
  

  
Abstract—This paper proposes an object and scene 

categorization method based on the probabilistic latent 
component tree with boosted features. In this method, object 
classes are firstly obtained by clustering a set of object segments 
extracted from scene images in each scene category through the 
probabilistic latent component analysis with the variable 
number of classes. Then the probabilistic latent component tree 
with boosted features at its branch nodes is generated as a 
classification tree of all the object classes of all the scene 
categories followed by labeling object classes. Lastly, each scene 
category is characterized according to the composition of its 
labeled object classes.  Object and scene recognition is 
simultaneously performed based on the probabilistic latent 
component tree search by using composite boosted features for 
the tree traversal.  Through experiments by using images of 
plural categories in an image database, it is shown that 
performance of object and scene recognition is high and 
improved by using composite boosted features in the 
probabilistic latent component tree search. 
 

Index Terms—Boosting, categorization, computer vision, 
probabilistic learning. 
 

I. INTRODUCTION 
Object and scene categorization is a basic ability for a 

human to understand the visual world and also one of the 
fundamental problems in computer vision. In object and 
scene categorization, it is effective to organize object 
categories into a classification tree by their discriminative 
appearance and to associate scene categories with frequent 
object categories appeared in them. The problem to be 
addressed in this paper is learning a classification tree of 
object appearances which are related to scenes through the 
object composition for object and scene recognition. By the 
way, for a scene which contains plural objects, a human 
perceives one object in the foreground and other objects in 
the background. Thus, in this problem, a set of scene images 
each of which is labeled with one of plural objects in a scene 
is provided for learning. Here a labeled object in a scene is an 
object which is considered to be in the foreground and other 
objects are in the background. A set of scene images each of 
which contains the same foreground object forms a scene 
category and a scene image can be contained in plural scene 
categories dependent on which object is considered to be in 
the foreground. 

In this paper, we propose an object and scene 
categorization method based on the probabilistic latent 
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component tree [1] with boosted features. In this method, for 
a set of object segments extracted from scene images in each 
scene category, object classes are firstly obtained by 
clustering the object segments through the probabilistic latent 
component analysis with the variable number of classes 
(V-PLCA). Then the probabilistic latent component tree with 
boosted features (PLCT-BF) is generated based on similarity 
among object classes as  a  classification tree  of  all  the  
object classes  of  all  the scene categories followed by 
labeling object classes by using their representative instances 
whose category names are given as  teaching  signals.  In this 
probabilistic latent component tree (PLCT) generation, 
discriminative features are selected through a boosting 
procedure on branch nodes to improve the PLCT search for 
recognition. Lastly, each scene category is characterized 
according to the composition of its labeled object classes. In 
object and scene recognition, for a scene image which 
contains several object segments, object categories are 
obtained through the PLCT-BF search and a scene category 
is determined among scene categories which contains either 
of those object categories in the foreground. 

As for  related work, probabilistic latent variable models 
have been applied to learning object and scene categories [2], 
[3],  [4]  and  there have been  proposed hierarchical models 
for object and scene categorization [5], [6], [7]. There have 
also been proposed methods of image classification through 
boosting [8], [9], [10] since AdaBoost has been applied to 
object detection [11].  The main difference of our method 
from these existing ones is that it is not necessary to fix the 
number of object classes and the depth of a classification tree 
in advance, object and scene categories are recognized at the 
same time, and discriminative features are selected with their 
confidences on a classification tree through boosting. 

This paper is organized as follows. Section II describes the 
proposed method, experimental results are shown in Section 
III and we conclude our work in Section IV. 

 

II. PROPOSED METHOD 
Let C be a set of categories and NC be the number of 

categories. A scene category Cc ∈  is a set of scene images 
each of which contains an object of the category in the 
foreground and other categorical objects in the background. 
Let 

jics ,   be a j-th object segment extracted from a scene 

image i of a scene category c, Sc be a set of object segments 
extracted from any scene images of a scene category c and 
NSc be the number of object segments in Sc. An object 
segment is represented by a bag of features (BoF) [12] of its 
local feature. Let F be a set of key features as a code book, 

nf  be  a  n-th key  feature of  F  and NF  be the number of  key  
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features.  Then an object segment 
jics ,  is represented by a 

BoF of key features )](),...,([=)( ,1,, Fjjj Nicicic fhfhsH . 
Let }|)({= ,, cicicc SssHH

jj
∈  be a set of BoFs obtained 

from a set of scene images of a scene category Cc ∈   and  
CccH ∈}{  be given for a set of scene categories.  The learning 

problem is to compute a set of object classes Qc from Hc, 
a classification tree PLCT of all classes ∪c∈C Qc each class 
of which is located at a leaf of the PLCT and labeled with 
its object category, boosted key features with their 
confidences at all the branch nodes of the PLCT, and the 
characterization of each scene category Cc ∈  by using a set 
of key features F. The recognition problem is to 
simultaneously obtain object categories and a scene category 
through the PLCT-BF search for a given scene image which 
contains several object segments whose categories are 
contained in a set of categories C. 

A. Probabilistic Latent Component Analysis of Scene 
Cate- gories 
The probabilistic latent component analysis with the vari- 

able number of classes (V-PLCA) computes a set of classes 
Qc={qc,r|r=1,...,NQc} which represents object categories of 
each scene category Cc ∈ , where NQc is the number of  
classes in Qc.  The problem to be solved is estimating prob- 
abilities,   )|()|()(=),( ,,,,, rcnrcjicrcrnjic qfpqspqpfsp ∑ , 

namely class  probabilities }|)({ ,, crcrc Qqqp ∈ ,  conditional 
probabilities of instances ∈∈ rccicrcic qSsqsp

jj ,,,, ,|)|({   
}cQ , conditional  probabilities  of  key  features |({ nfp   

},|) ,, crcnrc QqFfq ∈∈ , and the number of classes NQc  

that maximize the following log-likelihood 

∑ ∑ji n njicnjicc fspfhL ),(log)(= ,,                   (1) 

for a set of BoFs }|)({= ,, cicicc SssHH
jj

∈ . The class 

probability represents the composition ratio of object 
categories in a scene category, the conditional probability of 
instances represents the degree that object segments are 
instances of an object category and the conditional 
probability distribution of key features represents feature of 
an object category. 

These probabilities are estimated by the tempered EM 
algorithm and the number of classes is determined through 
the EM iterative process with subsequent class division. The 
process starts with one or a few classes, pauses at every 
certain number of EM iterations less than an upper limit and 
calculates the following dispersion index 

))|(|)),()|(|((= ,,,,
,

, rcjicnjicrcn
nfjics

rc qspfsqfp ×−∑∑ κδ   (2) 

where 

∑ ′'
)(

)(
=),(

,

,
,

nf njic

njic
njic fh

fh
fsκ                          (3) 

for crc Qq ∈∀ ,  . Then a class whose dispersion index takes 
a maximum value among all classes is divided into two 
classes. This iterative process is continued until dispersion 
indexes or class probabilities of all the classes become less 
than given thresholds [1]. 

B. Probabilistic Latent Component Tree for Object 
Catego- rization 
The probabilistic latent component tree (PLCT) is 

generated as a classification tree of all classes Q∗=∪c∈CQc .  
The PLCT is a binary tree in which similar classes are located 
at close leaf nodes where the similarity is calculated by using 
the conditional probability distribution of key features and 
class probabilities. 

Let B(Q) be a branch node where )( *QQ ⊆  is a set of 
classes which are located at leaf nodes of a subtree whose 
root  is the branch node.  Note that Q = Q∗ for a root node 
of a PLCT.  Then two child nodes of the parent node B(Q) 
are generated as follows. First of all, for each key 
feature Ffn ∈ ,  

Q is divided into two subsets of classes |(|{= ,
1

nrcnf
fpqQ  

},) ,, Qqq rcfrc ∈≤ ε and rcfrcnrcnf
qqfpqQ ,,,

2 ,)|(|{= ε>  

}Q∈  where fε  is 0 or a small positive value and 0 by  
default. Next, mean probability distributions of key features  
of classes 1

nf
Q and 2

nf
Q  are calculated as |)({ 1 n

nf
Q

f ′μ  

}Ffn ∈′   and  }|)({ 2 Fff nn
nf

Q
∈′′μ   respectively  and  the  

following distance 

)
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is computed based on the KL information between each and 
mean probability distributions of key features. Finally, Q is 
divided into two subsets of classes 1Q  and 2Q  which give 
the minimal value of 

nf
D  for any key feature Ffn ∈ .  Then 

for each of Qk (k = 1, 2), a branch node B(Qk ) is generated 
as a child node if the number of classes in Qk  is greater than 
1 and a leaf node L(Qk ) is generated as a child node if the 
number of classes in Qk is 1. The generation of child nodes 
by dividing a set of classes is started from a root node B(Q∗) 
and is recursively repeated on branch nodes until leaf nodes 
are generated. A leaf node L({qc,r }) has one class qc,r so 
that its class probability, conditional probability distribution 
of key features and conditional probabilities of instances are 
maintained in the leaf node where the class probability is 
normalized as p(qc,r )/NC  by dividing p(qc,r ) by the number 
of  scene  categories  NC .  A branch node also has a class 
probability and a conditional probability distribution of key 
features. Let ν be a branch node and ν1 and ν2  be its child 
nodes. For class probabilities p(ν1) and p(ν2) and conditional 
probability distributions of key features }|)|({ 1 Fffp nn ∈ν  

and }|)|({ 2 Fffp nn ∈ν  of child nodes, the branch node 

has a class probability )()(=)( 21 ννν ppp + and a 
conditional probability distribution of key features 

}|)|({ Fffp nn ∈ν  a probability value of which is obtained 

by ).|(
)(
)()|(

)(
)(=)|( 2

2
1

1
ν

ν
νν

ν
νν nnn fp

p
pfp

p
pfp ×+×      (5) 
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Leaf classes are labeled by using object category labels 
given for representative instances of those leaf classes in a 
semi-supervised manner [1]. An instance whose conditional 
probability for a class is the maximum is used as a rep- 
resentative instance for the class. Through labeling object 
classes, it turns out whether each class of a scene category 
represents a foreground object category or a background 
object category in the scene category. The feature of a scene 
category is represented by the composition of conditional 
probability distributions of  key features for foreground  and  
background object categories in the scene category. Let f

cQ   
and b

cQ  be sets of classes which represent foreground and 
background object categories in a scene category Cc ∈ and  

})(,|{=)( ,,, frc
f

crcrcf
f

c qpQqqQ θθ ≥∈  and =)( b
b
cQ θ  

})(,|{ ,,, brc
b
crcrc qpQqq θ≥∈  be  subsets  of  f

cQ  and  b
cQ  

respectively. Then a probability distribution of key features 
for the scene category c is expressed by 

)|()(=))(),(|( ,,
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b
b
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b
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f
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for Ffn ∈∀ . 

C. Boosting Features on Probabilistic Latent Component 
Tree 
Branch and leaf nodes of the PLCT have conditional prob- 

ability distributions of key features which encode features of 
object categories.  In recognition of an object category based 
on the PLCT, for a BoF of an object segment, a leaf node of 
the object category is obtained through the PLCT search in 
which distances between those conditional probability 
distributions of  key  features  and  the  BoF  are  calculated  
and  used  to traverse branches.  In order to   improve the 
performance of the search, a subset of key features is 
selected with their confidences through a boosting procedure 
at each branch node. Training samples for the boosting are 
generated as follows from a conditional probability 
distribution of key features }|)|({ Ffqfp nn ∈ for a class 

*Qq ∈ of each leaf node. First, for each sample u, the 
number of local feature points Nu is selected uniformly from 
a range [Nu1 Nu2 ]. Next, a BoF of key features )(=(uH  

)])(,),([ 1 fNuu fhfh K is generated by selecting Nu key 

features according to a conditional probability distribution 
of   key   features.    Then,   a   distribution   of   the BoF 

)])()/(,),()/([)(=( 1 iuiffNuiuifu fhfhfhfhuD ∑∑ K  is 

obtained from the H(u). A given number of samples, that is, 
distributions of BoFs are generated for each leaf node class. 
  A subset of key features is selected with their confidences 
at each branch node B (Q) as follows, where Q is a set 
of classes which are located at leaf nodes of a subtree whose 
root is the branch node.  Let },1,=|),,{(= ΦΦ Nivwu iii K   
be a set of samples with their weights for boosting where 
ui  is a sample which is generated from a class in Q and is 
represented by a distribution of a BoF, wi  is a weight of the 

sample, 1}{1,−∈iv  is a label of the sample and ΦN  is the 
number of samples. A label vi takes a value 1 or −1 according 
to whether ui is a sample which is generated from one of leaf 
node classes of a left child subtree or a right child subtree of 
a branch node B(Q). Let T be the number of boosted key 
features. 
Step1: Initialize weights of all samples with ΦNwi 1/= .  
Step2: For t = 1,... ,T, select an index of a key feature λt and 
its confidence αt under a distribution of sample weights. Let  
p1(λ)   and  p2(λ)   be  the  λ-th  elements  of conditional  
probability  distributions  of  key  features  of  left  and right  
child nodes respectively and u(λ)  be the λ-th  element of a 
distribution of a BoF of a sample u. Then let us define η(λ, u) 
as follows. 

⎪
⎩

⎪
⎨

⎧

−−−
−−
−−

|)()(|>|)()(|1
|)()(|=|)()(|0
|)()(|<|)()(|1

=),(

21

21

21

λλλλ
λλλλ
λλλλ

λη
upup
upup
upup

u       (8) 

Step2-1:  For  each  unselected  key  feature λf  , calculate 
the  following  weighted  sum  of  errors  for  all  the  samples 

Φ∈),,( iii vwu . 

i
iuivi

w∑
≠ ),(:

=
λη

ε                                (9) 

Then select an index of a key feature λt  that minimize the 
weighted sum of errors. When there are plural key features 
which minimize the weighted sum of errors, select the key 
feature which maximizes |p1(λt) − p2(λt)|. 
Step2-2: Calculate the following confidence αt from the 

weighted sum of errors. 

)1(log
2
1=

ε
εα −

t                          (10) 

However, 0=tα when 0.5≥ε . 
Step2-3: Update sample weights by the following expres- 

sion. 
)),((exp= ititii uvww ληα−×               (11) 

Step2-4: Normalize sample weights so that the sum of them 
is 1.  

∑ =
SN

j j

i
i

w
w

w
1

=                          (12) 

Step3: Record pairs of indexes of key features and their 
confidences },1,=|),{( Tttt Kαλ . 

D. Object and Scene Recognition 
For a given scene image which contains several object 

segments, object categories are recognized based on the 
PLCT search and a scene category is recognized based on a 
result of object recognition. 

Object category recognition is performed by selecting a 
leaf node through traversing a PLCT from its root node to 
leaf nodes. During the PLCT traversal, for a given object 
segment s, distances between a distribution of   a BoF  

)])(,),([)(=( 1 fNss fhfhsH K   and   conditional probability 

distributions of key features of nodes are calculated and used 
to traverse the nodes in ascending order of their distance. 
This PLCT traversal is characterized by the definition of 
distance and the number of leaf nodes to be traversed. A leaf 
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node with the minimum distance is selected among plural 
traversed leaf nodes. 

∑ =
fN

j js

is
isfNss

fh
fh

fdfdfdsD
1

1
)(

)(
=)()],(,),([=)( K     (13) 

   Two distances are introduced for the PLCT traversal. One 
is  a  distance  which  simply  uses  a  conditional  probability 
distribution of key features itself and is called the KFPD (Key 
Feature Probability Distribution) distance. The KFPD 
distance E (s, ν ) for a node ν is defined by 

∑ = −fN
i iis fpfdsE 1 |)|()(|=),( νν                (14) 

where )|( νifp  is a conditional probability distribution of 
key features g of the node ν . The other is a distance which 
uses a composite of boosted key features with confidences 
for all the branch nodes and is called the CBKF (Composite 
Boosted Key Features) distance. Let },1,=|),{( Tttt Kνν αλ  
be a set of pairs of indexes of key features and their 
confidences for a branch node ν and let us compute the 
following composite confidence {α∗} for all branch nodes of 
a PLCT. 

fN
j j

i
i Ni

f
,1,=,

ˆ

ˆ
=

1

* K
∑ ∑
∑

= ν
ν

ν
ν

α
α

α            (15) 
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iTt tt
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νν
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Then the CBKF distance E (s, ν k) for a left child node ν1  and 
a right child node ν 2  of the node ν is defined by 

1,2=,|)|()(|=),( 1
* kfpfdsE fN

i
k

iisi
k ∑ = −× ναν    (17) 

where )|( k
ifp ν  is a conditional probability distribution of 

key features of the node νk . 
In scene category recognition, selected object categories 

are firstly used for shortlisting candidate scene categories 
which are scene categories whose foreground object 
categories are same with selected object categories. Then a 
scene category is selected based on distance between a sum 
of BoFs of given object segments and probability 
distributions of key features of candidate scene categories. 

III. EXPERIMENTS 

A. Experimental Framework 
Experiments were conducted by using 429 images of 16 

scene categories which were arranged from the MSRC 
labeled image database v21. Each scene category contains 
about 27 images and each image of the category contains 
an object segment of the category in the foreground and 
several object segments of other categories in the background. 
Fig.1 shows some categorical scene images and object 
segments with labels. These images were split into five parts 
with equal size for 5-fold cross validation. Main parameters 
were set as follows. In determining the number of classes of  
V-PLCA, thresholds of the dispersion index and class 
 

1 http://research.microsoft.com/vision/cambridge/recognition/ 

probabilities were 1.0 and 0.2 respectively. In the expressions 
(6) and (7), thresholds θf  and θb were set to 0.1.   In boosting, 
a range of local feature points 1uN  and 2uN  were set to 50 
and 500 respectively, the number of samples ΦN  was set to 
500 and the upper limit number of boosted key features T was 
set to 500.  

 
Fig. 1.  Examples of (a) scene images and (b) object segments with labels. 
Scene images and object segments of 16 categories (“airplane”, “bicycle”, 

“bird”, “building”, “car”, “cat”, “chair”, “cow”, “dog”, “grass”, “road”, 
“sheep”, “sign”, “sky”, “tree”, “water”) were used in experiments. 

 
Two types of local feature descriptors, the 

128-dimensional gray SIFT descriptor [13] at interest points 
and the 384-dimensional opponent color SIFT descriptor 
[14] on a dense grid were used for experiments and code 
books were obtained by the K-tree method [15]. We 
abbreviate these two features as IGPS (interest point gray 
SIFT) and DOCS (dense opponent color SIFT) respectively. 
The code book sizes of IPGS and DOCS were 719 and 720 
respectively. 

B. Experimental Results 
The mean of the total numbers of object classes which 

were generated by the V-PLCA from 16 scene categories was 
97.6 for IPGS and DOCS and the mean depth of IPGS and 
DOCS PLCTs which had these classes at their leaf nodes was 
11.93. Fig. 2 shows examples of foreground and background 
object classes and their composition ratio for scene 
categories. A scene category consisted of 6.1 object classes 
on average. 

 
Fig. 2.  Examples of object category composition of scene categories. 
Images are representative segments whose instance probabilities are 

maximal. Class probabilities which represent composition ratio are shown 
under those segment images. 

Table I shows the mean classification accuracy of object 
and scene recognition for three recognition methods of the 
PLCT- BF search method, the PLCT search method and the 
direct matching method and two feature descriptors of IPGS 
and DOCS. The PLCT-BF search method is a recognition 
method based on searching the PLCT using the CBKF 
distance.  The PLCT search method is a recognition method 
based on searching the PLCT using the KFPD distance. The 
direct matching method is a recognition method which 
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selects an object class with the minimum distance by directly 
computing distances for conditional probability distribution 
of key features of all the object classes. The mean 
classification accuracy is obviously same for the PLCT 
search method and the direct matching method since they use 
the same KFPD distance. The PLCT-BF search method 
achieved higher classification accuracy than other methods 
for both of IPGS and DOCS features. 
TABLE I: CLASSIFICATION ACCURACY OF OBJECT AND SCENE CATEGORIES 

Recognition Method (Distance) 
Feature descriptor 

IPGS DOCS 
Object Scene Object Scene

PLCT-BF search (CBKF distance) 0.655 0.687 0.742 0.821
PLCT search (KFPD distance) 0.649 0.676 0.728 0.807

Direct matching (KFPD distance) 0.649 0.676 0.728 0.807

Fig.3 shows the mean classification accuracy to the 
number of traversed leaf nodes. The PLCT-BF search method 
achieved higher classification accuracy for objects and scenes 
by the less number of leaf node traversal in comparison with 
the PLCT search method in both cases of IPGS and DOCS 
features. 

C. Discussion 
In our method, categorization is performed through unsu- 

pervised V-PLCA and PLCT-BF followed by 
semi-supervised object labeling. In the V-PLCA, the number 
of object classes in scene categories is not necessary to be 
fixed in advance and is determined dependent on learning 
samples. Also in the PLCT-BF, the depth of a tree is not 
necessary to be fixed in advance and is determined 
dependent on object classes generated through the V-PLCA. 
These characteristics of our method make it easy to adapt to 
various features and data sets for learning without tuning 
size parameters of the method. In addition, selection of key 
features with their confidences through boosting makes it 
possible to obtain discriminative key features independent of 
a given set of key features. Our method can learn and 
recognize both object and scene categories at the same time. 
The recognition performance depends on not only learning 
and recognition methods but also feature coding and pooling 
methods and learning data sets [16]. The PLCT-BF search 
method using boosted key features achieved higher 
classification accuracy for both objects and scenes than the 
direct matching method using the KFPD distance [1] and also 
showed competitive performance in comparison with 
existing methods which uses SIFT-based features [14], [16]. 

 
 

Fig. 3.  Classification accuracy to the number of traversed leaf nodes. 
 

IV. CONCLUSIONS 
We have presented an object and scene categorization 

method based on the probabilistic latent component tree with 
boosted features. Through experiments by using images of 

plural categories in the MSRC labeled image database, it was 
shown that performance of object and scene recognition was 
high and improved by using composite boosted features in 
the probabilistic latent component tree search. 
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