
  

  
Abstract—In the field of pattern recognition, principal 

component analysis (PCA) is one of the most well-known 
feature extraction methods for reducing the dimensionality of 
high-dimensional datasets. Simple-PCA (SPCA), which is a 
faster version of PCA, performs effectively with iterative 
operated learning. However, SPCA might not be efficient when 
input data are distributed in a complex manner because it 
learns without using the class information in the dataset. Thus, 
SPCA cannot be said to be optimal from the perspective of 
feature extraction for classification. In this study, we propose a 
new learning algorithm that uses the class information in the 
dataset. Eigenvectors spanning the eigenspace of the dataset are 
produced by calculating the data variations within each class. 
We present our proposed algorithm and discuss the results of 
our experiments that used UCI datasets to compare SPCA and 
our proposed algorithm. 
 

Index Terms— Pattern recognition, principal component 
analysis, supervised learning. 
 

I. INTRODUCTION 
Eigenspace models play an important role as feature 

extraction methods in pattern recognition [1]. Principal 
Component Analysis (PCA) [1] is one of the most 
well-known feature extraction methods and is effective in 
reducing the dimensionality of input datasets. PCA computes 
its eigenspace using the eigenvalue decomposition of a 
covariance matrix from the datasets. All data are used 
simultaneously in order to encourage the eigenvalue 
decomposition to produce eigenvectors that spans the 
eigenspace. However, solving the eigenvalue problem for 
input data with a large number of dimensions is 
computationally expensive. 

Therefore, various approaches to reduce the computational 
cost of PCA’s learning algorithm have been proposed. 
Simple-PCA (SPCA) [3], which was proposed by Partridge et 
al., is a faster version of PCA that does not calculate the 
covariance matrix. SPCA requires only iterative 
computations to produce the eigenvectors. It uses an 
approximation algorithm in which principal components are 
sequentially identified, beginning with the first component. 
SPCA has been proved effective in many applications 
including handwritten character recognition, dimensionality 
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reduction for information retrieval models, and facial image 
recognition [4-11]. The algorithm used in SPCA sequentially 
solves for eigenvectors that maximize the variance over all 
samples. However, SPCA is not particularly effective in 
cases where the input datasets are distributed in a complex 
manner. 

In this study, we propose a new learning approach, 
Class-included SPCA (CSPCA), which uses the class 
information in the input dataset. For classification, the 
eigenspace spanned by the eigenvectors must have a high 
degree of separability. CSPCA produces eigenvectors that 
maximize the variance of the input data in each class. The 
idea behind CSPCA is that as it learns, the eigenvector 
maximizes the variance when an input datum belongs to the 
same class, which belongs to the eigenvector, and it reduces 
the projected value in the eigenvector if the datum belongs to 
a different class. Thus, CSPCA learns features that separate 
the data belonging to each class, and the number of the 
eigenvectors that are learned by CSPCA is the same as of the 
number of classes in the input dataset. In addition, CSPCA’s 
computational cost for leaning eigenvectors is equivalent to 
the cost of SPCA. The CSPCA algorithm is based on the 
SPCA algorithm with a simple modification that avoids 
algorithmic complexity. 

The rest of this paper is organized as follows: Section 2 
describes the SPCA algorithm. Section 3 presents the details 
of our CSPCA algorithm, which uses class information about 
the input dataset to learn the eigenspace. Section 4 presents 
the results of computer simulations that use datasets from the 
UCI Machine Learning Repository [12]. Finally, Section 5 
presents our conclusions and future research directions. 

 

II. SIMPLE-PCA (SPCA) 
SPCA [3] is an iterative statistical approach that was 

proposed by Partridge et al. to quickly learn the eigenspace 
spanned by eigenvectors. SPCA uses an approximation 
algorithm in which principal components are learned in a 
sequential order, beginning with the first component. SPCA 
has been proved effective in many applications including 
handwritten character recognition, and facial image 
recognition. The algorithm used in SPCA sequentially solves 
for eigenvectors that maximize the variance over all samples. 
The details of the algorithm are as follows: 

First, the set of input vectors is defined as 
 

[ ]NxxX ,,1 L=                                 (1) 

and all input data are centered to produce 

[ ]NxxX ′′=′ ,,1 L                                 (2) 
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where N is the number of input data. The output function is 
defined as 
 

( ) j
Tk

nny xa ′=
                          

            (3) 

 
where k

na  is an eigenvector that represents the nth principal 
component and k is the number of repetitions that have been 
completed. The initial vector 0

na is set to be a random vector. 

If the input vector component jx′  has the same direction as
k
na , then the output function (3) outputs a positive value, and 

if it has the opposite direction, then the output function 
outputs a negative value [Fig. 1(a)]. 
 

 
             (a) Output function                           (b) Eigenvector replacement          

Fig. 1. Illustrations of the SPCA algorithm 
 

 The following threshold function is introduced for this 
purpose: 
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The initial random vector 0

na  brought closer to the same 

direction that the vector na  possesses through the use of 
these functions and repetition of the following operation. 
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where 1+k

na is the eigenvector after k+1 repeated calculations. 

The value of the output function is calculated by using k
na , 

which is the previous calculation result. These repeated 
calculations will continue until 1+k

na  converges [Fig. 1(b)]. 

Before calculating the next eigenvector, a new vector jx̂  

has to be calculated so that the eigenvectors satisfy the 
orthogonality condition. The vector is calculated as follows: 
 

( ) 11ˆ ++ ′⋅−′= k
nj

k
njj axaxx                    (6) 

 
After the component is removed, the principal component 

can be evaluated by repeating the same calculation in order to 
produce a high accumulated relevance. 

 

III. CLASS-INCLUDED SPCA (CSPCA) 
SPCA can calculate eigenvectors faster than the original 

matrix-based PCA. However, although both methods 
maximize the variance in the eigenspace, neither can achieve 
the recognition accuracy that is necessary for classification. 
Therefore, they might not be efficient from the perspective of 
feature extraction for classification. 

We propose Class-included SPCA (CSPCA) as a method 
that not only maximizes variance, but also improves the 
projected features in the eigenspace for classification. The 
idea behind CSPCA is that it learns an eigenvector for a 
specified class. Thus, the number of the eigenvectors learned 
by CSPCA is the same as the number of classes in the input 
data.  

Moreover, CSPCA can learn eigenvectors with 
computation costs that are equivalent to the computation cost 
of the SPCAs. The CSPCA algorithm is based on the SPCA 
algorithm with a simple modification that avoids algorithmic 
complexity. The algorithm is described below: 

First, the input dataset { }mxxxX ,,, 21 L=  is obtained. 
Second, centering calculations areperformed in the SPCA 
algorithm, Third, nth eigenvector ),,1( Cnk

n L=a , where C 
is the number of classes, is randomly set, is randomly set. 
Finally, the output function is defined as follows: 
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where nω

 

denotes class n. 
The abovementioned equation indicates that if the input 

datum, jx′ , belongs to class n, then the nth eigenvector spins 

toward jx′ . On the contrary, if the datum belongs to a 

different class, then learning remains uninfluenced. This is 
the key point of the CSPCA algorithm. By this calculation, 
each eigenvector is learned in a way that maximizes the 
variance of each class. For higher recognition accuracy for 
classification, a second output function is defined as follows: 

 

( ) ( )( )
( )( )( )⎪⎩

⎪
⎨
⎧

′⋅−′
∈′′′⋅

=′
otherwise
if

y
k
nj

Tk
nj

njjj
Tk

n
jn

axax
xxxa

xf
ω

,

 
                                                                                    (8) 

 
This equation uses linear discriminant analysis to make 

each of the eigenvectors effective in extracting the features of 
each class (Fig. 2).  

The upper calculation in equation (8) ensures that the 
eigenvector maximizes the variance of the distribution of 
data that are labeled with the class that it is learning. In 
contrast, the lower calculation in equation (8) ensures that the 
eigenvector is further separated from input data that belongs 
to other classes. In this case, the vertical component is 
extracted from both input datum   and eigenvector and is 
subtracted from input. Using this procedure, CSPCA learns 
the eigenvector for a specified class of data. 
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Fig. 2. CSPCA algorithm illustrations (2-class problem) 
 
 

After calculating the output function (8), the eigenvector is 
reset by equation (5), as it is in SPCA. The next eigenvector is 
then calculated in the increasing order.  

These are the procedures for learning the eigenvectors 
spanning the eigenspace. As previously mentioned, the 
number of eigenvectors is the same as the number of classes 
in the input dataset. This means that each eigenvector is 
learned for the data that are labeled as the same class. 

Finally, the computational cost of CSPCA is O(CN), while 
the cost of SPCA is O(dN), where d is the number of the 
eigenvectors spanning the eigenspace. Thus, CSPCA can be 
performed as efficiently as SPCA without complex 
calculations. 

 

IV. EXPERIMENTAL RESULTS 
In this section, we present our experimental results. We 

used seven datasets from the UCI Machine Learning 
Repository [12]. Table 1 shows the details of each dataset, 
including the number of dimensions, the number of classes, 
and the size of the dataset. The 5-fold cross-validation 
method was used to evaluate each dataset. We divide the 
Segmentation and Isolet datasets into a training dataset and a 
test dataset. In addition, we select the first d principal 
components for SPCA learning, and finally, we define the 
accumulation ratio as follows: 
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                              (9) 
where iλ  denotes the ith eigenvalue in the eigenspace. The 

accumulation ratio ( )dAC  shows how much information 
will be left in the eigenspace compared with the information 
in the input space. Furthermore, we observe that the number 
of dimensions of the d eigenvalues is larger than a certain 
predetermined threshold θ . In this experiment, we set

]99.0,95.0,9.0,85.0,8.0[=θ . It shows the best result by 
selecting the optimal parameters among these thresholds. 

We used the Nearest Neighbor (NN) as a classifier for 
comparing the performances of the SPCA and CSPCA 
algorithms. This allowed us to rigorously compare the 
performances of the feature extraction methods. Using the 
UCI datasets for our recognition experiments, we performed 
the experiments 10 times with randomly sorted training data 

calculated the average results. The recognition accuracy and 
the corresponding number of eigenvectors obtained for each 
dataset are shown in Fig. 3 and 4, respectively. 
 

TABLE I: DETAILS OF UCI DATASETS 
 

Name 
 

#. of dim.
 

#. of classes #. of data (train/test)

Iris 4 3 150 
Wine 13 3 178 

Segmentation 19 7 210/2100 
Spambase 57 2 4601 

Arrhythmia 279 16 452 
Isolet 617 26 6238/1559 

Advertisement 1558 2 3279 
 

 
Fig. 3. Recognition Accuracy 

 

 
Fig. 4. Number of eigenspace dimensions 
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As observed in the above figures, the CSPCA features are 
as effective as the SPCA features. For the Wine and Isolet 
datasets, CSPCA’s recognition accuracy is higher, despite a 
much smaller number of eigenvectors. This means that the 
distribution of features in the eigenspace is quite superior for 
classification. In contrast, SPCA cannot extract effective 
features and its memory cost is greater. Figure 5 shows the 
recognition accuracy and the number of dimensions for all 
thresholds θ  using the Wine dataset. 

 

 
Fig. 5. Recognition accuracy and number of dimensions for SPCA and 

CSPCA using the Wine dataset 
 

It is clear from Fig. 5 that the number of eigenvectors used 
by CSPCA is much smaller than the number used by SPCA. 
This result shows the effectiveness of our proposed CSPCA 
algorithm.  

 However, CSPCA does not always extract effective 
features for recognition. Figure 6 shows our experimental 
result for the Segmentation dataset, which was originally 
divided into a training dataset and a test dataset. 

 
Fig. 6. Recognition accuracy and number of dimensions with each threshold 

θ  for SPCA and CSPCA by using the Segmentation dataset 
 

As shown in Figure 6, the features learned by CSPCA in 
this case were most effective for classification but with a 
greater number of dimensions than any of the other cases. 
Although the recognition accuracy of CSPCA in this case is 
higher than that of SPCA, CSPCA did not efficiently extract 
features from the Segmentation dataset. 

Fig. 7 shows the recognition accuracy and the number of 

dimension with each threshold θ for SPCA and CSPCA 
using the Isolet dataset. 

 

 
Fig. 7. Recognition accuracy andnumber of dimensions with each threshold 

θ  for SPCA and CSPCA using the Isolet dataset 
 

Fig. 7 shows that recognition accuracy and the number of 
eigenvectors of CSPCA were very good for the Isolet dataset. 
The algorithm used in CSPA extracted efficient features for 
this dataset  

Finally, Fig. 8 shows the results for the Advertisement 
dataset. 

 

 
Fig. 8. Recognition accuracy and number of dimensions with each threshold 

θ  for SPCA and CSPCA using the Advertisement dataset 
 

As observed in Figure 8 the performance of CSPA is 
similar to that of SPCA. In this particular dataset, there is 
much variance in a low-dimensional space despite of high 
input dimensionality. However, this result was expected and 
shows the characteristics of our proposed CSPCA algorithm. 
In fact, CSPCA was proposed for datasets whose input space 
is multicolinear and can serve as a better feature extraction 
method in cases where SPCA cannot extract efficient features 
for classification. 
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V. CONCLUSIONS 
This paper presented our proposed CSPCA algorithm, 

which is a modified SPCA algorithm. CSPCA was designed 
to be as simple as the conventional SPCA algorithm. Unlike 
the conventional matrix techniques, CSPCA executes simply 
with repeated calculations that use class information. 
Moreover, unlike SPCA, CSPCA does not incur any 
computation costs for determining the number of 
eigenvectors, because that number is determined by the 
number of classes in the input dataset. The eigenvectors that 
are learned to span the eigenspace maximize the variance of 
the samples as well as the matrix-based algorithm PCA and 
SPCA. In addition, the number of the eigenvectors is as many 
as the number of classes from the input dataset. By this 
characteristic, parameter selection is not needed for 
determining the number of eigenvectors unlike SPCA 
algorithm. In our experimental results, the eigenspace learned 
by CSPCA algorithm was either more efficient or similar to 
the SPCA algorithm’s eigenspace for classification. In 
addition, in some experiments, CSPCA acquired a smaller 
number of eigenvectors than SPCA. Our experiments 
confirm that CSPCA significantly improves recognition in 
spite of the smaller number of eigenvectors. Therefore, the 
CSPCA algorithm is more effective in terms of feature 
extraction for classification and computation costs. 

However, in the case of some datasets that we used, 
CSPCA’s recognition accuracy was not good. The reason in 
these cases is that the data are distributed uniformly and the 
number of eigenvectors is greater. We must therefore choose 
effective eigenvectors in order to avoid the wastage of 
memory. In our future work, we will study the eigenvector 
selection method and perform additional experiments.  
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