
  

  
Abstract—In this paper, an application of dynamic 

neuro-fuzzy systems is presented for modeling the subsystems 
of the heat recovery steam generator (HRSG). The dynamic 
neuro-fuzzy models were developed based on the formal NARX 
models topology. The clustering techniques were employed to 
define the structure of the fuzzy models by dividing the entire 
operating regions into smaller subspaces. The optimal cluster 
centers and corresponding membership functions are captured 
by FCM, where the parameters of consequent were adjusted by 
recursive LSE method. A comparison between the responses of 
the proposed models and the responses of the plants ware 
preformed, which validates the accuracy and performance of 
the modeling approach. 
 

Index Terms—Power plant; HRSG boiler; fuzzy system; 
experimental data; clustering technique.  
 

I. INTRODUCTION 
In recent years, many different modeling approaches have 

been employed to describe the nonlinear dynamics of power 
plant subsystems. The analytical models can be developed 
based on the fundamental laws of physics such as mass 
conservation, momentum, and energy semi-empirical laws 
for heat transfer and thermodynamic state relations [1]. In 
order to develop such analytical models, it is necessary to 
calibrate the model parameters with respect to boundaries, 
inputs, and outputs in steady state and transient conditions 
[2].  

The collected Input/output data from field experiments can 
also be used to develop mathematical models based on 
identification techniques. There is a vast collection of 
black-box modeling techniques which are developed for the 
class of nonlinear systems. In this regard, artificial neural 
networks (ANN), fuzzy logic (FL) models or a combination 
of these approaches such as adaptive neuro-fuzzy inference 
systems (ANFIS) are extensively used for modeling the 
industrial processes including power plants. This can be 
addressed in the works done by Afzalian and Linkens (2000), 
Liu et al. (2003), Sanchez-Lopez et al. (2004), Vieira et al. 
(2004),  Zhang  et al. (2006), Ghaffari et al. (2008), and 
Mastacan et al. (2009)  [3-7]. 

If adequate information from the plant performances can 
be captured, using neuro-fuzzy system would be an 
appropriate approach to describe the non-linear systems 
behaviors. One of the most common structures employed for 
this propose is ANFIS, in which the fuzzy if-then rules are 
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represented in a network structure. The learning techniques 
for neural network can be applied in order to tune the 
parameters of the fuzzy models [8]. 

In ANIFS structure presented by Jang (1999), the number 
of fuzzy rules is equal to the product of number of 
membership functions and the number of inputs [9]. In some 
cases, the required number of fuzzy rules to cover entire input 
spaces is very large, which causes the training process 
becomes time consuming or practically impossible. In order 
to reduce the number of fuzzy rules without accuracy losses, 
the fuzzy c-means (FCM) clustering approach was proposed 
to define the structure of fuzzy systems [10].  

In this paper, a combination of fuzzy c-means clustering 
and least square techniques are employed to identify the 
parameters of membership functions and fuzzy rules in a 
multi-input single-output (MISO) TSK type fuzzy inference 
systems (FIS). The FCM clustering is first employed to 
extract the number of fuzzy rules and membership functions 
for the antecedents. Then, the parameters of consequents are 
defined for model based on a given set of input/output data. 
The accuracy of developed models is validated by 
performing a comparison between the responses of 
developed models and the experimental data.  

In next section, a brief description of the plant that consists 
of a general view of the power plant and its subsystems is 
presented. Inputs and outputs to the subsystems are also 
specified in this section. The neuro-fuzzy model based on the 
experimental data and structure of recurrent model and 
simulation result is presented in Section IV. In addition, a 
comparison between the responses of the proposed models 
with the responses of the real plant is presented to validate the 
accuracy of the developed models. 

 

II. SYSTEM DESCRIPTION AND ITS SUBSYSTEMS 
In this study, a HRSG boiler of the combined cycle units at 

Neka power plant (at the north of Iran) is considered for 
investigation. This plant consists of two gas turbine units and 
one steam turbine, which was constructed by Siemens AG®; 
in 1990. The rated power of gas and steam units are 2×136 
MW and 160 MW, respectively. 

In combined cycle power plants, the exhausted gas from 
gas turbines is recovered by HRSG. The required heat for this 
boiler is provided by the hot exhaust gas and three auxiliary 
burners. The output temperature of gas turbine is about 
530oC, which burns natural gas as the main fuel. The HRSG 
boiler consists of different parts such as de-aerator, 
economizer, low-pressure (LP) drum, high-pressure (HP) 
drum, evaporators, superheaters, and de-superheaters. 

The outlet water from condensation system heads to the 
deaerator, and then is send to the feedwater pump to increase 
the feedwater pressure. A part of feedwater goes to low 
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pressure drum, where its output pressure and temperature are 
about 0.85MPa and 235oC, respectively. The evaporated 
steam goes to the LP superheater, and then enters to the LP 
steam turbine section. The other portion of feedwater is 
pumped to the HP economizer and then goes to HP drum to 
convert to steam. The steam temperature at the drum header 
is 300oC and its pressure is about 9MPa. The evaporated 
steam goes to the primary and final HP superheaters. This 
steam with the temperature of 520oC and pressure of 9MPa is 
flashed to the HP stages of steam turbine. The different 
components of this HRSG boiler are shown in Fig 1.  

Feedwater outlet from condensation system with 75 kg/s 
mass flow rate and temperature about 52oC after a chemical 
treatment stage, goes to the deaerator. In the deaerator, the 
gas phase is extracted from the liquid phase, which is sent to 
the feedwater pump and the cycle is repeated. 

 
Fig. 1. The heat recovery steam generator boiler. 

 

III.  HRSG MODELING 
In order to model the subsystems of HRSG, the input and 

output data of plant performances were recorded. Due to the 
lack of prior information from the performance of gas unit, 
the recorded data for the transient responses were collected 
with respect to the changes in fuel flow rate at auxiliary 
burners. The gas flow rate was considered as constant value 
for gas units. Two different data sets were prepared from the 
plant responses during load changed, which were used in the 
model training and model testing processes.  

Dynamic systems can be divided into two categories: first 
group consists of systems that have only feedforward 
connections, and the others are systems with feedback or 
recurrent connections. If the output of the model at a moment 
is applied as its input at the next moment, the model is called 
dynamic or recurrent model. In other words, in recurrent 
models, the output of the model at the existing moment is 
influenced by the output of the model at previous moments. 
A dynamic fuzzy model can be developed by using the 
common NARX model topology as a discrete-time nonlinear 
mapping on some previous measured outputs and inputs as 
follows, 
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where nu and ny are the number of past terms for input u and 
output y, respectively. Here, the non-linear mapping function 

f(·) is considered as a TSK type fuzzy system. 
Neuro-Fuzzy System 
The principle of ANFIS can be described by a set of if-then 

rules as follows [9], 
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where Ai,k is the membership function associated with input 
variables xk and N is the number of inputs 

 
Fig. 2. The TSK ANFIS architecture. 

 
In this structure, a linear combination of the input variables 

are considered as the conclusion functions of fuzzy rules. The 
firing degrees of the fuzzy rules are calculated through the 
five layers of the model [9].  

Layer 1: Each node represents a linguistic label. Here, the 
membership function Ai,k is considered to be Gaussian, which 
is specified by the center v and the spread σ,  
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Layer 2: The fulfillment degree of rules are calculated by 
multiplying all incoming values as follows,  
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Layer 3: The relative degree of fulfillment of each rule is 
calculated by normalizing corresponding degree of 
fulfillment as follows, 

∑
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Layer 4: The consequent of each rule is calculated by 
multiplying the corresponding rule in its relative degree of 
fulfillment as, 

iii ywy =                                      (6) 

Layer 5: The output of the net or the fuzzy system is 
calculated by adding all incoming weighted consequents, 
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As a result, all input–output patterns can be defined as 
below, 
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The parameters of the matrix Θ and membership functions 
should be adjusted based on the experimental data. In order to 
define the parameters of membership functions, the FCM 
algorithm is employed for partitioning the data set into c 
predefined subsets. The data partitioning into clusters 
depends on similarity or dissimilarity of the members of each 
cluster that defines by the distance of data points from cluster 
centers [11].  

By defining ),( ji xvD as the distance between vi and xj, 
where si Rv ⊂}{ and sj Rx ⊂}{ are the vector of cluster 
centers and unlabeled data set, respectively. The following 
objective function has to be minimized in order to obtain the 
best possible solution.   
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where Aij is the membership of the jth data point in the ith 
cluster and the weighting exponent m (1 ≤ m < ∞) controls the 
degree of fuzziness of each cluster. Minimization of Jm is 
performed by considering the following constraints on the 
membership values, which would lead to the optimal 
partition.  
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The best possible positions of cluster centers and 
corresponding membership functions can be obtained using 
(6) and (7) through an iterative process.  
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The iteration would be stopped if no further improvement 
was observed in Jm(U,V). By defining the fuzzy membership 
functions and corresponding fuzzy rules, the parameters of 
consequent in Eq. (8) can be obtained by using recursive least 
square estimator as follows,  
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In the next section, the modeling approach is applied to 

different parts of HRSG boiler. 
 

IV. MODELING AND SIMULATION 
In this section, the HRSG boiler is decomposed to smallest 

subsystems in order to ease the process of modeling the boiler. 
Each part can be presented by a multi-input single-output 
(MISO) FIS. The input-output data sets and the responses of 
the developed model for each section will be presented. 

A. Economizer  
Fig. 3 presents the schematic diagram of economizer 

recurrent neuro-fuzzy model. It is noted that the number of 
inputs in this model is 11, if only 3 linguistic variables be 
assigned for each fuzzy input, the number of rules would be 
as 311 rules. Using fuzzy c-mean clustering, the number of 
rules reduces to only 21 rules. 

 

 
Fig. 3. The schematic of the neuro-fuzzy model for economizer. 

 
The effective variables of the economizer output 

temperature are known as feedwater mass flow, fuel flow rate 
and input steam temperature and the output variable is the 
economizer temperature. The input/output vectors of the 
economizer model are summarized as follows: 

Input = [ ]T
feedwaterfeedwaterfuel Tmm &&               (14) 

Output = [ ]T
outecoT _                                    (15) 

where T outside the bracket stands for “transpose”. The 
responses of developed model for economizer section are 
compared with experimental data taken from real plant, 
which is shown in Fig. 4.  
 

 
Fig. 4. Responses of economizer neuro-fuzzy model and actual plant. 
 

B. Drum 
The same structure that was used for the economizer 

section was employed with 14 inputs, and 25 rules were 
employed for the drum section. A schematic of drum section 
is presented in Fig. 5. As it is shown, the input feedwater and 
the output steam mass flow rates have the most effects on the 
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dynamics of drum. The other input and output for this section 
are corresponded to evaporator section, which can be 
characterized by drum pressure and fuel flow rate. 
Consequently, the input/output vector for this section can be 
summarized as follows,  

 
Input= [ ]T

fueldruminsteamfeedwater mPmm &&& _       (16) 

 

Output = [ ] T
drumL                                    (17) 

 
 

 
Fig. 5. The schematics of the drum section. 

 

 
Fig. 6. Responses of drum neuro-fuzzy model and actual plant. 

 
A comparison between the responses of the developed 

model and the responses of the real plants was performed. 
Obtained results are presented in Fig. 6, which validates the 
accuracy and performance of the modeling approach.  

C. Superheater 
For superheater section, a model with 11 inputs and 19 

fuzzy rules are adequate to describe its dynamic behaviors. 
Fuel flow rate, input steam temperature and mass flow rate to 
the superheater section is considered as the main variables to 
predict the superheated output temperature. The input/output 
vectors of the superheater model are summarized as follows: 

 
Input = [ ]T

insteaminsteamfuel Tmm __&&              (18) 

 
Output = [ ]T

outsteamT _                                     (19) 

 
In Fig. 7, the responses of the developed neuro-fuzzy 

model for superheater section are compared with actual plant 
responses.  

 
Fig. 7. Responses of the superheater section. 

 

D. De-superheater 
 
In order to regulate the output temperature of the 

superheating sections, the de-superheaters are considered 
between two parts of superheater. By neglecting the pressure 
loss in the attemperator, the output temperature of the 
de-superheater can be estimated with respect to the inlet 
temperature and flow of superheated steam and temperature 
and flow of water spray. The number of inputs for this model 
is 14 and the number of fuzzy rules is equal to 21. The 
input/output vector for the de-superheater section is as 
follows,  

Input = [ ]T
insteaminsteamsparyspary TmTm __&&     (20) 

Output = [ ]T
outsteamT _                                   (21) 

Also, it is noted that m& steam_out= m& steam_in+ m& spary. The 
responses of the developed model for the de-superheater are 
presented in Fig. 8. 

In order to demonstrate the advantages of the proposed 
modeling approach, a comparison between the responses of 
the developed models and the responses of the recursive 
ANN models is carried out. The performances of the 
developed models are evaluated by calculating the error 
functions, where the error is defined as the difference 
between the predicted values by models and the experimental 
data. Here, the upper bound error (Max(|e|)), lower bound 
error (Min(|e|)), mean absolute error (MAE) and correlation 
coefficient (R2) are calculated for both transient and steady 
state conditions over the operating range, which are 
presented in Table I to IV. 

 
Fig. 8. Responses of de-superheater model. 
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TABLE I: ERROR FUNCTIONS FOR THE ECONOMIZER MODELS  
 Max(|e|) Min(|e|) MAE R2 

ANFIS 0.2057 6.9399e-6 0.0229 0.9993 
ANN 0.1988 1.6403e-5 0.0375 0.9981 

 
TABLE II: ERROR FUNCTIONS FOR THE DRUM MODELS  

 Max(|e|) Min(|e|) MAE R2 
ANFIS 1.0560 1.1113e-4 0.2618 0.9858 
ANN 1.7675 4.7787e-5 0.3424 0.9707 

 
TABLE III: ERROR FUNCTIONS FOR THE SUPERHEATER MODELS  
 Max(|e|) Min(|e|) MAE R2 

ANFIS 0.6807 3.8685e-6 0.1526 0.9995 
ANN 0.6450 2.1423e-5 0.1756 0.9995 

 
TABLE IV. ERROR FUNCTIONS FOR THE DE-SUPERHEATER MODELS  
 Max(|e|) Min(|e|) MAE R2 

ANFIS 0.7967 2.8952e-4 0.1655 0.9998 
ANN 0.8243 4.7876e-5 0.2067 0.9997 

 
Obtained results show the performance and feasibility of 

the modeling approach in terms of more accuracy and less 
deviation between the predicted values by the developed 
models and the experimental data.  

 

V. CONCLUSION 
This paper presents an application of neuro-fuzzy 

modeling approach in order to describe the nonlinear 
behavior of a heat recovery steam generator. The recurrent 
structure of TSK fuzzy system was chosen for this aim. A 
combination of fuzzy clustering techniques (FCM) and least 
square estimation was employed for adjusting the parameters 
of membership functions and the fuzzy rules, respectively. 
The responses of the developed models were compared with 
the experimental data in order to validate their accuracy. In 
addition, the performances of the developed models were 
compared with the performances of recurrent ANN models in 
order to show the feasibility of modeling approach. Obtained 
results indicate the accuracy and performance of the models 
in both transient and steady state conditions. 
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