

Abstract—Accuracy and consistency are the most important

factors in any databases but increasing size of data has become
a great challenge in this area. Detecting duplicate records is an
important and very difficult process in huge databases
containing millions of records. Field matching is a major
process for duplicated record detection. In this paper, an
attempt is made to provide a brief survey of field matching
techniques and their efficiency.

Index Terms—Duplicate detection, character based
similarity metrics, edit distance, Jaro distance, Q-Grams.

I. INTRODUCTION
With extending of the information technology, raw data

plays an important role in organizations and is infrastructure
of decision systems. Therefore increasing the accuracy of
data will be imperative. This work will be complicated in
massive database. On the other hand, integration of several
databases with different representations of data reduces data
accuracy.

Therefore existence of duplicate records is one of the
causes that reduce data accuracy. Duplication occurs when
database contains records that have different views of an
identical entity. This variation of representation can be
caused by integration of database with different structures or
spelling and phonetic errors or abbreviations.

On the other hand, existence of duplicate records in
database leads to negative impacts in process of knowledge
acquisition from these resources. Therefore several
techniques and algorithms have been presented for detection
of duplicate records. Field matching technique is the first step
in detection of duplicate records. The various algorithms
have been represented for field similarity estimation and
record matching step [1] [2] [3].Usage of data mining [4] in
the area of data cleaning is as effective as in discovering
reference data and validation rules from the data itself.
Similarity metrics that are commonly used to detect similar
field entries, and present an extensive set of duplicate
detection algorithms presented in [5] that can detect
approximately duplicate records in a database. The paper [6]
presented two learnable text similarity measures suitable for
estimation strings similarity: an extended variant of learnable
string edit distance, and a novel vector-space based measure
that employs a Support Vector Machine (SVM) for training.

According to data explosion phenomenon, duplicate

Manuscript received May 9, 2012; revised July 8, 2012.
Mohammad Reza Feizi Derakhshi is with Department of Computer,

University of Tabriz, Tabriz, Iran (e-mail: mfeizi@tabrizu.ac.ir)
Mahsa Sabbagh Nobarian is with Department of Computer, Islamic Azad

University, Shabestar Branch, Shabestar, Iran (e-mail:
msn.sabbagh@yahoo.com)

detection in massive database will become imperative. For
obtaining this goal, we describe the existence techniques for
field matching phase in duplicate detection process then
present performance of these approaches.

II. FIELD MATCHING METHODS
 Field matching methods strongly depend on field type

and content. So selecting the appropriate and effective fields
will be important in duplication step. For example, the
database containing people profiles, gender field can't effect
on duplicate detection but name, family name and address
fields can help to duplicate detection. On the other hand,
more discussed fields in this process are from string type so
in this paper string matching algorithms will be present.

III. BASIC CONCEPTS
If you are using Word, use either the Microsoft Equation

Editor or the MathType add-on (http://www.mathtype.com)
for equations in your paper (Insert | Object | Create New |
Microsoft Equation or MathType Equation). “Float over
text” should not be selected.

IV. UNITS
In character based Matching algorithms, character is the

smallest unit that is studied in field similarity estimation.
These algorithms detect spelling or typing errors.
S1, S2 are strings and | s1 |, |s2 | show the strings length.
Existing operator to convert two strings together is as
follows:

1) Insertion operation: insert a character into string and is
shown with),(xεδ .
2) Deletion operation: delete a character from string and is
shown with),(εδ x .
3) Substitution operation: replacing one character from s1 by
a character from s2 and is shown with),(baδ .
4) Transposition operation: transpose two characters in one
string.

Div is a factor that can be calculated by one of three
methods that are shown in (1),(2),(3):

|)s| |,smin(| div 21sw = (1)

|)s| |,smax(| div 21sw = (2)

|)s| |,savg(| div 21sw = (3)

The Review of Fields Similarity Estimation Methods

Mahsa Sabbagh Nobarian and Mohammad Reza Feizi Derakhshi

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

61410.7763/IJMLC.2012.V2.200

V. EDIT DISTANCE
The edit distance between two strings s1 and s2 is the

Minimum number of edit operations of single characters
needed to transform the string s1 into s2. There are insertion,
deletion and Substitution operations. In the simplest form, each
edit operation has cost 1. This version of edit distance is also
referred to as the Levenshtein distance [5]. This technique
gives the lowest cost of a sequence of operators. That is
always smaller than or equal to length of longer field. To
obtain this cost, distance matrix will be constructed for two
strings. After obtaining the distance between two strings,
amount of similarity will be calculated by using (4):

swdiv

ssdistsssim),(0.1),(21
21 −= (4)

The result of (4) will be between 0 and 1 that represents the

amount of similarity between two fields.

VI. EDIT DISTANCE
This algorithm has only substitutions, which cost 1 in the

simplified definition[7]. In the literature the search problem
in many cases is called “string matching with k mismatches.”
The distance is symmetric, and it is finite whenever |s1|=|s2|.
In this case it holds () ||,0 121 sssd ≤≤ .

VII. EPISODE DISTANCE
This Algorithm has only insertions, which cost 1.In the

literature the search problem in many cases is called “episode
matching”. This distance is not symmetric, and it may not be
possible to convert s1 into s2 in this case [7].

VIII. BAG DISTANCE

This algorithm has recently been proposed [8] as a cheap

approximation to edit distance. A bag is defined as a multi set
of the characters in a string for example, multi set ms(‘peter’)
= {‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, and the bag distance between two
strings is calculated as in (5) [9]:

)= |x-y||,y-x|max()s ,(sdist 21bag (5)

x = ms(s1), y = ms(s2) and | · | denoting the number of
elements in a multi set[9]. For example: distbag (‘peter’,
‘pedro’) =distbag({‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, {‘d’, ‘e’, ‘o’, ‘p’, ‘r’})
= max(|{‘e’, ‘t’}|, |{‘d’, ‘o’}|) = 2. Now the value of string
similarity between strings is obtained by using (4).

IX. SMITH-WATERMAN
This method is a dynamic programming algorithm. It was

first developed to find optimal alignments between related
DNA or protein sequences [5]. Five operations with
particular weight exist in this algorithm:

• Weight of actual matching between the pairs of
characters=2

• Weight of the approximate matching between pairs
of characters (for example: m, n)=1

• Weight of mismatch between pairs of characters =-1
• Weight of gap in strings=-1

The Smith-Waterman algorithm has best score as main
adjustable parameter. This parameter is calculated by
construction matrix of match scores for each pair of symbols
in the alphabet [10].The matrix should be constructed by
using (6). W is assumed a cost of an operator and the values
of H (i, 0) and H (0,j) can be obtained by (7):

⎪
⎪

⎩

⎪
⎪
⎨

⎧

−+−
−+−

+−−
=

insert),()1,(
delete),(),1(

match),()1,1(
mismatch 0

max),(

j

i

ji

bWjiH
aWjiH

baWjiH
jiH

 (6)

nj0 , 0j)H(0,
mi0 , 00) H(i,

≤≤=
≤≤= (7)

Bssw (Best Score) is the best and maximum value that is

obtained by score matrix. divsw is a factor that is obtained by
(1),(2) or (3). Match score equal to two value that weight of
matching characters. After obtaining these parameters,
Strings Similarity can be calculated by using (8) as
following:

scorematch div

bs)s ,(ssim
sw

sw
21sw ×

= (8)

For example: “peter" and “pedro" are two strings. In First
step we should construct the score matrix from these strings
by using (6). We show this matrix in Fig. 1:

Fig. 1. Score Matrix For Smith-Waterman

Now by using (8) and value of bssw , we can estimate

strings similarity as follow:

 454.0
2 11

10)s ,(ssim 21sw =
×

=

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

615

X. DAMERAU-LEVENSHTEIN DISTANCE
In this variation of the Levenshtein distance a transposition

is also considered to be an elementary edit operation with
cost 1 [7] [11] (in the Levenshtein distance, a transposition
corresponds to two edits: one insert and one delete or two
substitutions). The simdld measure is calculated similarly to
simld [9]. “Fig. 2” shows an example:

Fig. 2. Example of Damerau-Levenshtein Distance

The black and blue vectors in Fig. 2 show respectively

Substitution and Transposition operations. According to
“Fig.2” four operators exist for convert “pedro rimen" to
“peter riman". Now strings similarity is estimated by using (4)
and 64.0)s ,sim(s 21 = is calculated.

XI. JARO DISTANCE
Jaro [12] introduced a string comparison algorithm that

was mainly used for comparison of last and first names. The
basic algorithm for computing the Jaro metric for two strings
s1, s2 is shown as in (9):

 ()
c

t-c
|s|

c
|s|

c
3
1Jaro

21

++= (9)

• c is the number of common characters between two

strings.
• t is the number of transpositions; the number of

transpositions is computed as follows: We compare
the ith common character in s1 with the ith common
character in s2. Each non matching character is a
transposition [5] [13].

XII. JARO WITH SIMILAR CHARACTERS
The string comparator program contains a list of pairs of

characters that have been judged to be similar, so that they are
more likely to be substituted for each other in misspelled
words. After the common characters have been identified, the
remaining characters of the strings are searched for similar
pairs (within the search distance d). Each pair of similar
characters increases the count of common characters by
0.3[14]. That is the similar character count is given by (10):

 sccs 3.0+= (10)

Then string similarity estimation is given by (11):

 ()
s

s c
t-c

|s|
c

|s|
c

3
1x s

2

s

1

s ++= (11)

Jaro with Common Prefix

This adjustment increases the score when the two strings
have a common prefix. If p is the length of the common
prefix, up to 4 characters, then the score x is adjusted to xp by
(12) [14]:

 ()
10
1 xpjaroxp

−+= (12)

XIII. LONGER STRING ADJUSTMENT
Finally there is one more adjustment in the default string

comparator that adjusts for agreement between longer strings
that have several common characters besides the above
agreeing prefix characters [14]. The conditions for using the
adjustment are:

• Both strings are at least 5 characters long.
• There are at least two common characters

besides the agreeing prefix characters.
• We want the strings outside the common

prefixes to be fairly rich in common characters,
so that the remaining common characters are at
least half the remaining common characters of
the shorter string.

If all of these conditions are met, then length adjusted
weight xl is computed by (13) [14]:

)1(2||||

)1().1(
21 −−+

+−−+=
pss

pcjarojaroxl
 (13)

XIV. Q-GRAMS
Q-grams, also called n-grams [5][15] are sub-strings of

length q from string s. For example, ‘teacher’ contains the
bigrams 'te', 'ea', 'ac', 'ch', 'he' and ‘er’. A q-gram similarity
measure between two strings is calculated by counting the
number of q-grams contained in both strings and divide by
the average number of q-grams in both strings [9].

XV. POSITIONAL Q-GRAMS
A positional q-gram of a string s is a pair (i, s[i … i + q-1]),

where s[i … i + q - 1] is the q-gram of s that starts at position
i, counting on the extended string. The set Gs of all positional
q-grams of a string s is the set of all the |s| + q - 1 pairs
constructed from all q-grams of strings [15].On the other
hands an extension to q-grams is to add positional
information (location of a q-gram within a string) and to
match only common q-grams that are within a maximum
distance from each other. Positional q-grams can be padded
with start and end characters similar to non-positional

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

616

q-grams, and similarity measures can be calculated in the
same way as with non-positional q-grams [9].

XVI. COMPARISON OF FIELD MATCHING ALGORITHMS
In this paper, various techniques for filed matching were

expressed. In this section these algorithms will be compared
and concluded. First we reviewed the editing distance,
smith-waterman, Jaro distance and q-grams algorithms in this
paper. Edit distance algorithms appropriate for fast filtering
for strings pair with great different length. But they are not
appropriate for abbreviations and combination strings and
lower accuracy of similarity estimation between them.

According to Smith-waterman, this approach uses
weighted approach, when unmatching is between similar
characters so obtaining upper amount of similarity for these
strings. Other hands are assigned less weights for similar
characters. So pairs of similar characters have less impact on
mismatch. In addition to existing gaps in the fields also they
have fewer impacts than any other operator. So it will be
obtained upper similarity for abbreviations. But this method
isn’t appropriate for combination strings.

By considering that Jaro algorithms are based on the total
number of common characters between two strings, so it is
appropriate for shorter strings for example name and last
name for people's profiles. But this method isn’t appropriate
for combination and abbreviations strings. Q-grams
techniques are appropriate for abbreviations and combination
strings. But q-grams construction will be needed to experts.

REFERENCES
[1] A. Monge, “Matching Algorithms within a Duplicate Detection Syste,”

in proceedings of IEEE Data Engineering Bulletin, 2000.
[2] Gu L. and R. Baxter R. “Adaptive Filtering for Efficient Record

Linkage,” INSDM. 2004.
[3] R. Duvall , R. kerber R and Thomas A. “Extending the Fellegi-Sunter

Probabilistic Record Linkage Method for Approximate Field
Comparator,” Biomedical Informatics in ElSEVIER. 2010, pp.24-30.

[4] L. Ciszak , “ Application of Clustering and Association Methods in
Data Cleaning,” Computer Science and information Technology. IEEE.
2008.

[5] A. Elmagadin, “duolicate record detection: a survey,” IEEE
transactions on knowledge and data engineering. 2007.

[6] M. Bilenko and R. Mooney ," Adaptive Duplicate Detection Using
Learnable String Similarity Measures,” ACM SIGKDD Washington
DC.2003, PP:39-48.

[7] G. Navarro," AGuid Tour to Approximate String Matching,” ACM
computing survay .2001, pp. 31-88.

[8] I. Bartolini and P. Ciaccia, “Patella M. String matching with metric
trees using an approximate distance,” In SPIRE, LNCS, Lisbon
Portugal, 2002; pp.271–283.

[9] P. Cheisten. P, “A Comparision of Personal Name Matching:
Techniques and Practical Issues,” IEEE ICDM, 2006, pp.290-294.

[10] A Monge and C Elkan, “The Field-Matching Problem:Algorithm and
Applications,” ACM SIGKDD. 1996, pp.267–270.

[11] F. Damerau, “A technique for computer detection and correction of
spelling errors". Communications of the ACM, 1964, pp.171–176.

[12] M. Jaro and A. Unimatch, “A Record Linkage System: User’s Manual,”
technical report, US Bureau of the Census Washington D.C.1976.

[1] W. Cohen, P. Ravikumar, and E. Fienberg, “A Comparison of String
Metrics for Matching Names and Records". American Association for
Artificial Intelligence. 2003.

[13] W. Yancey, “Evaluation Comparator Performance for Record
Linkage,” TR in U.S census bureau. 2005.

[14] L. Gravano , P. Peirotis, and H. Jagadish, “Using q-grams in a DBMS
for Approximate String Processing,” IEEE Data Engineering
Bulletin.2 001, pp. 28-34.

International Journal of Machine Learning and Computing, Vol. 2, No. 5, October 2012

617

