

Abstract—Software archives contain historical information

about the development process of a software system. Using
Association rule discovery, the development patterns can be
extracted from these archives. This information is useful to
support software modification activities, as indicated to
software developers which modules are usually modified
together during software maintenance or evolution. All
previous works focused on mining associations with classical
interestingness measure, support-confidence, where some
disadvantage existed. The new Interestingness Measure, named
as support-new confidence, was proposed by Liu et al. to
improve the classical method. In this research, we present the
comparison of the efficiency of applying association rule
discovery on software archive using classical model and Liu et
al.'s model. The experiments were conducted on software
archive of KMyMoney software, an open source financial
software project. The results show that the efficiency of the
rules obtained in new model is higher than the rules obtained in
classical model in navigation scenario.

Index Terms—Association rule discovery, measures, version
control system, software archives interestingness.

I. INTRODUCTION
Version control systems automatically generate sources of

software change history, software archive. They can be
mined to identify associations between software module
modifications [10][11]. This information is the basis to
identify useful patterns of software module defect
occurrences, associations, modification, evolution and decay.
For this reason, software engineering research has been
exploring software archives to understand software projects
[2][8]. With these archives, it is possible to detect logical
evolution coupling [3][4], extract function call usage patterns
[5], find common error patterns [7], predict and suggest likely
changes and prevent errors due to incomplete changes [10].

All association rule discovery in software archive
researches using support-confidence framework, conf (x→y)
is used to measure the interestingness of rule x→y. However,
sometime this model retrieves the uncorrelated rules and
misleads to define interesting rule [5][7][8].

In 2009, Liu et al. analyzed some problem of
interestingness measure on the classical association rules
model, support-confidence model, and then proposed a new

Manuscript received July 1, 2012; revised July 29, 2012.
Sunchai Pitakchonlasup is with the Appsphere Group Co.,Ltd., Bangkok

Thailand. (e-mail:dz.yoez@gmail.com).
Assadaporn Sapsomboon is with Business Software Devlopment

Program, Faculty of Commerce and Accoutancy, Chulalongkorn University,
Bangkok, Thailand. (e-mail:assadaporn@ acc.chula.ac.th).

interestingness measure for mining association rules based on
sufficiency measure of uncertain reasoning, called “new
confidence”, to improve the classical method of mining
association rules [6]. Liu et al. showed that the new measure
not only captures correlation but can also detect negative
implication [6].

For the above reasons, we are interested in applying Liu et
al.’s support-new confidence model to association rule
discovery in software archive. This paper presents the
comparison of the efficiency of applying association rule
discovery on software archive using classical model and new
model. The efficiency test of this research follows an
approach similar to what was proposed by Zimmermann et
al., as in [11]. It mines software archive to characterize
software entities modification associations for: (1) predicting
and suggesting further changes to be made in files entities,
named as navigation scenario; (2) preventing incomplete
changes, named as error prevention scenario; and (3)
preventing erroneously recommendations of (1) and (2),
named as closure scenario [11]. The results indicate that the
efficiency of the rules obtained in new model is higher than
the rules obtained in classical model in navigation scenario.

This paper is organized as follows. Section 2 discusses
related works. Section 3 presents the experiment planning
and definition. Section 4 describes the experiment. Section 5
describes, analyzes and discusses the validity of the obtained
results. And finally, Section 6 concludes the research result
and proposes future work.

II. RELATED WORKS
This section discusses the studies in mining data from

version control repositories. Those researches may diverge
on the purpose of analysis, mining technique employed,
amount of analysed data and algorithms used.

In 2003, reference [9] developed an approach that used
association rule mining on software archives. It especially
evaluated the usefulness of the results, considering a
recommendation most valuable if it could not be determined
by program analysis, and found several such
recommendations in the MOZILLA and ECLIPSE projects.

Reference [4] was the first to use software history to detect
logical coupling between program modules in 1998.
Reference [3] proposed a method to identify and visualize
classes and class coupling that are the most change prone.

Reference [5] proposed a general method that used a data
mining technique to extract implicit programming rules from
large software code written in a C programming language.
Reference [7] analysed source code check-ins to find highly

A Comparison of the Efficiency of Applying Association
Rule Discovery on Software Archive using Support –

Confidence Model and Support – New Confidence Model

Sunchai Pitakchonlasup, and Assadaporn Sapsomboon, Member, IACSIT

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

517

correlated method calls as well as common bug fixes in order
to automatically discover application-specific coding
patterns.

 Reference [11] proposed a tool to mine software
modification association rules, called ROSE. Their tool
mined associations between files and finer-grained entities. It
also supported mining on the fly, by presenting the
developers the suggestions that apply to the software
modules being modified at a given time.

All the researches mentioned above have one thing in
common. They all mined software archives with
support-confidence model. Two of them [5][7] showed that
the support-confidence model discovered the false positive
rules which lead to false outcome if applied.

In 2009, Reference [6] analysed some deficiency of
interestingness measure on the support-confidence
framework and then proposed a new interestingness measure
for mining association rules based on sufficiency measure of
uncertain reasoning, named as “new confidence”, to decrease
the false positive rules from mining association rules with the
classical method.

This research is motivated by the work of [11] and [6]. Our
work is concerned with mining for software module
modification association rules using Liu et al.’s support-new
confidence model [6].

III. EXPERIMENT
This paper presents our work as an experimental research.

This section will focus on the experiment definition and
planning. The following sections will present the experiment
execution and data analysis.

A. Goal Definition
Our main goal is to compare the efficiency of applying

association rule discovery on software archive using
support-confidence model and Liu et al.’s support-new
confidence model in three main scenarios to support
programmers in software coding. The three scenarios are:

• Navigation [11]: Given a single changed entity, can
the system point programmers to entities that should
typically be changed, too?

• Error prevention [11]: Can the system prevent errors?
Say, the programmer has changed many entities but
has missed to change one entity. Does the system find
the missing one?

• Closure [11]: Suppose a transaction is finished—the
programmer made all necessary changes. How often
does the system erroneously suggest that a change is
missing?

B. Planning
Context selection: For our experiment, we analysed the

archive of one large open-source project which can retrieves
changes and transactions from CVS, the most popular
open-source version control system, archive. We chose the
software project named KMyMoney [14], which is the
popular open-source personal financial manager software.
This project is developed with C++ Programming Language
in Qt framework since 2000. Its CVS archive contains more
than 30000 transactions on more than 2000 files.

Hypothesis Formulation: We are interested in the
efficiency of file association rules application in KMyMoney
project. We selected 60 transactions as a test set. Each of
transactions () were selected from the statistical
characteristics, size and frequency of appearance, to be the
representatives of transactions. These test sets is used for
checking whether its modified files can be predicted from
earlier action:

• A test case q = (Q, E) was created, consisting of a
query Q ⊂ and an expected outcome E = – Q.
We referred to a set of all queries as Z. In our work
we created 451 test cases for Navigation scenario,
451 test cases for Error Prevention scenario and 60
test cases for Closure scenario from 60 transactions
in the test set;

• Only the top ten rules of the all rules R were
considered: R10 ⊂ R ranked by confidence / new
confidence;

• The union of consequent item sets of R10 of test case
q was defined as Aq.

• Aq ∩ Eq will be the files that matched the expected
outcome and will be considered correct;

• Aq - Eq will be unexpected recommendations which
are wrong.

After that, we used two information retrieval measures
[12]. The first measure is the precision Pq. It describes which
fraction of the returned files was actually modified by the
programmer. The second measure is recall Rq. It indicates the
percentage of modified files that were returned [8].

Pq =
| ∩ ா || | , Rq =

| ∩ ா || ா | (1)

In the case that no item was returned (Aq is empty), we
defined the precision as Pq = 1. In the case that no item was
expected, we defined the recall as Rq = 1

The harmonic mean between precision and recall, the
F-measureq [13], assures the balance of the model
characterization.

F-measureq =
ଶ ∗ ∗ ோା ோ (2)

F-measureq can be calculated to measure the efficiency of
file association rules in navigation and error prevention
scenarios [8][11]. For closure scenario, we measured the
efficiency by calculating the percentage of queries where the
system makes at least one recommendation. We referred to
this percentage as the Feedback.

Feedback =
|∗||| (3)

Z* is a subset of Z which makes a non empty
recommendation set.

Hence, the hypotheses we were trying to confirm are:
Hypothesis HNAV: Software archive mining based on files

association rules using support-new confidence model (2) has
Navigation F-measure higher than using support-confidence
model (1).

HNAV: μ2(F- measure) > μ1(F- measure) (4)

Hypothesis HPRE: Software archive mining based on files
association rules using support-new confidence model (2) has

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

518

Error Prevention F-measure higher than using
support-confidence model (1).

HPRE: μ2(F- measure) > μ1(F- measure) (5)

Hypothesis HCLO: Software archive mining based on files
association rules using support-new confidence model (2) has
Closure Feedback lower than using support-confidence
model (1).

HCLO: μ2(Feedback) < μ1(Feedback) (6)

IV. EXPERIMENT OPERATION
The classical approach to compute association rules is the

Apriori Algorithm [1]. The Apriori Algorithm takes a
minimum support count (or minimum support) and a
minimum confidence and computes the set of all association
rules that are above both thresholds.

All experiments were given a minimum support count of 3
and minimum confidence / new confidence of 0.1.

Formally, we define:
• The frequency of a set x in a set of transactions D as

freqD(x) = |{t | t ∈ ⊆T, x t}| (7)

• The probability of a set x in a set of transactions D as

pD(x) = ವ(௫)|| (8)

• The support count of rule x → y define by a set of
transactions D as

supcD(x → y) = freqD(x ∪ y) (9)

• For file association rule mining using
support-confidence model, the confidence is used to
determine the interestingness of the rule. The
confidence of rule x → y define by a set of
transactions D as

conf(x → y) = ವ(௫ ௗ ௬)ವ(௫) (10)

• For file association rule mining using Liu et al.’s
support-new confidence model [6], the new
confidence is used to determine the interestingness
of the rule. The new confidence of rule x → y define
by a set of transactions D as

nconf(x → y) = ವ(௫ ௗ ௬)ವ(௬) − ವ(௫ ௗ ௬ത)ವ(௬ത) (11)

The set of suggestions for a situation S and a set of rules R
are defined as the union of the consequents of all matching
rules:

applyR{S} = ⋃ ோ∋ (ௌ →௬)ݕ (12)

V. RESULTS
The experimental results are shown in Table 1. These

results suggest that the association rules obtained from the
new framework are better than those obtained from the
classical framework in navigation scenario, but are worse
than the classical framework in error prevention scenario and
are equal in closure scenario. Next, we tested this evidence

using inferential statistics.

TABLE I: THE EXPERIMENTAL RESULTS

Model
Efficiency of applying association rule discovery

Navigation
(F-measure)

Prevention
(F-measure)

Closure
(Feedback)

Classical 0.3013 0.1353 4160

New 0.3245 0.1135 4160

A. Analysis and Interpretation
First, we analyzed navigation and error prevention

scenario. For the statistical testing, we established a
significance level (α) of 0.05. The Kolmogorov-Smirnov
Test can be used to ensure that the sample is normally
distributed. As seen in Table 2, we found p-values (1-tailed)
of 0.013, 0.006, 0.000 and 0.000 for the navigation's and error
prevention's classic and new model F-measure, respectively.
It can be concluded that the data is not normally distributed.

TABLE II: KOLMOGOROV-SMIRNOV TEST FOR NAVIGATION AND

PREVENTION
 Navigation Prevention
 Classic New Classic New
N 451 451 451 451
Kolmogorov-Smirnov Z 1.481 1.600 6.644 6.914
Asymp. Sig. (2-tailed) 0.025 0.012 0.000 0.000

Thus, we applied the Wilcoxon Signed Rank Sum Test for

the Matched Paired Difference shown in Table 3. In
navigation scenario, we obtained the p-value (1-tailed) of
0.000, significantly lower than 0.05, and the Z of -4.374
based on negative ranks accepting our hypothesis that
software archive mining based on files association rules
using support-new confidence model has higher navigation
efficiency than using support-confidence model. In error
prevention scenario case, we obtained the p-value (1-tailed)
of 0.000, significantly lower than 0.05, and the Z of -6.055
based on positive ranks concluding that software archive
mining based on files association rules using support-new
confidence model has no difference in error prevention
efficiency from using support-confidence model.

Finally, we applied Two Proportion Z Tests for closure
scenario. The result is shown in Table 4. As the p-value is the
lowest possible significance with which it is possible to reject
the null hypothesis H0

CLO. We found Z = ඥPearson Chi − Square =
0.000 and p-value (1-tailed) of 0.5, larger than 0.05, that
mean software archive mining based on files association
rules using support-new confidence model is not different in
closure efficiency from using support-confidence model.

TABLE III: WILCOXON SIGNED RANK SUM TEST FOR NAVIGATION AND

PREVENTION
 Navigation Prevention
 MNEW-MCLASSIC MNEW-MCLASSIC
Z -4.374a -6.055b
Asymp. Sig. (2-tailed) 0.000 0.000
a. Based on negative ranks.
b. Based on positive ranks.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

519

We can infer that the effectiveness of file modification
association rules using support-new confidence model is
higher than using support-confidence model only in
navigation scenario.

TABLE IV: TWO PROPORTION Z TEST FOR CLOSURE

 Value df Asymp. Sig.
(2-sided)

Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Pearson
Chi-Square 0.000a 1 1.000

Continuity
Correction 0.000 1 1.000

Likelihood
Ratio 0.000 1 1.000

Fisher's
Exact Test 1.000 0.578

N of Valid
Cases 120

a. 0 cells (0%) have expected count less than 5. The minimum expected
count is 19

B. Validity and Reliability
In spite of having achieved statistical significance in the

study, one must consider the following validity and reliability
of our study:

• The software project that we used its archive for
analysis is a popular open-source personal financial
manager software, having a number of transactions
per week and stable for over 10 years;

• We selected the test sets from the historical
transactions, represented real actions in the past, and
generated queries and expected results from them
[11];

• The efficiency evaluation that we used are the
calculated F-measure and Feedback, which are
widely used in information retrieval research [12].

VI. CONCLUSIONS AND FUTURE WORK
This article shows that software module modification

association rules derived by using the support-new
confidence model were more effective than those derived by
using the support-confidence model in navigation scenario.
We found that in navigation scenario, the classical model can
generate a lot of false positive rules in high rank position
while the new model can generate only a bit of false positive
rules. But in error prevention and closure scenarios, the
classical and new model can derive near or same number of
false positive rules. Our results indicates that association
rules discovery using support-new confidence model can also
be effectively applied in software archives such as the one we
studied.

We believe that this finding may stimulate further studies
in the support-new confidence model. And hopefully,
motivate them to invest on association mining to support
software maintenance and evolution activities.

The future work, we want to detect the ordering of changes
or sequence rules such as "Given a single change, can system
point programmer to entities that should typically be changed
in ordering, too"? Moreover, we believe that the new

association rule mining model can effectively applied for fine
granularity associations, analyzing variables, methods and
classes.

REFERENCES
[1] R. Agrawal and R. Srikant. “Fast Algorithms for Mining Association

Rules” in Proc. 20th Very Large Data Bases Conf. (VLDB). 1994, pp.
487-499.

[2] T. Ball, J. M. Kim, A. A. Porter, and H. P. Siy. “If Your Version
Control System Could Talk” in Proc. ICSE Workshop on Process
Modelling and Empirical Studies of Software Eng., 1997.

[3] J. M. Bieman, A. A. Andrews, and H. J. Yang.. “Understanding
Change-Proneness” in OO Software through Visualization. Proc. 11th
Int’l Workshop Program Comprehension, 2003, pp. 44-53.

[4] H. Gall, K. Hajek, and M. Jazayeri. “Detection of Logical Coupling
Based on Product Release History” in Proceedings of the 26th
International Conference on Software Maintenance (ICSM ’98), 1998,
pp. 190-198.

[5] Z. Li, and Y. Zhou.. “PR-Miner: Automatically Extracting Implicit
Programming Rules and Detecting Violations in Large Software
Code”in Proceedings of 13th International Symposium on Foundations
of Software Engineering (ESEC/FSE'05), 2005, pp 306-315.

[6] J. Liu, F. Xiaoping, and Q. Zhihua. “A New Interestingness Measure of
Association Rules. Genetic and Evolutionary Computing” in. WGEC
'08. Second International Conference, 2008, pp. 393-397.

[7] B. Livshits, and T. Zimmermann.. “DyanMine: Finding Common Error
Patterns by Mining Software Revision Histories” in Proceedings of
13th International Symposium on Foundations of Software
Engineering (ESEC/FSE'05), 2005, pp 296-305.

[8] C. J. Methania, M. Manoel, and R. Francisco. “Mining software change
history in an industrial environment” in. XXIII Brazilian Symposium on
Software Engineering,. 2009

[9] A. T. T. Ying. “Predicting source code changes by mining revision
history”. Master’s thesis, University of British Columbia, Canada, Oct.
2003.

[10] T. Zimmermann and P. Weißgerber.. “Preprocessing CVS Data For
Fine-Grained Analysis” in Proc. Mining Software Repositories, 2004,
pp. 2-6.

[11] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.. “Mining
Version Histories to Guide Software Changes” in Proceedings of the
26th International Conference on Software Engineering, 2005, pp.
563-572.

[12] C. J. van. Rijsbergen. Information Retrieval, 2nd edition. Butterworths,
London. 1979

[13] M. Grossman and R. Katz. “A new approach to means of two positive
numbers” International Journal of Mathematical Education in Science
and Technology, vol. 17, no. 2, 1986, pp. 205 – 208.

[14] KMyMoney project. Available: http://kmymoney2.sourceforge.net/

S. Pitakchonlasup was born in Ratchaburi, Thailand. He received his
bachelor degree in Computer Science from Chulalongkorn University,
Bangkok Thailand in 2007. He received his master degree in Business
Software Development from Chulalongkorn University, Bangkok Thailand
in 2011.
 He is currently a software developer in iOS department at Appsphere
Group Co.,Ltd., Bangkok Thailand.

A Sapsomboon was born in Bangkok, Thailand. She received her bachelor
degree in Statistics from Chulalongkorn University, Bangkok Thailand in
1982. She continued her study and received her Master degree in Computer
Science from the Pennsylvania State University, University Park, PA, and
Ph.D. in Information Science from the University of Pittsburgh, PA, in 1984
and 1989 respectively.
 She is currently an assistant professor in Information Technology at the
Faculty of Commerce and Accountancy, Chulalongkorn University,
Bangkok THAILAND. Her research interests are software development
process and information retrieval.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

520

