
  

  
Abstract—Given a covariance matrix, sparse principal 

component analysis (SPCA) considers the problem of 
maximizing the variance explained by a particular linear 
combination of the input variables where the number of 
nonzero coefficients is constrained. In some applications, the 
coefficients in this combination are required to be non-negative. 
Moreover, when loading an input variable is associated an 
individual cost, we need incorporate weights, which represent 
the loading cost of input variables, into sparsity constraint. And 
in this paper, we consider problems of SPCA with weighted 
sparsity constraint and/or non-negative sparsity constraint. 
These problems are reduced to solving some semi-definite 
programming ones via convex relaxation technique. Numerical 
results show that the method is efficient and reliable in practice. 
 

Index Terms—Iterative re-weighting, non-negative 
constraint principal component analysis, principal component 
analysis, semi-definite relaxation, sparse principal component 
analysis.  
 

I. INTRODUCTION 
Sparse decompositions of data are required in many 

applications. In economics, sparsity increases the efficiency 
and reduces risk of a portfolio [7], it also implies lower 
transaction cost in financial asset trading strategies. In 
computer vision, sparse decomposition is related to the 
extraction of some concerned pixels which are relevant parts 
from images [17]. In machine learning, sparsity is closely 
related to feature selection and to improved generalization of 
learning algorithms. And in biology, the sparsity is necessary 
for finding focalized local patterns hidden in gene expression 
data analysis [1].  

Being first introduced by Pearson in [28], and developed 
independently by Hotelling in [6], principal component 
analysis (PCA) has now become a popular technique used to 
reduce multidimensional data sets to lower dimensions for 
analysis with applications throughout science and 
engineering, see [20]. This reduction is achieved by 
transforming to a new set of variables, the principal 
components, which are uncorrelated and ordered so that the 
first few retain most of the variation present in all of the 
original variables. It also can be performed via a singular 
value decomposition of the data matrix or an eigenvalue 
decomposition of the data covariance matrix.  

A drawback of PCA is the lack of sparseness of the 
principal vectors - since the principal components are usually 
linear combinations of all variables and the loadings are 
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typically non-zero - while sparse decompositions of data are 
required in many applications such as: sparsity increases the 
efficiency and reduces risk of a portfolio [7]; sparse 
decomposition is related to the extraction of some concerned 
pixels which are relevant parts from images [17]; sparsity is 
closely related to feature selection and to improved 
generalization of learning algorithms; sparsity is necessary 
for finding focalized local patterns hidden in gene expression 
data analysis [1]. This leads to appearance of several methods 
to find sparse principal components explaining most of the 
variance present in the data. To achieve this, it is necessary to 
sacrifice some of the explained variance and the 
orthogonality of the principal components. Rotation 
techniques [14] can be considered the first approach. Simple 
principal components [13] are studied by restricting the 
loadings to take values from a small set of allowable integers 
such as 0, 1 and -1. Simple thresholding technique [2] was an 
ad hoc way to deal with the problem, where the loadings with 
small absolute value are thresholded to zero. SCoTLASS [9] 
and SLRA [10], [11] were introduced to get modified 
principal components with possible zero loadings. ESPCA 
[21] used discrete spectral formulation based on variational 
eigenvalue bounds and an effective greedy strategy to give 
provably optimal solutions via branch-and-bound search. 
SPCA [12] was proposed via a regression type optimization 
problem. And DSPCA [4], [16] is the current state-of-the-art 
method, which relaxes a hard cardinality constraint with a 
convex approximation. Recently, [26] discusses several 
options, comparing the variance vs. orthogonality/sparsity 
tradeoffs they imply. Finally, [30] shows that some naive 
approaches have the significantly worst convergence rates 
than the relaxation approach as in [4], [5], [16], [22].   

Since the outputs of DSPCA [16] are not satisfied sparsity 
constraint - i.e. if we hope to find a principal component with 
less than k  non-zero entries, the output often contains more 
than k  non-zero entries - it is reasonable to add a 
post-processing technique to enhance the sparsity of the 
principal components. Recently, re-weighted 1l  
minimization [3], [19] is a useful technique to enhancing 
sparsity output of the combinatorial optimization: 

0
min subject to

l
x y x= Φ ,

 
where { }

0
0 .il

x i x=| : ≠ | Replacing the linear equation 

constraints in the above combinatorial optimization by linear 
matrix inequality constraints, we get an approach to refine the 
sparsity of the principal components. This approach has been 
done in [22], where we add non-negative property to the 
principal components.  

In practice, there are many applications in which loading 
an input variable is associated an individual cost. In these 
cases, it is essential to incorporate weights, which represent 
the loading cost of input variables, into PCA. Weighted PCA 
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has thus been introduced and used in many applications such 
as learning from incomplete data in [29], giving an efficient 
search algorithm for motion data in [24], and face recognition 
in [27]. To solve this problem, we generalize the sparsity 
constraint with weighted sparsity constraint [5].   

It is remarkable that we cannot obtain the desired sparsity 
of the output by using the re-weighted 1l  minimization 
technique [3] even with linear equation constraints. To 
overcome this obstacle, we present a bisection algorithm 
exploiting truncation technique to find the principal 
component not only satisfying the desired sparsity constraint 
but also explaining the most variance [23].  

In practice, the loadings of principal components are 
required to be non-negative and/or associated an individual 
cost. In this paper, we consider problems of SPCA with 
weighted sparsity constraint and/or non-negative sparsity 
constraint. This paper is organized as follows. The next 
section is the main results, where we presents a method 
which directly incorporates a weighted (and/or non-negative) 
sparsity criterion in the PCA problem formulation, then apply 
relaxation method and a bisection algorithm to find the best 
principle components which exactly satisfy the desired 
sparsity constraints. Section 3 is devoted to compare the 
proposed method with existing methods on both artificial 
data and real-life data. 

Notation. In this paper, we denote the set of symmetric 
matrices of size n by nS , the vector of ones by 1 , the 
cardinality (number of non-zero elements) of a vector x  by 

( )xCard , and the number of non-zero coefficients in a matrix 
X  by ( )XCard . For X ∈ nS , the notation 0X  means that 
X  is positive semi-definite, X  is the matrix whose 

elements are the absolute values of the elements of X , and 
11 22( ) nnX X X X:= + + ... +Tr , which is the sum of diagonal 

entries. 
 

II. MAIN RESULTS 
In this section, we review semi-definite relaxation method 

[4], [5], [16], [22], [23] for SPCA with weighted sparsity 
constraint and/or non-negative sparsity constraint, refine the 
cardinality constraint via re-weighted 1l  minimization 
technique, and present a bisection algorithm to find the 
principle component which satisfies the required sparsity 
constraint when sacrifice some of the explained variance. 
Then, we apply the problem to decompose a data matrix into 
sparse principle components. 

A. Semi-definite Relaxation 
Let A∈ nS  be a covariance matrix, i.e. 0A , and nw R∈  

be a weight vector with 0iw >  for all 1i n= ,..., . We consider 
a problem of maximizing the variance of vector nx R∈  while 
constraining its weighted cardinality (and/or non-negative 
loadings):  

( ) ( )
2

1

maximize ,
subject to 1,

, 0

T

n

i i
i

x Ax
x

w x k xδ
=

=

≤ ≥∑

                          (1) 

where 0 1Rδ : ⎯→ ,  is defined by 0 if 0
( )

1 if 0
x

x
x

δ
, = ,⎧= ⎨ , ≠ ,⎩

 

and the given positive number k  restricts the number of 
non-zero entries of the solution, thus the following inequality 

should be hold: 
1 1

min
n

i ii n i

w k w
= ,..., =

≤ ≤ .∑  

Hence, by choosing 1w = , the weighted sparsity constraint 

1
( )n

i ii
w x kδ

=
≤∑  collapses to the classical sparsity constraint 

( )x k≤Card . In the case of non-negative property is not 
required for the loadings, we can remove the last constraint, 

0x ≥ .  
Using semi-definite relaxation techniques [5], the problem 

is approximated by the following problem:  

( )
( )

( )
, 1

maximize Tr ,

subject to Tr 1,

,

0 0 .

n

i j ij
i j

AX

X

w w X k

X X
=

=

≤

, ≥

∑
                                  (2) 

This means, we will solve the semi-definite problem (2) to 
get solution X , and an approximation solution of (1) is the 
dominant eigenvector of X  (or the non-negative parts of the 
dominant eigenvector of X  if non-negative property is 
required). 

B. Cardinality Constraint Refinement 
Let x∗  be the approximation solution of (1). It is clear that 

x∗  does not satisfying cardinality constraint ( )x k≤Card  in 
general. Hence, we consider the following cardinality 
constraint refinement problem: 

( )

( )

1

2

*

minimize ,

subject to 1,

, 0 .

n

i i
i

T

w x

x

x Ax c x

δ
=

=

≥ ≥

∑
                                  (3) 

where Tc x Ax∗ ∗ ∗= .  

Let 0,TX xx=  the second order constraint Tx Ax c∗≥  

and the non-convex constraint 
2

1x =  are transformed into 

linear constraints since ( ) TAX x Ax=Tr  and
2

( )X x=Tr . 
Hence, using Lemma 2.1 in [5], the lifting procedure [1], [8], 
[16], [25] for semi-definite relaxation gives an equivalent 
problem of (3) as follows:  

 

( )
( )

( )
( ) ( )

, 1

*

minimize ,

subject to Tr 1,

Tr

0, 0 , 1

n

i j ij
i j

w w X

X

AX c

X X rank X

δ
=

=

≥

≥ =

∑
                           (4) 

 
Next, apply truncation technique [1], [25] which drops the 

constraint ( ) 1X =rank , we can relax the problem (6) as 
follows:  
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( )
( )

( )
( )

, 1

*

minimize ,

subject to Tr 1,

Tr

0, 0 .

n

i j ij
i j

w w X

X

AX c

X X

δ
=

=

≥

≥

∑
                             (5) 

 
Using the re-weighted 1l  minimization which is recent 

technique to enhancing sparsity, see [3], we consider the 
following relaxation of the problem (5): 

( )
( )

( )
( )

*

minimize Tr ,

subject to Tr 1,

Tr

0, 0 .

TW X

X

AX c

X X

=

≥

≥

                               (6) 

where 0W >  is positive weight matrix. We use a simple 
iterative algorithm that alternates between estimating X  and 
redefining the weights [3] to give an extension of DSPCA 
(called EDSPCA in what follows):   
1. Set the iteration count m  to zero and solve DSPCA 
problem (4) to get the solution (0)X .  
2. Update the weights:  

( )
( )

1for each 1, .m
ij m

ij

i j n w
X ε

, = =
+

                       (7) 

3. Solve the weighted problem (6) to get the solution ( )mX .  
4. Terminate when ( )( )mx k≤Card  or m  attains a specified 
maximum number of iterations maxm , where ( )mx  is the 
dominant eigenvector of ( )mX . Otherwise, increment m  and 
go to step 2.  

The semi-definite programming (SDP) problem (2) and (6) 
can be solved efficiently using interior-point solvers such as 
SEDUMI [31] or SDPT3 [32]. And we should set a threshold 
for expected non-zero-valued component ijX  of the solution 
of the problems (2) and (6). Moreover, the parameter 0ε >  
in (7) should be chosen as thresholdε ≤  to provide stability 
and to ensure that a zero-valued component in ijX  does not 
strictly prohibit a non-zero estimate at the next step.  

C. A Bisection Algorithm 
It is important that the re-weighted 1l  minimization 

iteration try to refine the sparsity of the principal component 
as most as possible, but do not guarantee that the principal 
component satisfies the desired sparsity constraint. To 
achieve this, it is necessary to sacrifice some of the explained 
variance, albeit hopefully not too much. By dropping the 
entries which have the smallest absolute values, we obtain a 
truncated principal component which gives a lower bound for 
the explained variance. Exploiting this observation, we get a 
bisection algorithm to find the optimal principle component 
x∗  satisfying the required sparsity with a given error 

0errorvar >  in the explained variance as follows:  
initial Run the cardinality constraint refinement process to 
get approximation solution x . Set  
• the optimal principle component x x∗ := ,  

• the upper bound for the explained variance T
upvar x Ax∗ ∗:= ,  

• the truncated principal component entries i ixt x∗:=  for all 
i I∈  and 0ixt :=  for all i I∈/  - where I  is the set of 
indexes of k  absolutely largest entries of x∗ ,  

• the lower bound for the explained variance 
T

lowvar xt Axt:= .   
while ( )up low errorvar var var− >    
• set 1 2( )new up lowvar var var:= / +   
• run the cardinality constraint refinement process with 

newc var∗ :=  to get solution x∗   
• if ( )x k∗ ≤Card  then update low newvar var:=   

else   
+ update up newvar var:=   
+ x∗ :=  truncation of x∗    

return the optimal principle component x∗ .  
 

III. NUMERICAL EXPERIMENTS 
In this section, we will compare the effectiveness of 

EDSPCA with the other methods mentioned in the 
introduction. We perform the test on an artificial data set 
proposed by H. Zou, T. Hastie, R. Tibshirani [12] and a 
well-known real-life benchmark data set - Pit Props data.  

A. Artificial Data 
To show the effectiveness of ESDPCA, we consider the 

simulation example proposed by H. Zou, T. Hastie, R. 
Tibshirani [12], which was used to test the other methods. In 
this example, three hidden factors are first created 

1 2 3 1 2

1 1 2

(0,290); (0,300); 0.3 0.925
(0,1);V ,V and ε are independent 

V N V N V V V
N

ε
ε

= + +
 

Then 10 observed variables are generated as the follows 
1 1

1
2 2

2
3 3

3

, (0,1), 1,2,3,4,

, (0,1), 5,6,7,8,

, (0,1), 9,10,

are independent, j=1,2,3; i=1,...,10.

i i i

i i i

i i i
j

i

X V N i

X V N i

X V N i

ε ε
ε ε
ε ε

ε

= + =

= + =

= + =  

To avoid the simulation randomness, the exact covariance 
matrix which is an infinity amount of data generated from the 
above model is used to compute principal components using 
the different approaches. The variance of the three 
underlying factors is nearly the same (290, 300 and 283.8, 
respectively). Since the first two are associated with four 
variables while the last one is associated with only two 
variables, V1 and V2 are almost equally important, and they 
are both significantly more important than V3. In [12], the 
first two principal components explain 99.6% of the total 
variance. In [16], by choosing the sparsity constraint m=4, 
DSPCA gives the same results as SPCA and SCoTLASS 
which are better than simple thresholding method. Moreover, 
the output of DSPCA also satisfy the the sparsity constraint 
m=4 (having 4 non-zero entries). Thus, the sparsity 
constraint refinement post-processing of DSPCA is not 
required.  

Now, we consider the results of DSPCA when choosing 
the sparsity constraint k=5 in Table 1. The outputs of DSPCA 
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do not satisfy the sparsity constraint when both the first and 
second principal components have 6 non-zero entries. Hence, 
the sparsity constraint refinement post-processing is needed. 
With the same explained variance, the first two principal 
component of EDSPCA (with threshold = 10-2, ε = 10-2, 
varerror = 0.5% ) satisfies the the sparsity constraint after 
solving 21 and 20 SDP problems, respectively. 

B. Pit Props Data 
The pit props data (consisting of 180 observations and 13 

measured variables) was introduced in [18] and is another 
benchmark example used to test SPCA. All simple 
thresholding [2], SCoTLASS [9], SPCA [12], and DSPCA 
[16] have been tested on this data set. As reported in [12], 
SPCA performs better than SCoTLASS in the sense that it 
identifies principal components with 7, 4, 4, 1, 1, and 1 
non-zero loadings respectively - while explaining nearly the 
same variance as SCoTLASS, the result SPCA of is much 
sparser; and better than simple thresholding in the sense that 
it explains more variance. As reported in [16], DSPCA 
performs better than SPCA in the sense that it identifies 
principal components with 6, 2, 3, 1, 1, and 1 non-zero 
loadings (with respect to sparsity constraint 5, 2, 2, 1, 1, and 
1). 

Here, we want to compare the results of EDSPCA - using 
the same sparsity constraint (5, 2, 2, 1, 1, and 1) - with those 
of DSPCA. The results are given in Table 2 with threshold = 
10-2, ε = 10-10, varerror = (0.5/(2i-1))% for i=1,…,6. While 
explaining 76.0% variance - nearly the same as DSPCA 
(77.3%) - the first six principal components of EDSPCA 
satisfies the sparsity constraint after solving 5, 1, 16, 1, 1, and 
1 SDP problems respectively. It is also remarkable that these 
results are better than ESPCA (75.9%) in [21]. However, we 
can see that there is an overlap between the first principal 
component and the third principal component on entry 
"ringbut". Hence, it is reasonable to think about a better.  

 
TABLE I: THE FIRST TWO PRINCIPAL COMPONENTS OF DSPCA AND 

EDSPCA WITH K=5 ON THE ARTIFICIAL DATA 

 
 

TABLE II: THE FIRST THREE PRINCIPAL COMPONENTS OF DSPCA AND 
EDSPCA WITH SPARSITY CONSTRAINT 5,2,2,1,1 AND 1 ON THE PIT PROPS 

DATA 

 
 

TABLE III: THE FIRST THREE PRINCIPAL COMPONENTS OF EDSPCA WITH 
SPARSITY CONSTRAINT (4,2 AND 2) AND (5,3 AND 2). 

 

Here, we want to compare the results of EDSPCA - using 
the same sparsity constraint (5, 2, 2, 1, 1, and 1) - with those 
of DSPCA. The results are given in Table 2 with threshold = 
10-2, ε = 10-10, varerror = (0.5/(2i-1))% for i=1,…,6. While 
explaining 76.0% variance - nearly the same as DSPCA 
(77.3%) - the first six principal components of EDSPCA 
satisfies the sparsity constraint after solving 5, 1, 16, 1, 1, and 
1 SDP problems respectively. It is also remarkable that these 
results are better than ESPCA (75.9%) in [21]. However, we 
can see that there is an overlap between the first principal 
component and the third principal component on entry 
"ringbut". Hence, it is reasonable to think about a better 
sparsity constraint as 4, 2, 2, 1, 1, and 1. The outputs for this 
case are displayed in the left haft of Table 3, where EDSPCA 
also explains a large amount of the variance - 74.3% - by 
solving 12, 1, 1, 1, 1, and 1 SDP problems respectively. 
Finally, with the less sparsity results (5, 2, 3, 1, 1, and 1) than 
DSPCA , the results of EDSPCA in the right haft of Table 3 
explains more variance than DSPCA (78.5% compared with 
77.3%). The first six principal components of EDSPCA 
satisfy the sparsity constraint after solving 5, 1, 15, 1, 1, and 1 
SDP problems respectively. Figure 1 shows the cumulative 
number of non-zero loadings and the cumulative explained 
variance of EDSPCA compared with DSPCA and SPCA. 

 
Fig.1.Cumulative cardinality and percentage of total variance explained 
versus number of principal components for SPCA, DSPCA and EDSPCA 
with sparsity constraint (4,2,2,1,1 and 1) and (5,2,3,1,1) on the pit props data. 
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IV. CONCLUSIONS AND PERSPECTIVE 
The application specific solution will be discussed 

elsewhere since we want to keep our method general. By 
re-weighted l1 minimization technique and a bisection 
algorithm, EDSPCA attempted to add an post processing to 
DSPCA method to find the principal components satisfying 
sparsity constraints. The drawback of the method is that the 
SDP problems involved in (2) and (6) contain more than O(n2) 
constraints, which make the memory requirements of 
Newton’s method prohibitive for very large-scale problems. 
This should be the subject of a future investigation by using 
smoothing technique, which has recently shown to be 
reducing memory requirements in solving large-scale SDP 
problems, see [15], [16]. Finally, finding an efficient 
re-weighted function in (7) is also one of our priorities. 
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