

Abstract—A reinforcement learning system based on the

kernel recursive least-squares algorithm for continuous
state-space is proposed in this paper. A kernel recursive
least-squares- support vector machine is used to realized a
mapping from state-action pair to Q-value function. An online
sparsification process that permits the addition of training
sample into the Q-function approximation only if it is
approximately linearly independent of the preceding training
samples. Simulation result of two-link robot manipulator show
that the proposed method has high learning efficiency – better
accuracy measured in terms of mean square error, and lesser
computation time compare to the least-squares support vector
machine.

Index Terms—Kernel methods, least-squares support vector
machine, recursive least squares, reinforcement learning.

I. INTRODUCTION
Support vector machine (SVM), which is based on

Vapnik’s structural risk minimization (SRM) [1], has become
one of the most popular methods in solving classification and
regression problems. Conventional SVMs have properties of
global optimization, and good adaptability. However, the
optimal solutions are obtained by solving standard quadratic
programming which results in high computational cost. In
order to reduce the computational cost, a least square support
vector (LS-SVM) was proposed in [2] by converting
inequality constraints to linear equations. LS-SVM has been
successfully applied to reinforcement learning (RL)
problems [3]. A RL problem is converted into a regression
problem, wherein the observed states and actions are
considered as inputs and Q-value functions as output. All the
training samples may be support vectors in LS-SVM, and
thus the support vectors are no longer sparse. It may lead to
poor generalization. In addition, with the number of the input
training pairs increasing, the number of equations will
increase which may result in higher computational cost.

Our focus in this paper is on reinforcement learning
problems. The objective in hand is to explore the use of a
support vector machine with sparse support vectors, low
computational cost and satisfactory accuracy. The kernel
recursive least-squares (KRLS) – SVM [4], is a strong
candidate to achieve this objective. We develop a
KRLS-SVM algorithm for reinforcement learning and
demonstrate its potential through case study – two-link robot
manipulator. The mean square error accuracy, computational

Manuscript received July 9, 2012; revised August 8, 2012.
The authors are with Department of Electrical Engineering, Indian

Institute of Technology – Delhi, New Delhi, India (e-mail: iitd.hitesh@
gmail.com; mgopal@ee.iitd.ac.in).

cost and robustness properties of this scheme are compared
with the scheme based on LS-SVM.

The paper is organized as follows. Section II presents
architecture of Q-learning system based on KRLS-SVM.
Section III gives details of on-line KRLS-SVM learning
algorithm. Section IV compares and discusses the empirical
performance study on the basis of simulation results.
Additionally this section highlights the features of
KRLS-SVM in comparison with LS-SVM. Finally in Section
V, the conclusions are presented.

II. Q-LEARNING SYSTEM BASED ON KRLS-SVM
In reinforcement learning paradigm, an agent (controller)

must learn from interaction with its environment (plant) in
order to achieve certain goals. The goal of RL agent is to
estimate the optimal policy or optimal value function for
Markov Decision Process (MDP) without knowing its model.
In order to do so, most current RL techniques estimate the
value of actions, i.e., the future reward one can expect as a
result of executing an action, using recursive estimation
techniques. One of the most well-known RL approaches is
Q-learning [5]. A Q-learning system observes the state
transition ts to 1ts + with an execution of an action ta at each
time step t, and receives an immediate reward tr . Watkins
(1989) proposed a procedure to iteratively update Q-values
that does not require a system model, and is given by:

1(,) (,) (() (,))t t t t
t t t tQ s a Q s a r V s Q s aη γ +← + + − (1)

The learning rate parameter 0 1η≤ ≤ is reduced to a small
value at a suitable rate, and γ is the discount factor used to
determine the proportion of the delay to the future rewards.
The recursive algorithm represented by (1) is guaranteed to
converge to the true value function if certain assumptions are
respected [6]. One of the assumptions is that Q-values are
stored in a lookup table, with single entry for each
state-action pair.

Support vector machine function approximation
(SVMQ-learning) is one of the RL frameworks to deal with
continuous space problem. Conventional SVMs have
properties of global optimization, and good adaptability.
However, the optimal solutions are obtained by solving
standard quadratic programming which is numerically
inefficient. A Least Squares Support Vector Machine
(LS-SVM) has good generalization property, and is used to
approximate the Q-values of state-action pairs online by
taking the advantage of not falling into the trap of local
minima. On the other hand, LS-SVM suffers from poor
sparsification of support vectors and results in higher

Reinforcement Learning with Kernel Recursive
Least-Squares Support Vector Machine

Hitesh Shah and M. Gopal

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

61810.7763/IJMLC.2012.V2.201

computational cost when number of training pairs increases.
A new Q-learning method on continuous state domains based
on Kernel Recursive Least-Squares Support Vector Machine
(KRLS-SVM) is proposed in this paper. Fig.1 shows the
architecture of the Q-learning system based on KRLS-SVM.

Fig. 1. KRLS-SVM architecture

In Fig.1, control action set is denoted as
{ }; 1, ,kU u k m= = K , where m is the number of possible

discrete control actions. A series of state-action pairs

(),k
kx u comprised of each action ku in action set and the

current system state { }1 2, , ,k k k k
nx x x x= K can be constituted.

The input of KRLS-SVM is the state-action pair (,)k
kx u ,

while the output is the estimated Q-value corresponding

to (,)k
kx u . Training samples of KRLS-SVM should be

obtained during interaction between the learning system and
its environment. In specific, control actions are selected using
an exploration/exploitation policy (EEP) in order to explore
the set of possible actions and acquire experience through the
RL signals [7]. We use a pseudo-stochastic exploration as in
[8]. In pseudo-stochastic exploration, we gradually reduce
the exploration (determined by the ε parameter) according to
some schedule; we have reduced ε to its 90 percent value
after every 50 iterations. The lower limit of parameter ε has
been fixed at 0.002 (to maintain exploration).

III. ONLINE KRLS-SVM LEARNING
The Kernel Recursive Least Squares (KRLS) algorithm

was introduced in [4] and has a conceptual foundation related
to Principal Component Analysis (PCA) and Support Vector
Machines (SVM). KRLS algorithm produces much sparser
solutions with higher robustness to noise. Moreover KRLS is
a fully online algorithm designed to operate in real-time
environment where data became available one sample at a
time. As a matter of fact, KRLS seems to be the best choice as
a function approximator in reinforcement learning algorithm.

In our setting, KRLS is presented with input-output pairs
i.e., state-action pair with estimated Q-value, arising from an
unknown mapping. The standard recursive least-square (RLS)
algorithm is used to recursively train a linear regression
model [9], which can be expressed in the following
parametric form:

ˆ () , () ; ,nQ f x w x b w bφ= = + ∈ ∈ (2)

where, ()xφ is a fixed, finite dimensional nonlinear mapping
from input space to some high-dimensional feature space,
.,. denotes inner products, and w is a weight vector of

parameters that can be adjusted in a manner such that the bias
term b becomes zero. In this case, regression model reduces
to the simpler form as:

ˆ () , () () ; T nQ f x w x x w wφ φ= = = ∈ (3)

The objective of learning algorithm is to minimize,
2

1

ˆ() (())
n

i i
i

g w y f x
=

= −∑ with respect to the w weight vector.

The optimal weight vector can be expressed as,

1
()

n

i i
i

w xα φ
=

=∑ and the regression model becomes,

ˆ () () ()TQ f x x xφ φ α= = (4)

Kernel methods present an alternative to the parametric
approach. KRLS attempts to learn an approximation to the
mapping ˆ ()f x in the form of a weighted linear sum of the

kernels (,) (), ()i ik x x x xφ φ= , where { } 1

t
i i

x
=

 are the
training data points up to time t . This leads to

1

ˆ () (,)
t

i i
i

Q f x k x xα
=

= =∑ (5)

The vector ix associated with coefficients 0iα > are
called Support Vectors and only these contribute to
minimizing the cost function. In general, Radial Basis kernel
function is the most common choice for nonlinear system
study.

In order to reduce the number of adjustable parameters in
(5), KRLS-SVM employs a form of online sparsification. By
making use of online sparsification, the training data can be
stored in a compact form, i.e., only a fraction of training data
will be actually used for training purpose. The sparsification
methodology permits the addition of training sample into the
approximation (5) only if it is approximately linearly
independent of the preceding training samples. In the
sparsification procedure, the linearly independent training
data points will be stored in a Dictionary Set. To prove the
linear dependency of new data vector on the dictionary
vectors, the approximate linear dependences (ALD) test is

2
1

1
min () ()

t

t j j ta j
a x xδ φ φ υ

−

=

= − <∑ (6)

where υ is the dictionary-inclusion threshold, which is an
important tuning parameter that determines the accuracy of
approximation (5). Solving for optimality of the cost function,
we can get: -1

-1 -1K k ()t t t ta x= %% and T
-1k ()t tt t t tk x aδ = − % ,

where 1 ,[K] (,)t i j i jk x x− =% % % , -1[k ()] (,)t t i i jx k x x=% % and

(,)tt t tk k x x= % % . While updating the weight vector α online, if

iδ υ< , the new training data point will not be added in the

Action selector
(ε -greedy)

Unknown
Plant

U

–

+

+

1()kV xγ +

()kQ x

kx

KRLS-SVM

 TD error

kcu

vK

+ pdu
kx

Error metric
evaluator

+
kc

 (,) k
i iQ x u u U∀ ∈

(desired)kx

cu

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

619

dictionary set. But if iδ υ> then new training data point will
be added in the dictionary set. As a result, the weight vector

11 2(, ,)
tt mα α α α
−

= K are learned by KRLS over time through

successive minimization of the approximation error in the
least-squares sense. We use KRLS algorithm as proposed in
[4] for reinforcement learning. Q-learning method based on
KRLS-SVM can be summarized as follows:

Step (1) Initialize the KRLS-SVM model with the kernel
function, variance of Gaussian, and linear
dependence threshold.

Step (2) Start the simulation to construct a series of
state-action pairs (,)kx u comprising of each
action u in action set U and current state kx .

Step (3) Add this training set into dictionary set and
compute the kernel weight vector (alpha).

Step (4) Obtain Q-values (,)k
kQ x u corresponding to

(,)k
kx u for each action ku in action set U by

solving regression model of the KRLS-SVM, send
them to a ε -greedy action selector and obtain the
actual action.

Step (5) Perform actual action and obtain reward and
successor state 1kx + .

Step (6) Update the Q-value according to the Eq. (1), to
obtain the target Q-value.

Step (7) With the next sample of training set, perform the
approximate linear dependence (ALD) test for it.

Step (8) If ALD test error is less than the threshold value,
go to step (10).

Step (9) Add the new sample to dictionary set. Update the
kernel weight vector, and go to step (11).

Step (10) Keep dictionary set unchanged. Update the kernel
weight vector.

Step (11) If training set has any element left, go to step (7).

Train the KRLS-SVM model and assign 1k kx x += . Repeat
the procedure for on-line learning.

IV. SIMULATION STUDIES AND ANALYSIS
To verify the proposed KRLS-SVM learning approach, we

use two-link robot manipulator tracking control problem as
the standard bench mark.

In robot-manipulator tracking control problem, we try to
train the kernel recursive least square support vector machine
so that its outputs can track those of an unknown dynamic
system over the time interval [0, T]. The dynamical model of
the two-link robotic manipulator and parameters as specified
in [10], have been used in this simulation study.

A. Controller Learning Details
Simulation parameters and learning details for

KRLS-SVM value function approximator in reinforcement
learning control structure are as follows:

We define tracking error vector as: k k k
de θ θ= − and cost

function , 0k k k Tc e e= + Λ Λ = Λ >& with { }diag 30,20Λ = .
Maximum limit of error is taken as 0.2 rad for both the links
(10% of peak-to-peak of reference trajectory). System state

space (continuous) has four variables, i.e.,

1 2 1 2 1 2 1 2[] []k T Tx x x x xθ θ θ θ= =& & & & . Controller action

sets for link1 and link2 are [](1) 20 0 20U = − Nm, and

[](2) 2 0 2U = − Nm, respectively. Exploration level ε
decays from 0.5 0.002→ over the iterations. The discount
factor γ is set to 0.8; learning-rate parameter η is set to 0.2,
and PD gain matrix { }diag 20,20vK = . We deliberately

introduce deterministic noise of ±1% in control effort with a
probability of (1/3), for stochastic simulation.

A KRLS-SVM is used to realize mapping from
state-action pair to Q-value function. For simplicity, the
controller uses two function approximators, one each for the
two links. The training samples of KRLS-SVM are obtained
during the interaction between the controller and the
environment. The Gaussian kernel

2((() /))(,) x yK x y e ρ− −= is
chosen for our simulation studies. The variance of Gaussian
kernel is set to 0.1, and linear dependence threshold to 0.1.

In controller implementations, we have used controller
structure with an inner PD loop. Control action to the robot
manipulator is a combination of an action generated by an
adaptive learning RL signal through KRLS-SVM and a fixed
gain PD controller signal. The PD loop will maintain stability
until KRLS-SVM controller learns, starting with zero
initialized Q-values. The controller, thus, requires no offline
learning.

B. Simulation Results
In order to study the learning performance, and robustness

against uncertainties, KRLS-SVM learning approach has
been simulated on two-link robot manipulator control
problem. MATLAB 7.4.0 (R2007a) has been used as
simulation tool. To analyze the KRLS-SVM algorithm for
computational cost, accuracy, and robustness, we compare
the proposed approach with LS-SVM reinforcement learning
approach.

C. Learning Performance Study
The physical system has been simulated for a single run of

10 sec using fourth-order Runge-Kutta method, with fixed
time step of 10 msec over a single episode. The the output
tracking error (both the links) and control torque (both the
links) for LS-SVM and KRLS-SVM learning algorithms are
shown in Figure 2 and Figure 3, respectively. Table I
tabulates the mean square error, absolute maximum error
(max |e(t)|), and absolute maximum control effort (max |τ |)
under nominal operating conditions.

0 100 200 300 400 500 600 700 800 900 1000
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 2.(a) Output tracking error (link1)

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

620

0 100 200 300 400 500 600 700 800 900 1000
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 2.(b) Output tracking error (link2)

0 100 200 300 400 500 600 700 800 900 1000
-300

-200

-100

0

100

200

300

Time (sec)

C
on

tro
l t

or
qu

e
(N

)

Fig. 3.(a) Control torque (link1)

0 100 200 300 400 500 600 700 800 900 1000
-100

-50

0

50

100

150

200

250

300

350

400

Time(sec)

C
on

tro
l t

or
qu

e
(N

)

LS-SVM
KRLS-SVM

Fig. 3.(b) Control torque (link2)

TABLE I: COMPARISON OF CONTROLLERS

Controller
MSE (rad) max |e(t)| (rad) max |τ | (Nm)

Training
Time
(sec)

Link 1 Link 2 Link 1 Link 2 Link 1 Link
2 ------

LS-SVM 0.0110 0.0071 0.1848 0.1042 133.28 54.75 32.607

KRLS-SVM 0.0080 0.0065 0.1322 0.0843 104.65 44.90 14.908

D. Robustness Study
In the following, we compare the performance of LS-SVM

and KRLS-SVM controllers under uncertainties. For this
study, we trained the controller for 20 episodes, and then
evaluated the performance for two cases:

Effect of payload variations: The end-effector mass is
varied with time, which corresponds to the robotic arm
picking up and releasing payloads having different masses.
The mass is varied as: a) 2 2 s ; 1 kgt m< = b)

22 3.5 s ; 2.5 kgt m≤ < = c) 23.5 4.5 s ; 1 kgt m≤ < = d)

24.5 6 s ; 4 kgt m≤ < = e) 26 7.5 s ; 1 kgt m≤ < = f)

27.5 9 s ; 2 kgt m≤ < = g) 29 10 s ; 1 kgt m≤ < = . Figs.
4(a) and (b) show the output tracking errors (both the links)
and Table II tabulates the mean square error, absolute
maximum error (max |e(t)|), and absolute maximum control
effort (max |τ |) at payload variation with time.

0 1 2 3 4 5 6 7 8 9 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 4.(a) Output tracking error (link1)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 4.(b) Output tracking error (link2)

TABLE II: COMPARISON OF CONTROLLERS

Controller
MSE (rad) max |e(t)| (rad) max |τ | (Nm)

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

LS-SVM 0.025
4

0.012
1

0.379
3

0.907
0

281.8
7

402.0
1

KRLS-SVM 0.022
0

0.012
2

0.398
4

0.907
5

265.6
0

400.0
0

E. Effects of External Disturbances
A torque disturbance with a sinusoidal variation of

frequency 2π rad/sec, was added to the model with time. The
magnitude of torque disturbance is expressed as a percentage
of control effort. The magnitude is varied as: a) 2 s ; 0%t <
b) 2 3.5 s ; 0.2%t≤ < c) 3.5 4.5 s ; 0%t≤ < d)
4.5 6 s ; 0.8%t≤ < e) 6 7.5 s ; 0%t≤ < f)
7.5 9 s ; 0.2%t≤ < − g) 9 10 s ; 0%t≤ <

Figs. 5(a) and (b) show the output tracking errors (both the
links) and Table III tabulates the mean square error, absolute
maximum error (max |e(t)|), and absolute maximum control
effort (max |τ |) for torque disturbances added to the model
variation with time.

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

621

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 5.(a) Output tracking error (link1)

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

E
rro

r (
ra

d)

LS-SVM
KRLS-SVM

Fig. 5.(b) Output tracking error (link2)

TABLE III: COMPARISON OF CONTROLLERS

Controller
MSE (rad) max |e(t)| (rad) max |τ | (Nm)

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

LS-SVM 0.012
8

0.006
4

0.379
3

0.908
0

285.0
5

397.9
9

KRLS-SVM 0.012
5

0.006
6

0.380
5

0.907
5

265.5
9

400.0
0

V. CONCLUSION
As an important machine learning method reinforcement

learning has a difficulty scaling to challenges in large-scale

space problems. A Q-learning method is proposed in this
paper by taking advantage of good generalization ability with
low computational cost of KRLS-SVM. An online
sparsification process that permits the addition of training
sample into the Q-function approximation only if it is
approximately linearly independent of the preceding training
samples.

Simulation results of two-link robot manipulator show that
the proposed Q-learning method is suitable for working in
large-scale continuous state-space; in fact the proposed
scheme gives better accuracy, lower computational cost and
better robustness property compare to the scheme based on
LS-SVM.

REFERENCES
[1] V. Vapnik, The nature of statistical learning theory, Springer Verlag,

1995.
[2] J. A. K. Suykens and J. Vandewalle, “Least square support vector

machine classifiers”, Neural processing letters, vol. 9, 1999, pp.
293-300.

[3] X. Wang, X. Tian, and Y. Cheng, “Value approximation with
least square support vector machines in reinforcement learning
system,” Journal of Computational and Theoretical
Nanoscience, vol. 4, no. 7-8, 2007, pp. 1290-1294.

[4] Yaakov Engel, Shie Mannor, , and Ron Meir, “The Kernel
Recursive Least-Squares Algorithm,” IEEE Transations on
Signal Processing, Vol. 52, No. 8, 2004.

[5] C. H. Watkins, “Learning from delayed rewards,” Thesis,
University of Cambridge, England, 1989.

[6] Singh S., Jaakkola T., Littman M., Szpesvari C. (2000)
Convergence results for single step on-policy reinforcement
learning algorithms, Machine learning, Vol. 38, pp.287-308.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, Cambridge, MIT Press, 1998.

[8] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” in Proc. 6th
IEEE Conf. Fuzzy Systems, Barcelona, Spain, vol. 2, 1997,
pp.659–662.

[9] R. H. Myers, Classical and Modern regression with
Applications, 2nd Edn., Boston, 1994.

[10] Green A., Sasiadek J. Z., Dynamics and trajectory tracking
control of a two-link robot manipulator, J. Vibration Control
2004; 10(10), 1415–1440.

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

622

