with the Department of Computer
Science and Software Engineering, Xi’an Jiaotong-Liverpool University,
Suzhou, China (e-mail: barry.juans10@student.xjtlu.edu.cn; Steven.Guan@
xjtlu.edu.cn).

metric used is the Euclidean distance. This approach has
shown to work in cases where the number of attributes is low;
however, it becomes less effective as the number of attributes
grows [4]. This can happen because the distance between any
two data points converges with larger number of attributes.
Furthermore, in high dimensions (attributes), all data points
become less similar to each other, making it difficult to find
the similarities among the data points. This phenomenon is
known as the Curse of Dimensionality [5]. Additionally,
distance-based measurement also forces clustering
algorithms to find clusters that have circular shape [6]. Last
but not least, difference in standard deviation among the
attributes could skew the distance calculations.

Existing researches have shown that GA works quite
effectively in combination with current Clustering algorithms
such as k-means Clustering [3] and Hierarchical Clustering
[7]; however, the problem with high-dimensions clustering is
still yet to be solved.

This research aims to design a working Genetic algorithm
based method which is able to accurately cluster the similar
data points in high dimensional data space. This also implies
that the research aims to find the fitness function which can
evaluate the closeness of two high dimensional data points.

II. PROBLEM FORMULATION
Let X = [x1, x2, x3 … xn] be the representation of the whole

data sets, with xi being an instance of X and n being the total
number of instances. Each instance of X will be defined over
d dimensions. The algorithm will take X as an input and try to
group each instances of X into k clusters. As stated before,
since the value of k is not known, different algorithms are
likely to result in different number of clusters. The optimal
value of k is found when there is a significant pattern
difference among the different clusters while dissimilarities
among data sets in each cluster are minimized. To illustrate:

TABLE I: IRIS DATA SET

Cluster
Attribute Number

1 2 3 4

1
5.1 3.5 1.4 0.2
4.9 3 1.4 0.2

2
7 3.2 4.7 1.4

6.4 3.2 4.5 1.5

3
6.3 3.3 6 2.5
6.5 3 5.8 2.2

The table above shows 6 instances from iris data set [8]. In

the table, there are 3 clusters and 4 dimensions (attributes).
The sample seems to be well-clustered as there is an obvious
pattern difference among the clusters by looking at both
attribute 3 and 4. Additionally, most instances in each cluster
are relatively close to one another in all attributes.

Genetic Algorithm Based Split-Fusion Clustering

BarryJuans and Sheng-Uei Guan

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

78210.7763/IJMLC.2012.V2.236

III. HYBRID OF GA AND SPLIT-FUSION ALGORITHM
Flow of the clustering algorithm is as shown:

Fig. 1. Flowchart describing the GA and split-fusion hybrid algorithm.

A. Genetic Algorithm
In this algorithm, the GA processes (Initialization,

Selection, Crossover, and Mutation) is used to find the best
divider line for the data sets. The divider line is defined as
vector of size d, with d being the number of
attributes/dimensions of the dataset, plus a constant c and a
Boolean variable b. The divider line itself functions similar to
a vector dot product. As an example, for an instance defined
as [a1, a2, a3 … ad] and the divider line defined as [l1, l2, l3 … ld,
c, b], the calculation will be: ܼ = ܽଵ × ݈ଵ + ܽଶ × ݈ଶ + ܽଷ × ݈ଷ … + ܽௗ × ݈ௗ + ܿ (1)

If the value of Z is larger than zero and the Boolean value b
is positive (true), then the instance is placed into the
ACCEPTED cluster, otherwise it is placed into the
REJECTED. Conversely, if the Boolean value is negative
(false), the instance will be REJECTED; it will be
ACCEPTED only if the value of Z is less than zero. The best
divider line is the one which will result in the cluster with the
best GA fitness value.

The GA fitness calculation uses the concept of majority
voting for calculation, and is based on the distance to the
centroid of the ACCEPTED cluster relative to the
REJECTED cluster.

For each instance, the fitness calculation is:

ݕ = ∑ ݁ݎ݀ ௜݆/(݀݁ݎ ௜݆ + ݀ܽܿܿ௜)௜∈஺஼஼ (2)

y is calculated using (2) if majority of attributes are closer
to centroid of ACCEPTED cluster; otherwise:

ݕ = −(∑ ݀ܽܿܿ௜/(݀݁ݎ ௜݆ + ݀ܽܿܿ௜))௜∈ோா௃ (3)

dacc refers to the absolute distance between the instance’s
attribute and ACCEPTED centroid’s attribute. Conversely,
drej is the absolute distance between the instance’s attribute
and REJECTED centroid’s attribute. The value of dacc is
inversely correlated with value of drej.

ACC in here refers to the number of attributes that are
closer to the centroid of the ACCEPTED cluster and ݅ refers
to one of the ACC attributes (in the first equation); therefore,
if the majority of attributes of an instance are closer to the
ACCEPTED, y will be positive, otherwise it will be a
negative value. Since the algorithm needs a fitness function
for the cluster and not for each instance, the cluster fitness is
defined as:

ݏݏ݁݊ݐ݂݅ = ∑ ௜ܻ௜∈஺஼஼ா௉்ா஽ (4)

Basically, fitness is the sum of fitness of each instance in
the ACCEPTED cluster.

The whole GA processes will be looped until the
ACCEPTED cluster’s fitness in (4) no longer increases.

B. Split and Fusion
After the whole GA processes are completed, all the

instances belonging to the ACCEPTED cluster are removed
from the original dataset and evaluated for splitting fitness
before the actual splitting is done. The splitting fitness S is
calculated as:

For each attribute ݆ ∈ is the set containing all ܦ) ܦ
attributes):

௝݀ = ∑ (−௜∈஺஼஼ா௉்ா஽ ݀ܽܿܿ௜௝) (5) ܵ = (6) (௝݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏℎ݈݂ܽ ℎ݅݃ℎ݁ ݌݋ܶ)∑

In other words, the splitting fitness is the sum of the top 50
percent attributes that are closest to the cluster centroid.

Other than the splitting fitness mentioned above, there is
also another fitness value S2 that is used; its calculation is: ܵଶ = (7) (௝݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏ݁ݓ݋݈ ℎ݈݂ܽ ݌݋ܶ)∑

If S uses the attributes that are closest to the centroid, S2
uses attributes that are furthest away from the centroids.

Similar to the splitting fitness, the split method is also
based on attribute value. First the algorithm will find the
attribute that can be used for splitting base:

For each attribute ݆ ∈ is the set containing all ܦ) ܦ
attributes):

 ௝݁ = ∑ ห݀ܽܿܿ௜௝ห௜∈஺஼஼ா௉்ா஽ (8)

If (ܵଶ/ܵ <= 5) then (8) is used, otherwise:

 ௝݁ = ∑ ห݀ܽܿܿ௜௝ห௜∈஺஼஼ா௉்ா஽ /(หܿ݁݊݅݋ݎݐ ௝݀ห + ห ௝݅ห) (9)

If S2 value in (7) is significantly larger than S in(6), it
shows that there is significant difference among the attributes’
standard deviation; in order to resolve this issue, the value of ௝݁ in (9) will be divided by the sum of (centroid’s attribute
value and the instance’s attribute value).

The attribute that will be used for the splitting base will be
the attribute which has the highest value of ௝݁. Each instance
in the ACCEPTED cluster is then split into 2 clusters; the
first cluster contains all instances whose selected attribute is
higher than the centroid’s, and the second cluster contains the
remaining instances. The algorithm will then try to adjust the
each of the centroid’s attribute value by shifting all the
instances among the 2 clusters until the centroids’ values no
longer change. This part of splitting algorithm is similar to
the k-means method.

After splitting, the splitting fitness S2 of each of the 2
clusters is calculated. If the average of the 2 values is higher
than the S2of original cluster, then the split is considered
successful, otherwise the algorithm will roll back to its
pre-split state. The algorithm will keep on repeating the
splitting phase for the whole clusters until rollback occurs.

Splitting will turn the original cluster into many smaller
clusters. The next part of the algorithm will merge the
clusters that are deemed too small back into the larger-sized

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

783

ones. Heuristic-based equation is used for deciding on
whether the cluster is small enough:

ݐ݈݅݉݅ = ܺ/ඥܺ/5 (10)

X is the total number of instances in the original data set.
Basically, any cluster with size lesser than limit in (10) will
be broken down into individual instances and each instance
will be merged with the cluster whose centroid is closest to it.
The closeness calculation is also based on the top 50 percent
attributes that are furthest away from it, similar to S2in (7).
The equation is as such:

For each attribute ݆ ∈ is the set containing all ܦ) ܦ
attributes) and ݅ ∈ :(C is the set containing all clusters) ܥ

௜௝ݐݏ݅݀ = ห ௝݅ − ௜௝ห (11)݀݅݋ݎݐ݊݁ܿ

If (ܵଶ/ܵ <= 5), (11) is used; otherwise:

௜௝ݐݏ݅݀ = (ห ௝݅ − ௜௝ห݀݅݋ݎݐ௜௝ห)/(หܿ݁݊݀݅݋ݎݐ݊݁ܿ + ห ௝݅ห) (12)

Distance to cluster ݅ is then calculated as: ݀݅ܿ݊ܽݐݏ ௜݁ = (௜௝ݐݏ݅݀ ݂݋ ݏ݁ݑ݈ܽݒ ݐݏℎ݈݂ܽ ℎ݅݃ℎ݁ ݌݋ܶ)∑ (13)

Each instance will be merged with the cluster with smallest
distance value. To summarize the split and fusion phase:

Fig. 2. Flowchart describing the Split-Fusion phase.

The split and fusion phase will be repeated as long as there
is an instance that is left un-clustered.

C. Heuristic-Based Fusion
The split and fusion phase will result in several clusters;

the heuristic-based fusion aims to find the optimal number of
clusters by continuously fusing the smallest-sized cluster
until the termination condition is reached. The termination
condition in this case is when the post-fusion average value
of S in(6) for all clusters multiplied by 0.9 is lower than the
pre-fusion average value of S. (v is pre-fusion S and v2is
post-fusion S)

 (0.9 × (ଶݒ > (14) ݒ

While the above-condition is true, the algorithm will keep
on fusing the smallest cluster.

IV. EXPERIMENTAL RESULTS
The whole algorithm is programmed in Java language.

Using the real world datasets such as iris and wine dataset [8],
30 experiments are conducted on each dataset. Diagrams are
taken from [9].

TABLE II: Experiment Results
Algorithm Number of Mis-clustered Patterns

 Iris (150 patterns, 3
clusters)

Wine (178 patterns, 3
clusters)

Hybrid of GA and
Split-Fusion 8 17

Recursive SOMs 8 51

Fig. 3. Iris dataset samples projected over 2 dimensions. Each color (blue,

black, and green) represent a cluster.

Fig. 4.Wine dataset samples projected over 2 dimensions. Each color (blue,

black, and green) represent a cluster.

V. CONCLUSION
Experimental results have shown that the algorithm is

capable of clustering real-world dataset accurately. Iris
dataset is considered the benchmark dataset for clustering
and it seems that the algorithm can cluster accurately; the
same can be said for the more challenging wine dataset.

However, since the algorithm is reliant on heuristics, the
size of initial dataset may significantly affect the final
clustering results. If the size is too large, the algorithm may
create more clusters than needed; on the other hand, if the
size is too small, lesser clusters will be formed. In order to
improve the overall accuracy of the algorithm, the heuristics
equations need to be improved.

ACKNOWLEDGEMENT
This research is supported by the National Natural Science

Foundation of China under Grant 61070085.

REFERENCES
[1] J. Han and M. Kamber, (2001) Data Mining: Concepts and Techniques.

Morgan Kaufmann, CA, USA.
[2] K. Ramanathan and S. U. “Guan,Clustering and Combinatorial

Optimization in Recursive Supervised Learning,” Journal of
Combinatorial Optimization, vol. 13, no. 2, pp. 137-152, 2007.

[3] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based
clustering technique,” Pattern Recognition, vol. 33, pp. 1455-1465,
2000.

[4] A. Rajaraman and J. D. Ullman. Clustering. Mining of Massive
Datasets Chapter 7, pp. 221-260, 2011.

[5] L. Parsons, E. Haque, and H. Liu, “A Review.ACM SIGKDD
Explorations Newsletter - Special issue on learning from imbalanced
datasets,” Subspace Clustering for High Dimensional Data, vol. 6, no.
1, pp. 90-105, 2004.

[6] A. Bhattacharya, and R. K. De, “Divisive Correlation Clustering
Algorithm (DCCA) for groupingof genes: detecting varying patterns in
expression profiles,” Bioinformatics, vol.24. no.11, pp. 1359–1366,
2008.

[7] D. W. Kim, K. H. Lee, and D. Lee, “Detecting clusters of different
geometrical shapes inmicroarray gene expression data,”
Bioinformatics, vol. 21, pp.1927–1934, 2005.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

784

[8] UCI Machine Learning Repository: [Online]. Available:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[9] Ramanathan, K. and Guan, S. U. (2006). Recursive Self Organizing
Maps with Hybrid Clustering. IEEE CIS.

Sheng-Uei Guan received his M.Sc. & Ph.D. from
the University of North Carolina at Chapel Hill. He is
currently a professor and head of the computer science
and software engineering department at
XianJiaotong-LiverpoolUniversity. Before joining
XJTLU, he was a professor and chair in intelligent
systems at Brunel University, UK.
 Prof. Guan has worked in a prestigious R&D

organization for several years, serving as a design engineer, project leader,

and manager. After leaving the industry, he joined Yuan-ZeUniversity in
Taiwan for three and half years. He served as deputy director for the
ComputingCenter and the chairman for the Department of Information &
Communication Technology. Later he joined the Electrical & Computer
Engineering Department at National University of Singapore as an associate
professor.

Barry Juans is is currently an undergraduate student at Xi’an Jiaotong–
Liverpool University.

International Journal of Machine Learning and Computing, Vol. 2, No. 6, December 2012

785

