
  

  
Abstract—Controlling a biped robot with a high degree of 

freedom to achieve stable, straight and fast movement patterns 
is one of the most complex problems. With growing 
computational power of computer hardware, simulation of such 
robots in high resolution real time environment has become 
more applicable. This paper introduces a novel approach to 
Generate Bipedal gait for humanoid locomotion. In this scene, 
first we have used a modified Truncated Fourier Series (TFS) to 
generate angular trajectories, then to find the best angular 
trajectory we built an improved Genetic Algorithm (GA). One 
of the major difficulties of GAs is choosing appropriate values 
for mutation and crossover parameters. Hence, we present 
GALA (Genetic Algorithm parameters adaption using 
Learning Automata) to adjust these parameters by recruiting 
Learning Automata. As results show, my approach could 
generate better values for angular trajectories for biped 
walking, hence in my approach the robot could walk with high 
stability and faster than other approaches. Evaluations 
performed on Simulated NAO robot in RoboCup 3D soccer 
simulation environment. 
 

Index Terms—Bipedal locomotion, learning automata, 
genetic algorithm, truncated Fourier series.  
 

I. INTRODUCTION 
In recent years, bipedal locomotion, especially "bipedal 

walking" has been one of the interesting research topics in 
multi disciplinary arena. Bipedal walking as a very complex 
motion, involves most of the humanoid joints including its 
sensors and actuators. Many researchers have focused on this 
issue and a lot of approaches have been presented. There are 
two major approaches in bipedal walking researches; 
model-based and model-free approaches [2, 3]. In 
model-based approach, the designer first derives the model of 
the robot and then builds a controller for the model. Two well 
known methods in this approach are "Zero Moment Point"[4] 
(ZMP) and "Inverted Pendulum"[5]. 

In model-free approach, which is also called "Dynamics 
Based", it is common to make use of the sensory information 
and associate it with motions. No physical model is used in 
this method that eases the implementation of the skills. There 
are three important studies done in this field; Passive 
Dynamic Walking (PDW) [6], Central Pattern Generator 
(CPG) [7] and Ballistic Walking [8]. In PDW approach, the 
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robot does not have any actuator model and it walks just by 
utilizing the gravity force. The Ballistic walking is originated 
from the simple human walking model based on the 
observation of human walking in which the muscles of the 
swing leg are activated only at the beginning and the end of 
the swing phase. In CPG approach, special neural circuits 
take the role of the rhythmic walking controller using the 
non-linear equations to model the neural activities. 
Researchers usually focus on complex mathematical models 
like Hopf [9] or Matsuoka [10] to model these neural 
activities and generate rhythmic walk patterns (Gait).  

In 2006, Truncated Fourier Series (TFS) formulation is 
used for gait generation in bipedal locomotion [11]. TFS 
together with a ZMP stability indicator is used to prove that 
TFS can generate suitable angular trajectories for controlling 
bipedal locomotion. It does not require inverse kinematics 
and Stable gaits with different step lengths and stride 
frequencies can be readily generated by changing the value of 
only one parameter in the TFS. 

Taking the advantages of TFS as a model-free approach, 
we present a novel approach to Generate Bipedal gait for 
humanoid locomotion based on TFS. For this purpose, we 
used a modified TFS to generate angular trajectories. To find 
the best angular trajectory in TFS, an adapted GA is obtained. 
One of the major difficulties of GAs is choosing appropriate 
values for mutation and crossover parameters. Hence, we 
present GALA to adjust these parameters by recruiting 
Learning Automata (LA). 

The remainder of this paper as follows; in the next section, 
we explain the simulation environment and biped model. 
Section III is devoted to TFS. In this section, we will talk 
about how the TFS used for trajectory generation. An 
overview of GA and LA are presented in section IV. In 
section V we introduced the GALA, novel algorithm, which 
is used to find the best angular trajectory. Experimental 
results and conclusions are discussed in sections VI and VII.  

 

II. SIMULATOR AND BIPED MODEL  
In this paper, a new approach for walking behavior in a 

simulated humanoid robot will be discussed.  
The simulation is performed by Rcssserver3d simulator 

which is a generic three-dimensional simulator based on 
Spark and Open Dynamics Engine (ODE). Spark is capable 
of carrying out scientific distributed multi agent calculations 
as well as various physical simulations ranging from 
articulated bodies to complex robot environments [12]. The 
robot in this study is a simulated model of NAO that is a real 
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humanoid Robot with two arms, two legs and a head. This 
robot has 4.5kg weigh, 57cm height and 22 degrees of 
freedom (DOF). There are six DOFs in each leg; two in the 
hip, two in the ankle one at the knee. And an additional DOF 
that exists at each leg's hip for yaw causes the legs to rotate 
outward and inward.   

As a test-bed, in our soccer simulation team (MRL) we 
have implemented and tested our new bipedal locomotion 
approach on this simulated NAO robot and generated 
software based on this simulator that is developed by MRL 
team from scratch. According to our studies, to able robot fast 
walking, 6 DOFs (three for each leg) are more effective than 
other DOFs. The DOFs of hip, knee and ankle which move 
on the same plane of forward-backward are the major ones. 
Although other DOFs are effective in walking behavior, but 
in fact, their role smoothes the robots walking motion, So 
here, it’s preferred to ignore them to decrease learning search 
space. Like in [13], Foot was kept parallel to the ground by 
using ankle joint in order to avoid collision. Therefore ankle 
trajectory can be calculated by hip and knee trajectories and 
ankle DOF parameters are eliminated. 
 

III. TFS GAIT GENERATOR 
Bipedal walking as a complex motion, involves most of 

humanoid robot’s joints.  Researchers attempt to imitate the 
human walking style as well as its speed.  Therefore 
analyzing human walk pattern has been used for acquiring 
beneficial information about this motion. Human walk has 
been investigated from many angles; walking trajectory is 
one of them.  

The walking trajectory is divided into several types. 
Positional trajectory and angular trajectory are two of them. 
In angular trajectory, the angle of each joint is plotted at a 
certain time slice. Therefore the angular trajectory is obtained 
by angular variation of each joint. Biped angular trajectory of 
two joints; hip and knee captured from human walking are 
shown in Fig. 1. 

 

 
Fig. 1. Human walking angular trajectory (Angles of hip and knee captured 

from human walking) [14]. 
 

The angle of each joint in one period of walking signal 
from 0t  to 6t  is represented in Fig. 2 by capturing the main 
features of “Fig. 1” and gives a general form to make it 
applicable to robots. In time range [ ]0 2,t t and [ ]5 6,t t  the left 

leg is support leg and the right one is swing leg but in range of 

time [ ]2 5,t t  
the left and right legs play the role of support and 

swing legs respectively. In another word, in two times of 2t  

and 5t  the roles of two legs are switched with each other. At 

time 3t  where two hip trajectories intersect, two thighs cross 
each other. 

 
Fig. 2. Gaits elaborated from human gaits features (The angle of hip and knee 

joints in one period of walking signal from 
0t  

to 
6t )[14]. 

A. Angular Trajectory Generation 
Regarding the fact that all joint trajectories of human 

walking are periodic and similar to sine or cosine signals [15], 
the generation of these angular signals can be done by 
Fourier series. 

B. Basic Fourier Series 
The original definition of Fourier series is described by 

following formula:  
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then the frequency form of Fourier series is 

achieved as follows: 
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where w is frequency of periodic signal. Any complicated 
signal can be produced by this formula when і is considered 
infinite. But when the value of і is limited to a definite 
number, precision of generating signal is reduced and this 
type of Fourier series is called partial sum of the Fourier 
series. According to “Fig. 1”, Human Walking angular 
trajectories are too complicated to be produced by a definite 
Fourier series band limited to the second harmonic. 
Therefore a modified definite Fourier series as a Truncated 
Fourier series (TFS) is used in this study. 

C. Trajectory Generation Using TFS 
According to “Fig. 1”, the signals are divided in two parts; 

upper portion and lower portion. Whereby each portion can be 
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assumed as an odd function, the cosine part of TFS is 
eliminated. So the TFS is reduced to equation (3) to generate 
each portion of trajectory. 

1

( ) sin( )
n

i
i

t a b iw t
=

= + ∑F
                         (3) 

where w is fundamental frequency of signal and a is signal 
offset. Separate production for each portion, caused to 
generate complex signals with different upper and lower 
portions. The number of parameters for generating these 
complex signals is also less than the parameters used in 
Fourier series. As shown in “Fig. 2”, each signal has an offset. 

,h kc c  are hip trajectory and knee trajectory offsets 

respectively. From   0t to 2t  the left leg is considered as 
supporting leg and the variation of its knee angle is so minute 
that can be assumed fixed. This duration of walking is named 
lock phase. In addition, the amount of shift phase of the two 
leg trajectories signal is half of the period of each signal. The 
trajectories for both legs are identical in shape but are shifted 
half of the walking period in time. Therefore by figuring out 
walking angular trajectory of one leg the other leg trajectory 
is obtained. Using equation(3) and considering curves of 
“Fig.1”, the TFS for generating each portion of hip and knee 
trajectories are formulated as equation (4): 
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In these equations, the plus (+) sign represents the upper 
portion of walking trajectory and the minus (-) shows the 
lower portion. , ,i i iA B C  are constant coefficients for 
generating signals. The h and k index stands for hip and knee 
respectively.  ,h kc c are signal offsets and kT is assumed as 
period of knee trajectory. Considering the fact that all joints 
in walking motion have equal movement frequency [2, 3, 15], 

the equation 2
k h

k

w w
T

π= =  can be concluded. Parameter 

3t shows the end time of hip trajectory in upper portion and 

starts its down portion, 6t shows the end time down portion. 
These parameters are not significant since they can be 
obtained when the hip trajectory intersects the hc  line. But 

parameter 2t  represents the end time of knee lock phase and 
must be considered to produce knee trajectory. Therefore 
Truncated Fourier series parameters to produce trajectories 
are: 2, , , , , ,h k i i i kc c A B C t w . In this essay there are some 
constraints to be dealt with as shown in the following 
equation: 

2 2
2 20 , 0k k

k k
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                 (5)

 

                                 0kc ≥     
Finally an optimization algorithm is needed to optimize a 

7_dimension Problem for finding the best gait generator. 
 

IV. OVERVIEW OF GENETIC ALGORITHM AND LEARNING 
AUTOMATA 

In this section, in all brevity, we discuss the fundamentals 
of genetic algorithm and learning automata. 

A. Genetic Algorithm 
The sequence of Genetic Algorithm(GA) implementation 

is summarized as follows [16]: 
1. Select a fitness function (the goal for the 

optimization process). 
2. Initialize population. 
3. Evaluate population. 
4. While (number of generations has been generated) 

4.1 Begin. 
4.2 Select parents for reproduction. 
4.3 Perform crossover and mutation. 
4.4 Evaluate population. 
4.5 End. 

B. Learning Automata 
Learning automata (LA) can be classified into two main 

families, fixed and variable structure learning automata [1]. 
A fixed structure learning automata (FSLA) is a quintuple 

< α, ϕ, β, F, G >, 1( ,. . ., )Rα α α=  where is the set of actions 
that it must choose from. 1( ,. . ., )sφ φ φ= is the set of states. 
β = {0, 1} is the set of inputs, where 1 represents a penalty 
and 0 represents a reward. F: ϕ × β  ϕ is a map called the 
transition map. It defines the transition of the states on 
receiving input, F may be stochastic. G: ϕ  α is the output 
map and determines the action taken by the automata if it is in 
state ϕ. The selected action serves as an input to the 
environment which in turn emits a stochastic response β(n) at 
the time n. β(n) is an element of  β = {0, 1} and is the 
feedback response of the environment to the automata. The 
environment penalizes (i.e. β(n) = 1) the automata with the 
penalty ic  , which is the action dependent. On the basis of the 
response β(n), the state of the automata ϕ(n) is updated and a 
new action chosen at time  (n + 1). Note that { ic } is 
unknown initially and it is desired that as a result of 
interaction with the environment, the automata arrives at the 
action which presents it with the minimum penalty response 
in an expected sense. If the probabilities of the transition 
from one state to another and probabilities of correspondence 
of action and state are fixed, the automata is said to be a 
fixed-structure learning automata and otherwise the automata 
is said to be a variable structure learning automata (VSLA). 
In this paper we use the VSLA type. 

Variable structure learning automata is represented by the 
sextuple < β, ϕ, α, P, G, T >, where β is a set of inputs actions, 
ϕ is a set of internal states, α a set of outputs, P denotes the 
state probability vector governing the choice of the state at 
each stage k, G is the output mapping, and T is learning 
algorithm. The learning algorithm is a recurrence relation and 
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is used to modify the state probability vector. 
It is evident that the crucial factor affecting the 

performance of the variable structure learning automata is 
learning algorithm for updating the action probabilities. Let 

iα  be the action chosen at time k as a sample realization from 
distribution p(k). The linear reward-inaction algorithm ( R IL − ) 
is one of the earliest schemes. In an R IL −  scheme, the 
recurrence equation for updating  is defined as equation (6). 

( ) ( ) ( )
( )
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If β is zero and P is unchanged if β is one. The parameter a, 
which is called step length, determines the amount of 
increase(decreases) of the action probabilities. In linear 
reward-penalty algorithm (  R PL −   ) scheme, the recurrence 
equation for updating p is defined as equation(7) and (8). 
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If β(k) = 1. The parameters a and b represent reward and 
penalty parameters, respectively. The parameter a(b) 
determines the amount for increase(decrease) of the action 
probabilities. For the sake of simplicity in presentation, we 
denote VSLA with k action by automata(k). 

 

V. GALA (GENETIC ALGORITHM PARAMETERS ADAPTION 
USING LEARNING AUTOMATA) 

Identifying optimal parameters of GA can lead us to a fast 
convergence and global optimum solution. In most cases, 
specifying these parameters done by trial and error. In this 
section, we present our approach to identify these parameters 
automatically based on LA. 

The main idea is as follows; at first LA identifies the GA 
parameters by applying a set of actions, and then the GA uses 
these parameters for specific generation and eventually sends 
a feedback to LA by estimating the performance of 
parameters. Subsequently, LA updates the probability of 
action selection dependent upon outcome feedbacks. In fact, 
the GA exploited as environment for LA. The overall 
structure of GALA is depicted in Fig. 3. 

In Fig. 3, β Is the receiving feedback from GA, which 
means the automata input, α Is the action set in which used 
for identifying GA parameters, Individuals are the solutions 
that return to the environment, and Best Fitness is the perfect 
solution to the environment that GA earned after some 
specific generation, which will be used to evaluate the 
performance of parameters. 

The high level algorithm of GALA represented in next 
section. Initially, we assign the identical selection probability 
to every action. Suppose if we have n possible action, the 

probability of choosing every action is 
1
n  at the beginning of 

the algorithm. 

 
 Environment 

Genetic Algorithm 

Learning Automata 
 

Fig. 3. GALA diagram 

 

1. Begin 

2. Choose action(i) of  LA based on Roulette wheel 
selection. 

3. Set this action as the parameter of GA and apply GA 
to the environment. 

4. Compare best fitness received from the environment 
with the average of preceding acquired fitness, 

4.1. If the fitness is better than the average fitness 
(that means we earn the favored feedback), 
update the probability of actions by the 
following equation, 

( ) ( ) ( )
( ) ( )

(1  
1  

j j
j

j

p k a p k if i j
p k

p k a if i j
+ − =⎧⎪= ⎨ − ≠⎪⎩  

4.2. Else  

       

( )
( )

( )

(1 )  

(1 )  
1

j

j
j

P k b if i j
P k b b P k if i j

r

⎧ − =
⎪= ⎨

+ − ≠⎪⎩ −  
5. End. 

The parameter a(b) determines the amount for increase 
(decrease) of the action probabilities. We considered these 
equations in section IV. 

 

VI. EXPERIMENTAL RESULTS 
In this section, we evaluate the GA to find the best 

parameters for generating angular trajectories. According to 
7 parameters of TFS which mentioned in section III we 
consider 7 genes in every chromosome of GA and roulette 
wheel is assumed as selection method. Population for each 
generation is 100 and termination condition is to have a 
generation counter greater than 10. To achieve more stable 
and faster walk, a fitness function implemented based on 
robot's straight movement with having limited time for 
walking. Fitness function is calculated when the robot falls or 
time duration for walking is finished.  Equation(9), is 
assumed fitness function formulation, where the robot is 
initialized in x = y = 0 and time duration for walking is 
assumed as 15 seconds. 

β

Best FitnessIndividuals

α
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( )
( )
 Test Time  time duration for walking  or  

       
robot is fallen  

   Fitness :  10* x ;
 

>=⎛ ⎞
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⎝ ⎠

=

if

End if   (9) 
But for choosing appropriate values for mutation and 

crossover parameters, we used three kinds of approach and 
results shows that my approach is better than other 
approaches. In the first approach we used the crossover and 
mutation rate of  the De Jong’s experiments results[17], that 
indicated the best crossover rate was 0.6 and the best 
mutation rate was 0.001. Convergence diagram of GA after 
10 generation with use of these values of crossover and 
mutation rate shown in Fig. 4. In this approach the best 
fitness is 5.58956, hence the robot could walk 0.54 meters in 
15 seconds with average body speed of  0.036 m/s and the 
period of 0.41s for each step. 

 

 
Fig. 4. Convergence diagram of GA after 10 generation with use of De 

Jong’s parameters (Crossover rate = 0.6 and mutation rate = 0.001). 

For second approach we used the crossover and mutation 
rate of the Grefenstette’s experiments results, that indicated 
the best crossover rate was 0.95 and the best mutation rate 
was 0.01[17]. Convergence diagram of GA after 10 
generation with use of these values of crossover and mutation 
rate shown in Fig. 5. In this approach the best fitness is 
39.5016, hence the robot could walk 4.12 meters in 15 
seconds with average body speed of 0.27 m/s and the period 
of 0.41s for each step.  

 

 
Fig. 5. Convergence diagram of GA after 10 generation with use of  

Grefenstette’s parameters (Crossover rate = 0.95 and mutation rate = 0.01). 

For last approach we evaluated our approach to find the 
appropriate values for mutation and crossover parameters. 

Hence as we mentioned in section V, We considered a set of 
constant values for crossover rate in the range of 0.1 to 0.9 
steps by 0.1 and for every value of crossover rate, we execute 
a GALA algorithm with N = 100, a = 0.1, b = 0.2 and 
automata(10) to find an optimum value of mutation rate with 
action set from 0.00 to 0.09 steps by 0.01. After applying 
GALA with above conditions upon TFS, we will have a set of 
optimal crossover and mutation pairs and best fitness values 
will be calculated by using mentioned pairs. These pairs and 
best fitness values are shown in Table I. 

 
TABLE I: OPTIMAL CROSSOVER AND MUTATION PAIRS AND BEST FITNESS 

VALUES WILL BE CALCULATED BY USING MENTIONED PAIRS. 
Crossover rate Optimal mutation rate Best fitness 

0.1 0.08 12.4560 
0.2 0.08 23.3489 
0.3 0.06 31.2345 
0.4 0.09 35.0432 
0.5 0.04 39.0234 
0.6 0.05 42.3210 
0.7 0.07 41.2623 
0.8 0.07 46.4982 
0.9 0.06 37.2310 

 
According to table I, in this problem best parameters for 

GA are 0.8 for crossover rate and 0.07 for mutation rate, 
because biggest “best fitness value” occurs in these 
parameters and the robot could walk 4.95 meter in 15 second 
with average body speed of 0.33 m/s and the period of 0.41s 
for each step. In best state of table I, convergence diagram of 
GALA after 100 iteration shown in Fig. 6. 

 
Fig. 6. Convergence diagram of GALA after 100 iteration, for finding 

best value of mutation rate with crossover rate = 0.8. 

Also Convergence diagram of GA after 10 generation with 
use of optimal values of crossover and mutation rate 
(Crossover rate = 0.8, Mutation rate = 0.07) shown in Fig. 7. 

 
Fig. 7. Convergence diagram of GA after 10 generation with use of optimal 

value of parameters (Crossover rate = 0.8 and mutation rate = 0.07). 
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As results show, my approach could generate better values 
for angular trajectories for biped walking, because my 
approach could achieve biggest fitness value, hence in my 
approach the robot could walk faster than other approaches. 

 

VII. CONCLUSION 
In this paper for first time TFS with GALA is implemented 

in a simulated robot that can walk fast and stable. This 
technique has some advantages. First, it can be implemented 
on many humanoid robots without considering any 
mathematical modeling. Second, by using GALA the robot 
has achieved an optimal walk, that means GALA choosing 
best values for mutation and crossover rates and by use these 
values can achieves optimal solution of problems. 
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