
  

  
Abstract—Accuracy and consistency are the most important 

factors in any databases but increasing size of data has become 
a great challenge in this area. Detecting duplicate records is an 
important and very difficult process in huge databases 
containing millions of records. Field matching is a major 
process for duplicated record detection. In this paper, an 
attempt is made to provide a brief survey of field matching 
techniques and their efficiency. 
 

Index Terms—Duplicate detection, character based 
similarity metrics, edit distance, Jaro distance, Q-Grams. 
 

I. INTRODUCTION 
With extending of the information technology, raw data 

plays an important role in organizations and is infrastructure 
of decision systems. Therefore increasing the accuracy of 
data will be imperative. This work will be complicated in 
massive database. On the other hand, integration of several 
databases with different representations of data reduces data 
accuracy.     

Therefore existence of duplicate records is one of the 
causes that reduce data accuracy. Duplication occurs when 
database contains records that have different views of an 
identical entity. This variation of representation can be 
caused by integration of database with different structures or 
spelling and phonetic errors or abbreviations. 

On the other hand, existence of duplicate records in 
database leads to negative impacts in process of knowledge 
acquisition from these resources. Therefore several 
techniques and algorithms have been presented for detection 
of duplicate records. Field matching technique is the first step 
in detection of duplicate records. The various algorithms 
have been represented for field similarity estimation and 
record matching step [1] [2] [3].Usage of data mining [4] in 
the area of data cleaning is as effective as in discovering 
reference data and validation rules from the data itself. 
Similarity metrics that are commonly used to detect similar 
field entries, and present an extensive set of duplicate 
detection algorithms presented in [5] that can detect 
approximately duplicate records in a database. The paper [6] 
presented two learnable text similarity measures suitable for 
estimation strings similarity: an extended variant of learnable 
string edit distance, and a novel vector-space based measure 
that employs a Support Vector Machine (SVM) for training. 

According to data explosion phenomenon, duplicate 
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detection in massive database will become imperative. For 
obtaining this goal, we describe the existence techniques for 
field matching phase in duplicate detection process then 
present performance of these approaches. 

 

II. FIELD MATCHING METHODS 
    Field matching methods strongly depend on field type 

and content. So selecting the appropriate and effective fields 
will be important in duplication step. For example, the 
database containing people profiles, gender field can't effect 
on duplicate detection but name, family name and address 
fields can help to duplicate detection. On the other hand, 
more discussed fields in this process are from string type so 
in this paper string matching algorithms will be present. 

 

III. BASIC CONCEPTS 
If you are using Word, use either the Microsoft Equation 

Editor or the MathType add-on (http://www.mathtype.com) 
for equations in your paper (Insert | Object | Create New | 
Microsoft Equation or MathType Equation). “Float over 
text” should not be selected.  

 

IV. UNITS 
In character based Matching algorithms, character is the 

smallest unit that is studied in field similarity estimation. 
These algorithms detect spelling or typing errors. 
S1, S2 are strings and | s1 |, |s2 | show the strings length. 
Existing operator to convert two strings together is as 
follows: 

  
1) Insertion operation: insert a character into string and is 
shown with ),( xεδ . 
2) Deletion operation: delete a character from string and is 
shown with ),( εδ x .  
3) Substitution operation: replacing one character from s1 by 
a character from s2 and is shown with ),( baδ .  
4) Transposition operation: transpose two characters in one 
string. 

Div is a factor that can be calculated by one of three 
methods that are shown in (1),(2),(3):    

 

|)s| |,smin(|  div 21sw =                                   (1)                  

|)s| |,smax(|  div 21sw =                                 (2) 
                  

|)s| |,savg(|  div 21sw =                                 (3) 
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V. EDIT DISTANCE  
The edit distance between two strings s1 and s2 is the 

Minimum number of edit operations of single characters 
needed to transform the string s1 into s2. There are insertion, 
deletion and Substitution operations. In the simplest form, each 
edit operation has cost 1. This version of edit distance is also 
referred to as the Levenshtein distance [5]. This technique 
gives the lowest cost of a sequence of operators. That is 
always smaller than or equal to length of longer field. To 
obtain this cost, distance matrix will be constructed for two 
strings. After obtaining the distance between two strings, 
amount of similarity will be calculated by using (4): 

 

    
swdiv

ssdistsssim ),(0.1),( 21
21 −=                              (4)                                                              

 
The result of (4) will be between 0 and 1 that represents the 

amount of similarity between two fields. 
 

VI. EDIT DISTANCE  
This algorithm has only substitutions, which cost 1 in the 

simplified definition[7]. In the literature the search problem 
in many cases is called “string matching with k mismatches.” 
The distance is symmetric, and it is finite whenever |s1|=|s2|. 
In this case it holds ( ) ||,0 121 sssd ≤≤ . 

 

VII. EPISODE DISTANCE 
This Algorithm has only insertions, which cost 1.In the 

literature the search problem in many cases is called “episode 
matching”. This distance is not symmetric, and it may not be 
possible to convert s1 into s2 in this case [7]. 

 

VIII. BAG DISTANCE 
 
This algorithm has recently been proposed [8] as a cheap 

approximation to edit distance. A bag is defined as a multi set 
of the characters in a string for example, multi set ms(‘peter’) 
= {‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, and the bag distance between two 
strings is calculated as in (5) [9]: 
 

     )= |x-y||,y-x|max(  )s ,(sdist 21bag                        (5)                                                          

x = ms(s1), y = ms(s2) and | · | denoting the number of 
elements in a multi set[9]. For example: distbag (‘peter’, 
‘pedro’) =distbag({‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, {‘d’, ‘e’, ‘o’, ‘p’, ‘r’}) 
= max(|{‘e’, ‘t’}|, |{‘d’, ‘o’}|) = 2. Now the value of string 
similarity between strings is obtained by using (4). 
 

IX. SMITH-WATERMAN 
This method is a dynamic programming algorithm. It was 

first developed to find optimal alignments between related 
DNA or protein sequences [5]. Five operations with 
particular weight exist in this algorithm: 

• Weight of actual matching between the pairs of 
characters=2 

• Weight of the approximate matching between pairs 
of characters (for example: m, n)=1  

• Weight of mismatch between pairs of characters =-1 
• Weight of gap in strings=-1 

The Smith-Waterman algorithm has best score as main 
adjustable parameter. This parameter is calculated by 
construction matrix of match scores for each pair of symbols 
in the alphabet [10].The matrix should be constructed by 
using (6). W is assumed a cost of an operator and the values 
of H (i, 0) and         H (0,j) can be obtained by (7):  
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nj0  ,    0j)H(0,
mi0  ,    00) H(i,

≤≤=
≤≤=                                         (7)                   

 
Bssw (Best Score) is the best and maximum value that is 

obtained by score matrix. divsw is a factor that is obtained by 
(1),(2) or (3). Match score equal to two value that weight of 
matching characters. After obtaining these parameters, 
Strings Similarity can be calculated by using (8) as 
following: 

     
scorematch   div

bs )s ,(ssim
sw

sw
21sw ×

=                        (8)                  

For example: “peter" and “pedro" are two strings. In First 
step we should construct the score matrix from these strings 
by using (6). We show this matrix in Fig. 1: 

 
Fig. 1. Score Matrix For Smith-Waterman 

 
Now by using (8) and value of bssw , we can estimate 

strings similarity as follow: 

                       454.0
2  11

10 )s ,(ssim 21sw =
×

=  
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X. DAMERAU-LEVENSHTEIN DISTANCE 
In this variation of the Levenshtein distance a transposition 

is also considered to be an elementary edit operation with 
cost 1 [7] [11] (in the Levenshtein distance, a transposition 
corresponds to two edits: one insert and one delete or two 
substitutions). The simdld measure is calculated similarly to 
simld [9]. “Fig. 2” shows an example:  

 

 
Fig. 2. Example of Damerau-Levenshtein Distance 

 
The black and blue vectors in Fig. 2 show respectively 

Substitution and Transposition operations. According to 
“Fig.2” four operators exist for convert “pedro rimen" to 
“peter riman". Now strings similarity is estimated by using (4) 
and 64.0 )s ,sim(s 21 =  is calculated. 
 

XI. JARO DISTANCE 
Jaro [12] introduced a string comparison algorithm that 

was mainly used for comparison of last and first names. The 
basic algorithm for computing the Jaro metric for two strings 
s1, s2 is shown as in (9): 
 

               ( )
c

t-c
|s|

c
|s|

c
3
1Jaro

21

++=                               (9)                                                                    

 
• c is the number of common characters between two 

strings. 
• t is the number of transpositions; the number of 

transpositions is computed as follows: We compare 
the ith common character in s1 with the ith common 
character in s2. Each non matching character is a 
transposition [5] [13]. 

 

XII. JARO WITH SIMILAR CHARACTERS 
The string comparator program contains a list of pairs of 

characters that have been judged to be similar, so that they are 
more likely to be substituted for each other in misspelled 
words. After the common characters have been identified, the 
remaining characters of the strings are searched for similar 
pairs (within the search distance d). Each pair of similar 
characters increases the count of common characters by 
0.3[14]. That is the similar character count is given by (10): 

      sccs 3.0+=                                                  (10)                   
 
Then string similarity estimation is given by (11): 
 

      ( )
s

s c
t-c

|s|
c

|s|
c

3
1x s

2

s

1

s ++=                                            (11)                       

 
Jaro with Common Prefix 

This adjustment increases the score when the two strings 
have a common prefix. If p is the length of the common 
prefix, up to 4 characters, then the score x is adjusted to xp by 
(12) [14]: 
 

  ( )
10
1 xpjaroxp

−+=                                           (12) 

                  

XIII. LONGER STRING ADJUSTMENT 
Finally there is one more adjustment in the default string 

comparator that adjusts for agreement between longer strings 
that have several common characters besides the above 
agreeing prefix characters [14]. The conditions for using the 
adjustment are: 

• Both strings are at least 5 characters long. 
• There are at least two common characters 

besides the agreeing prefix characters. 
• We want the strings outside the common 

prefixes to be fairly rich in common characters, 
so that the remaining common characters are at 
least half the remaining common characters of 
the shorter string. 

If all of these conditions are met, then length adjusted 
weight xl is computed by (13) [14]: 
 

    
)1(2||||

)1().1(
21 −−+

+−−+=
pss

pcjarojaroxl
             (13)                   

 

XIV. Q-GRAMS 
Q-grams, also called n-grams [5][15] are sub-strings of 

length q from string s. For example, ‘teacher’ contains the 
bigrams 'te', 'ea', 'ac', 'ch', 'he' and ‘er’. A q-gram similarity 
measure between two strings is calculated by counting the 
number of q-grams contained in both strings and divide by 
the average number of q-grams in both strings [9]. 

 

XV. POSITIONAL Q-GRAMS 
A positional q-gram of a string s is a pair (i, s[i … i + q-1]), 

where s[i … i + q - 1] is the q-gram of s that starts at position 
i, counting on the extended string. The set Gs of all positional 
q-grams of a string s is the set of all the |s| + q - 1 pairs 
constructed from all q-grams of strings [15].On the other 
hands an extension to q-grams is to add positional 
information (location of a q-gram within a string) and to 
match only common q-grams that are within a maximum 
distance from each other. Positional q-grams can be padded 
with start and end characters similar to non-positional 
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q-grams, and similarity measures can be calculated in the 
same way as with non-positional q-grams [9]. 

 

XVI. COMPARISON OF FIELD MATCHING ALGORITHMS 
In this paper, various techniques for filed matching were 

expressed. In this section these algorithms will be compared 
and concluded. First we reviewed the editing distance, 
smith-waterman, Jaro distance and q-grams algorithms in this 
paper. Edit distance algorithms appropriate for fast filtering 
for strings pair with great different length. But they are not 
appropriate for abbreviations and combination strings and 
lower accuracy of similarity estimation between them. 

According to Smith-waterman, this approach uses 
weighted approach, when unmatching is between similar 
characters so obtaining upper amount of similarity for these 
strings. Other hands are assigned less weights for similar 
characters. So pairs of similar characters have less impact on 
mismatch. In addition to existing gaps in the fields also they 
have fewer impacts than any other operator. So it will be 
obtained upper similarity for abbreviations. But this method 
isn’t appropriate for combination strings.  

By considering that Jaro algorithms are based on the total 
number of common characters between two strings, so it is 
appropriate for shorter strings for example name and last 
name for people's profiles. But this method isn’t appropriate 
for combination and abbreviations strings. Q-grams 
techniques are appropriate for abbreviations and combination 
strings. But q-grams construction will be needed to experts. 
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