
  

  
Abstract—A reinforcement learning system based on the 

kernel recursive least-squares algorithm for continuous 
state-space is proposed in this paper. A kernel recursive 
least-squares- support vector machine is used to realized a 
mapping from state-action pair to Q-value function. An online 
sparsification process that permits the addition of training 
sample into the Q-function approximation only if it is 
approximately linearly independent of the preceding training 
samples. Simulation result of two-link robot manipulator show 
that the proposed method has high learning efficiency – better 
accuracy measured in terms of mean square error, and lesser 
computation time compare to the least-squares support vector 
machine. 
 

Index Terms—Kernel methods, least-squares support vector 
machine, recursive least squares, reinforcement learning. 
 

I. INTRODUCTION 
Support vector machine (SVM), which is based on 

Vapnik’s structural risk minimization (SRM) [1], has become 
one of the most popular methods in solving classification and 
regression problems. Conventional SVMs have properties of 
global optimization, and good adaptability. However, the 
optimal solutions are obtained by solving standard quadratic 
programming which results in high computational cost. In 
order to reduce the computational cost, a least square support 
vector (LS-SVM) was proposed in [2] by converting 
inequality constraints to linear equations. LS-SVM has been 
successfully applied to reinforcement learning (RL) 
problems [3]. A RL problem is converted into a regression 
problem, wherein the observed states and actions are 
considered as inputs and Q-value functions as output. All the 
training samples may be support vectors in LS-SVM, and 
thus the support vectors are no longer sparse. It may lead to 
poor generalization. In addition, with the number of the input 
training pairs increasing, the number of equations will 
increase which may result in higher computational cost. 

Our focus in this paper is on reinforcement learning 
problems. The objective in hand is to explore the use of a 
support vector machine with sparse support vectors, low 
computational cost and satisfactory accuracy. The kernel 
recursive least-squares (KRLS) – SVM [4], is a strong 
candidate to achieve this objective. We develop a 
KRLS-SVM algorithm for reinforcement learning and 
demonstrate its potential through case study – two-link robot 
manipulator. The mean square error accuracy, computational 
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cost and robustness properties of this scheme are compared 
with the scheme based on LS-SVM. 

The paper is organized as follows. Section II presents 
architecture of Q-learning system based on KRLS-SVM. 
Section III gives details of on-line KRLS-SVM learning 
algorithm. Section IV compares and discusses the empirical 
performance study on the basis of simulation results. 
Additionally this section highlights the features of 
KRLS-SVM in comparison with LS-SVM. Finally in Section 
V, the conclusions are presented. 

 

II. Q-LEARNING SYSTEM BASED ON KRLS-SVM 
In reinforcement learning paradigm, an agent (controller) 

must learn from interaction with its environment (plant) in 
order to achieve certain goals. The goal of RL agent is to 
estimate the optimal policy or optimal value function for 
Markov Decision Process (MDP) without knowing its model. 
In order to do so, most current RL techniques estimate the 
value of actions, i.e., the future reward one can expect as a 
result of executing an action, using recursive estimation 
techniques. One of the most well-known RL approaches is 
Q-learning [5]. A Q-learning system observes the state 
transition ts  to 1ts +  with an execution of an action ta at each 
time step t, and receives an immediate reward tr . Watkins 
(1989) proposed a procedure to iteratively update Q-values 
that does not require a system model, and is given by: 

1( , ) ( , ) ( ( ) ( , ))t t t t
t t t tQ s a Q s a r V s Q s aη γ +← + + −       (1) 

The learning rate parameter 0 1η≤ ≤  is reduced to a small 
value at a suitable rate, and γ  is the discount factor used to 
determine the proportion of the delay to the future rewards. 
The recursive algorithm represented by (1) is guaranteed to 
converge to the true value function if certain assumptions are 
respected [6]. One of the assumptions is that Q-values are 
stored in a lookup table, with single entry for each 
state-action pair. 

Support vector machine function approximation 
(SVMQ-learning) is one of the RL frameworks to deal with 
continuous space problem. Conventional SVMs have 
properties of global optimization, and good adaptability. 
However, the optimal solutions are obtained by solving 
standard quadratic programming which is numerically 
inefficient. A Least Squares Support Vector Machine 
(LS-SVM) has good generalization property, and is used to 
approximate the Q-values of state-action pairs online by 
taking the advantage of not falling into the trap of local 
minima. On the other hand, LS-SVM suffers from poor 
sparsification of support vectors and results in higher 
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computational cost when number of training pairs increases. 
A new Q-learning method on continuous state domains based 
on Kernel Recursive Least-Squares Support Vector Machine 
(KRLS-SVM) is proposed in this paper. Fig.1 shows the 
architecture of the Q-learning system based on KRLS-SVM. 

 

 
 

Fig. 1.  KRLS-SVM architecture 
 

In Fig.1, control action set is denoted as 
{ };  1, ,kU u k m= = K , where m is the number of possible 

discrete control actions. A series of state-action pairs 

( ),k
kx u  comprised of each action ku  in action set and the 

current system state { }1 2, , ,k k k k
nx x x x= K  can be constituted. 

The input of KRLS-SVM is the state-action pair ( , )k
kx u , 

while the output is the estimated Q-value corresponding 

to ( , )k
kx u . Training samples of KRLS-SVM should be 

obtained during interaction between the learning system and 
its environment. In specific, control actions are selected using 
an exploration/exploitation policy (EEP) in order to explore 
the set of possible actions and acquire experience through the 
RL signals [7]. We use a pseudo-stochastic exploration as in 
[8]. In pseudo-stochastic exploration, we gradually reduce 
the exploration (determined by the ε parameter) according to 
some schedule; we have reduced ε to its 90 percent value 
after every 50 iterations. The lower limit of parameter ε has 
been fixed at 0.002 (to maintain exploration). 

 

III. ONLINE KRLS-SVM LEARNING 
The Kernel Recursive Least Squares (KRLS) algorithm 

was introduced in [4] and has a conceptual foundation related 
to Principal Component Analysis (PCA) and Support Vector 
Machines (SVM). KRLS algorithm produces much sparser 
solutions with higher robustness to noise. Moreover KRLS is 
a fully online algorithm designed to operate in real-time 
environment where data became available one sample at a 
time. As a matter of fact, KRLS seems to be the best choice as 
a function approximator in reinforcement learning algorithm. 

In our setting, KRLS is presented with input-output pairs 
i.e., state-action pair with estimated Q-value, arising from an 
unknown mapping. The standard recursive least-square (RLS) 
algorithm is used to recursively train a linear regression 
model [9], which can be expressed in the following 
parametric form: 

ˆ ( ) , ( ) ;   ,nQ f x w x b w bφ= = + ∈ ∈          (2) 

where, ( )xφ  is a fixed, finite dimensional nonlinear mapping 
from input space to some high-dimensional feature space, 
.,.  denotes inner products, and w  is a weight vector of 

parameters that can be adjusted in a manner such that the bias 
term b becomes zero. In this case, regression model reduces 
to the simpler form as: 

ˆ ( ) , ( ) ( )      ; T nQ f x w x x w wφ φ= = = ∈          (3) 

The objective of learning algorithm is to minimize, 
2

1

ˆ( ) ( ( ))
n

i i
i

g w y f x
=

= −∑  with respect to the w weight vector. 

The optimal weight vector can be expressed as, 

1
( )

n

i i
i

w xα φ
=

=∑  and the regression model becomes,  

ˆ ( ) ( ) ( )TQ f x x xφ φ α= =             (4) 

Kernel methods present an alternative to the parametric 
approach. KRLS attempts to learn an approximation to the 
mapping ˆ ( )f x  in the form of a weighted linear sum of the 

kernels ( , ) ( ), ( )i ik x x x xφ φ= , where { } 1

t
i i

x
=

 are the 
training data points up to time t . This leads to  

1

ˆ ( ) ( , )
t

i i
i

Q f x k x xα
=

= =∑             (5) 

The vector ix  associated with coefficients 0iα >  are 
called Support Vectors and only these contribute to 
minimizing the cost function. In general, Radial Basis kernel 
function is the most common choice for nonlinear system 
study. 

In order to reduce the number of adjustable parameters in 
(5), KRLS-SVM employs a form of online sparsification. By 
making use of online sparsification, the training data can be 
stored in a compact form, i.e., only a fraction of training data 
will be actually used for training purpose. The sparsification 
methodology permits the addition of training sample into the 
approximation (5) only if it is approximately linearly 
independent of the preceding training samples. In the 
sparsification procedure, the linearly independent training 
data points will be stored in a Dictionary Set. To prove the 
linear dependency of new data vector on the dictionary 
vectors, the approximate linear dependences (ALD) test is  

2
1

1
min ( ) ( )

t

t j j ta j
a x xδ φ φ υ

−

=

= − <∑          (6) 

where υ  is the dictionary-inclusion threshold, which is an 
important tuning parameter that determines the accuracy of 
approximation (5). Solving for optimality of the cost function, 
we can get: -1

-1 -1K k ( )t t t ta x= %%  and T
-1k ( )t tt t t tk x aδ = − % , 

where 1 ,[K ] ( , )t i j i jk x x− =% % % , -1[k ( )] ( , )t t i i jx k x x=% %  and 

( , )tt t tk k x x= % % . While updating the weight vector α online, if 

iδ υ< , the new training data point will not be added in the 
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dictionary set. But if iδ υ>  then new training data point will 
be added in the dictionary set. As a result, the weight vector 

11 2( , , )
tt mα α α α
−

= K  are learned by KRLS over time through 

successive minimization of the approximation error in the 
least-squares sense. We use KRLS algorithm as proposed in 
[4] for reinforcement learning. Q-learning method based on 
KRLS-SVM can be summarized as follows: 

Step (1)  Initialize the KRLS-SVM model with the kernel 
function, variance of Gaussian, and linear 
dependence threshold.  

Step (2)  Start the simulation to construct a series of 
state-action pairs ( , )kx u comprising of each 
action u  in action set U and current state kx .  

Step (3)  Add this training set into dictionary set and 
compute the kernel weight vector (alpha). 

Step (4)  Obtain Q-values ( , )k
kQ x u  corresponding to 

( , )k
kx u  for each action ku in action set U by 

solving regression model of the KRLS-SVM, send 
them to a ε -greedy action selector and obtain the 
actual action. 

Step (5)  Perform actual action and obtain reward and 
successor state 1kx + .  

Step (6)  Update the Q-value according to the Eq. (1), to 
obtain the target Q-value. 

Step (7)  With the next sample of training set, perform the 
approximate linear dependence (ALD) test for it. 

Step (8)  If ALD test error is less than the threshold value, 
go to step (10). 

Step (9)  Add the new sample to dictionary set. Update the 
kernel weight vector, and go to step (11). 

Step (10)  Keep dictionary set unchanged. Update the kernel 
weight vector. 

Step (11)  If training set has any element left, go to step (7). 

Train the KRLS-SVM model and assign 1k kx x += . Repeat 
the procedure for on-line learning. 

 

IV. SIMULATION STUDIES AND ANALYSIS 
To verify the proposed KRLS-SVM learning approach, we 

use two-link robot manipulator tracking control problem as 
the standard bench mark.  

In robot-manipulator tracking control problem, we try to 
train the kernel recursive least square support vector machine 
so that its outputs can track those of an unknown dynamic 
system over the time interval [0, T]. The dynamical model of 
the two-link robotic manipulator and parameters as specified 
in [10], have been used in this simulation study. 

A.  Controller Learning Details 
Simulation parameters and learning details for 

KRLS-SVM value function approximator in reinforcement 
learning control structure are as follows: 

We define tracking error vector as: k k k
de θ θ= − and cost 

function  , 0k k k Tc e e= + Λ Λ = Λ >&  with { }diag 30,20Λ = . 
Maximum limit of error is taken as 0.2 rad for both the links 
(10% of peak-to-peak of reference trajectory). System state 

space (continuous) has four variables, i.e., 

1 2 1 2 1 2 1 2[       ] [       ]k T Tx x x x xθ θ θ θ= =& & & & . Controller action 

sets for link1 and link2 are [ ](1) 20 0 20U = − Nm, and 

[ ](2) 2 0 2U = − Nm, respectively. Exploration level ε  
decays from 0.5 0.002→  over the iterations. The discount 
factor γ is set to 0.8; learning-rate parameter η is set to 0.2, 
and PD gain matrix { }diag 20,20vK = . We deliberately 

introduce deterministic noise of ±1% in control effort with a 
probability of (1/3), for stochastic simulation. 

A KRLS-SVM is used to realize mapping from 
state-action pair to Q-value function. For simplicity, the 
controller uses two function approximators, one each for the 
two links. The training samples of KRLS-SVM are obtained 
during the interaction between the controller and the 
environment. The Gaussian kernel 

2( (( ) / ) )( , ) x yK x y e ρ− −= is 
chosen for our simulation studies. The variance of Gaussian 
kernel is set to 0.1, and linear dependence threshold to 0.1. 

In controller implementations, we have used controller 
structure with an inner PD loop. Control action to the robot 
manipulator is a combination of an action generated by an 
adaptive learning RL signal through KRLS-SVM and a fixed 
gain PD controller signal. The PD loop will maintain stability 
until KRLS-SVM controller learns, starting with zero 
initialized Q-values. The controller, thus, requires no offline 
learning. 

B. Simulation Results 
In order to study the learning performance, and robustness 

against uncertainties, KRLS-SVM learning approach has 
been simulated on two-link robot manipulator control 
problem. MATLAB 7.4.0 (R2007a) has been used as 
simulation tool. To analyze the KRLS-SVM algorithm for 
computational cost, accuracy, and robustness, we compare 
the proposed approach with LS-SVM reinforcement learning 
approach.  

C. Learning Performance Study 
The physical system has been simulated for a single run of 

10 sec using fourth-order Runge-Kutta method, with fixed 
time step of 10 msec over a single episode. The the output 
tracking error (both the links) and control torque (both the 
links) for LS-SVM and KRLS-SVM learning algorithms are 
shown in Figure 2 and Figure 3, respectively. Table I 
tabulates the mean square error, absolute maximum error 
(max |e(t)|), and absolute maximum control effort (max |τ |) 
under nominal operating conditions. 
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Fig. 2.(a) Output tracking error (link1) 
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Fig. 2.(b) Output tracking error (link2) 
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Fig. 3.(a) Control torque (link1) 
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Fig. 3.(b) Control torque (link2) 

 
TABLE I: COMPARISON OF CONTROLLERS 

Controller 
MSE (rad) max |e(t)| (rad) max |τ | (Nm)

Training 
Time 
(sec) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 
2 ------ 

LS-SVM 0.0110 0.0071 0.1848 0.1042 133.28 54.75 32.607 

KRLS-SVM 0.0080 0.0065 0.1322 0.0843 104.65 44.90 14.908 

 

D. Robustness Study 
In the following, we compare the performance of LS-SVM 

and KRLS-SVM controllers under uncertainties. For this 
study, we trained the controller for 20 episodes, and then 
evaluated the performance for two cases:  

Effect of payload variations: The end-effector mass is 
varied with time, which corresponds to the robotic arm 
picking up and releasing payloads having different masses. 
The mass is varied as: a) 2 2 s ; 1 kgt m< = b) 

22  3.5 s ; 2.5 kgt m≤ < = c) 23.5  4.5 s ; 1 kgt m≤ < =  d) 

24.5  6 s ; 4 kgt m≤ < =  e) 26  7.5 s ; 1 kgt m≤ < =  f) 

27.5  9 s ; 2 kgt m≤ < =  g) 29  10 s ; 1 kgt m≤ < = . Figs. 
4(a) and (b) show the output tracking errors (both the links) 
and Table II tabulates the mean square error, absolute 
maximum error (max |e(t)|), and absolute maximum control 
effort (max |τ |) at payload variation with time. 
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Fig. 4.(a) Output tracking error (link1) 
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Fig. 4.(b) Output tracking error (link2) 

 
TABLE II:  COMPARISON OF CONTROLLERS 

Controller 
MSE (rad) max |e(t)| (rad) max |τ | (Nm) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

LS-SVM 0.025
4 

0.012
1 

0.379
3 

0.907
0 

281.8
7 

402.0
1 

KRLS-SVM 0.022
0 

0.012
2 

0.398
4 

0.907
5 

265.6
0 

400.0
0 

 

E. Effects of External Disturbances 
A torque disturbance with a sinusoidal variation of 

frequency 2π rad/sec, was added to the model with time. The 
magnitude of torque disturbance is expressed as a percentage 
of control effort. The magnitude is varied as: a) 2 s ; 0%t <  
b) 2  3.5 s ; 0.2%t≤ <  c) 3.5  4.5 s ; 0%t≤ <  d) 
4.5  6 s ; 0.8%t≤ < e) 6  7.5 s ; 0%t≤ <  f) 
7.5  9 s ; 0.2%t≤ < −  g) 9  10 s ; 0%t≤ <  

Figs. 5(a) and (b) show the output tracking errors (both the 
links) and Table III tabulates the mean square error, absolute 
maximum error (max |e(t)|), and absolute maximum control 
effort (max |τ |) for torque disturbances added to the model 
variation with time. 
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Fig. 5.(a) Output tracking error (link1) 
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Fig. 5.(b) Output tracking error (link2) 

 

TABLE III:  COMPARISON OF CONTROLLERS 

Controller 
MSE (rad) max |e(t)| (rad) max |τ | (Nm) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

LS-SVM 0.012
8 

0.006
4 

0.379
3 

0.908
0 

285.0
5 

397.9
9 

KRLS-SVM 0.012
5 

0.006
6 

0.380
5 

0.907
5 

265.5
9 

400.0
0 

 

V. CONCLUSION 
As an important machine learning method reinforcement 

learning has a difficulty scaling to challenges in large-scale 

space problems. A Q-learning method is proposed in this 
paper by taking advantage of good generalization ability with 
low computational cost of KRLS-SVM. An online 
sparsification process that permits the addition of training 
sample into the Q-function approximation only if it is 
approximately linearly independent of the preceding training 
samples. 

Simulation results of two-link robot manipulator show that 
the proposed Q-learning  method is suitable for working in 
large-scale continuous state-space; in fact the proposed 
scheme gives better accuracy, lower computational cost and 
better robustness property compare to the scheme based on 
LS-SVM. 
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