
  

  
Abstract—Software archives contain historical information 

about the development process of a software system. Using 
Association rule discovery, the development patterns can be 
extracted from these archives. This information is useful to 
support software modification activities, as indicated to 
software developers which modules are usually modified 
together during software maintenance or evolution. All 
previous works focused on mining associations with classical 
interestingness measure, support-confidence, where some 
disadvantage existed. The new Interestingness Measure, named 
as support-new confidence, was proposed by Liu et al. to 
improve the classical method.  In this research, we present the 
comparison of the efficiency of applying association rule 
discovery on software archive using classical model and Liu et 
al.'s model. The experiments were conducted on software 
archive of KMyMoney software, an open source financial 
software project. The results show that the efficiency of the 
rules obtained in new model is higher than the rules obtained in 
classical model in navigation scenario. 
 

Index Terms—Association rule discovery, measures, version 
control system, software archives interestingness. 
 

I. INTRODUCTION 
Version control systems automatically generate sources of 

software change history, software archive. They can be 
mined to identify associations between software module 
modifications [10][11]. This information is the basis to 
identify useful patterns of software module defect 
occurrences, associations, modification, evolution and decay. 
For this reason, software engineering research has been 
exploring software archives to understand software projects 
[2][8]. With these archives, it is possible to detect logical 
evolution coupling [3][4], extract function call usage patterns 
[5], find common error patterns [7], predict and suggest likely 
changes and prevent errors due to incomplete changes [10]. 

All association rule discovery in software archive 
researches using support-confidence framework, conf (x→y) 
is used to measure the interestingness of rule x→y. However, 
sometime this model retrieves the uncorrelated rules and 
misleads to define interesting rule [5][7][8].  

In 2009, Liu et al. analyzed some problem of 
interestingness measure on the classical association rules 
model, support-confidence model, and then proposed a new 

 
Manuscript received July 1, 2012; revised July 29, 2012.  
Sunchai Pitakchonlasup is with the Appsphere Group Co.,Ltd., Bangkok 

Thailand. (e-mail:dz.yoez@gmail.com). 
Assadaporn Sapsomboon is with Business Software Devlopment 

Program, Faculty of Commerce and Accoutancy, Chulalongkorn University, 
Bangkok, Thailand. (e-mail:assadaporn@ acc.chula.ac.th). 

interestingness measure for mining association rules based on 
sufficiency measure of uncertain reasoning, called “new 
confidence”, to improve the classical method of mining 
association rules [6]. Liu et al. showed that the new measure 
not only captures correlation but can also detect negative 
implication [6].   

For the above reasons, we are interested in applying Liu et 
al.’s support-new confidence model to association rule 
discovery in software archive. This paper presents the 
comparison of the efficiency of applying association rule 
discovery on software archive using classical model and new 
model. The efficiency test of this research follows an 
approach similar to what was proposed by Zimmermann et 
al., as in [11]. It mines software archive to characterize 
software entities modification associations for: (1) predicting 
and suggesting further changes to be made in files entities, 
named as navigation scenario; (2) preventing incomplete 
changes, named as error prevention scenario; and (3) 
preventing erroneously recommendations of (1) and (2), 
named as closure scenario [11]. The results indicate that the 
efficiency of the rules obtained in new model is higher than 
the rules obtained in classical model in navigation scenario. 

This paper is organized as follows. Section 2 discusses 
related works. Section 3 presents the experiment planning 
and definition. Section 4 describes the experiment. Section 5 
describes, analyzes and discusses the validity of the obtained 
results. And finally, Section 6 concludes the research result 
and proposes future work. 

 

II. RELATED WORKS 
This section discusses the studies in mining data from 

version control repositories. Those researches may diverge 
on the purpose of analysis, mining technique employed, 
amount of analysed data and algorithms used. 

In 2003, reference [9] developed an approach that used 
association rule mining on software archives. It especially 
evaluated the usefulness of the results, considering a 
recommendation most valuable if it could not be determined 
by program analysis, and found several such 
recommendations in the MOZILLA and ECLIPSE projects. 

Reference [4] was the first to use software history to detect 
logical coupling between program modules in 1998. 
Reference [3] proposed a method to identify and visualize 
classes and class coupling that are the most change prone.  

Reference [5] proposed a general method that used a data 
mining technique to extract implicit programming rules from 
large software code written in a C programming language. 
Reference [7] analysed source code check-ins to find highly 
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correlated method calls as well as common bug fixes in order 
to automatically discover application-specific coding 
patterns.  

 Reference [11] proposed a tool to mine software 
modification association rules, called ROSE. Their tool 
mined associations between files and finer-grained entities. It 
also supported mining on the fly, by presenting the 
developers the suggestions that apply to the software 
modules being modified at a given time.  

All the researches mentioned above have one thing in 
common. They all mined software archives with 
support-confidence model. Two of them [5][7] showed that 
the support-confidence model discovered the false positive 
rules which lead to false outcome if applied.  

In 2009, Reference [6] analysed some deficiency of 
interestingness measure on the support-confidence 
framework and then proposed a new interestingness measure 
for mining association rules based on sufficiency measure of 
uncertain reasoning, named as “new confidence”, to decrease 
the false positive rules from mining association rules with the 
classical method. 

This research is motivated by the work of [11] and [6]. Our 
work is concerned with mining for software module 
modification association rules using Liu et al.’s support-new 
confidence model [6]. 

 

III. EXPERIMENT 
This paper presents our work as an experimental research.  

This section will focus on the experiment definition and 
planning. The following sections will present the experiment 
execution and data analysis. 

A. Goal Definition 
Our main goal is to compare the efficiency of applying 

association rule discovery on software archive using 
support-confidence model and Liu et al.’s support-new 
confidence model in three main scenarios to support 
programmers in software coding. The three scenarios are: 

• Navigation [11]: Given a single changed entity, can 
the system point programmers to entities that should 
typically be changed, too? 

• Error prevention [11]: Can the system prevent errors? 
Say, the programmer has changed many entities but 
has missed to change one entity. Does the system find 
the missing one? 

• Closure [11]: Suppose a transaction is finished—the 
programmer made all necessary changes. How often 
does the system erroneously suggest that a change is 
missing? 

B. Planning 
Context selection: For our experiment, we analysed the 

archive of one large open-source project which can retrieves 
changes and transactions from CVS, the most popular 
open-source version control system, archive. We chose the 
software project named KMyMoney [14], which is the 
popular open-source personal financial manager software.  
This project is developed with C++ Programming Language 
in Qt framework since 2000.  Its CVS archive contains more 
than 30000 transactions on more than 2000 files. 

Hypothesis Formulation: We are interested in the 
efficiency of file association rules application in KMyMoney 
project. We selected 60 transactions as a test set. Each of 
transactions ( ) were selected from the statistical 
characteristics, size and frequency of appearance, to be the 
representatives of transactions. These test sets is used for 
checking whether its modified files can be predicted from 
earlier action: 

• A test case q = (Q, E) was created, consisting of a 
query Q ⊂  and an expected outcome E =  – Q. 
We referred to a set of all queries as Z. In our work 
we created 451 test cases for Navigation scenario, 
451 test cases for Error Prevention scenario and 60 
test cases for Closure scenario from 60 transactions 
in the test set; 

• Only the top ten rules of the all rules R were 
considered: R10 ⊂ R ranked by confidence / new 
confidence; 

• The union of consequent item sets of R10 of test case 
q was defined as Aq.  

• Aq ∩ Eq will be the files that matched the expected 
outcome and will be considered correct; 

• Aq - Eq will be unexpected recommendations which 
are wrong. 

After that, we used two information retrieval measures 
[12]. The first measure is the precision Pq. It describes which 
fraction of the returned files was actually modified by the 
programmer. The second measure is recall Rq. It indicates the 
percentage of modified files that were returned [8]. 

Pq =  
|  ∩ ா ||  |   ,    Rq =  

|  ∩ ா || ா |                  (1) 

In the case that no item was returned (Aq is empty), we 
defined the precision as Pq = 1. In the case that no item was 
expected, we defined the recall as Rq = 1 

The harmonic mean between precision and recall, the 
F-measureq [13], assures the balance of the model 
characterization. 

F-measureq = 
ଶ ∗  ∗ ோା ோ                        (2) 

F-measureq can be calculated to measure the efficiency of 
file association rules in navigation and error prevention 
scenarios [8][11]. For closure scenario, we measured the 
efficiency by calculating the percentage of queries where the 
system makes at least one recommendation. We referred to 
this percentage as the Feedback. 

Feedback = 
|∗|||                                  (3) 

Z* is a subset of Z which makes a non empty 
recommendation set. 

Hence, the hypotheses we were trying to confirm are: 
Hypothesis HNAV: Software archive mining based on files 

association rules using support-new confidence model (2) has 
Navigation F-measure higher than using support-confidence 
model (1). 

HNAV: μ2(F- measure) > μ1(F- measure)             (4) 

Hypothesis HPRE: Software archive mining based on files 
association rules using support-new confidence model (2) has 
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Error Prevention F-measure higher than using 
support-confidence model (1). 

HPRE: μ2(F- measure) > μ1(F- measure)                (5) 

Hypothesis HCLO: Software archive mining based on files 
association rules using support-new confidence model (2) has 
Closure Feedback lower than using support-confidence 
model (1). 

HCLO: μ2(Feedback) < μ1(Feedback)                 (6) 

 

IV. EXPERIMENT OPERATION 
The classical approach to compute association rules is the 

Apriori Algorithm [1]. The Apriori Algorithm takes a 
minimum support count (or minimum support) and a 
minimum confidence and computes the set of all association 
rules that are above both thresholds.  

All experiments were given a minimum support count of 3 
and minimum confidence / new confidence of 0.1.  

Formally, we define: 
• The frequency of a set x in a set of transactions D as  

freqD(x)  = |{t | t ∈ ⊆T, x  t}|              (7) 

• The probability of a set x in a set of transactions D as 

pD(x) = ವ(௫)||                             (8) 

• The support count of rule x → y define by a set of 
transactions D as 

supcD(x → y) = freqD(x ∪ y)                 (9) 

• For file association rule mining using 
support-confidence model, the confidence is used to 
determine the interestingness of the rule. The 
confidence of rule x → y define by a set of 
transactions D as 

conf(x → y) =  ವ(௫ ௗ ௬)ವ(௫)                 (10) 

• For file association rule mining using Liu et al.’s 
support-new confidence model [6], the new 
confidence is used to determine the interestingness 
of the rule. The new confidence of rule x → y define 
by a set of transactions D as  

nconf(x → y) =  ವ(௫ ௗ ௬)ವ(௬) − ವ(௫ ௗ ௬ത)ವ(௬ത)         (11) 

The set of suggestions for a situation S and a set of rules R 
are defined as the union of the consequents of all matching 
rules: 

applyR{S} = ⋃ ோ∋ (ௌ →௬)ݕ                  (12) 

 

V. RESULTS 
The experimental results are shown in Table 1. These 

results suggest that the association rules obtained from the 
new framework are better than those obtained from the 
classical framework in navigation scenario, but are worse 
than the classical framework in error prevention scenario and 
are equal in closure scenario. Next, we tested this evidence 

using inferential statistics. 
 

TABLE I: THE EXPERIMENTAL RESULTS 

Model 
Efficiency of applying association rule discovery 

Navigation 
(F-measure) 

Prevention 
(F-measure) 

Closure 
(Feedback) 

Classical 0.3013 0.1353 4160 

New 0.3245 0.1135 4160 

 

A. Analysis and Interpretation 
First, we analyzed navigation and error prevention 

scenario. For the statistical testing, we established a 
significance level (α) of 0.05. The Kolmogorov-Smirnov 
Test can be used to ensure that the sample is normally 
distributed. As seen in Table 2, we found p-values (1-tailed) 
of 0.013, 0.006, 0.000 and 0.000 for the navigation's and error 
prevention's classic and new model F-measure, respectively. 
It can be concluded that the data is not normally distributed. 

 
TABLE II: KOLMOGOROV-SMIRNOV TEST FOR NAVIGATION AND 

PREVENTION 
 Navigation Prevention 
 Classic New Classic New 
N 451 451 451 451 
Kolmogorov-Smirnov Z 1.481 1.600 6.644 6.914 
Asymp. Sig. (2-tailed) 0.025 0.012 0.000 0.000 

 
Thus, we applied the Wilcoxon Signed Rank Sum Test for 

the Matched Paired Difference shown in Table 3. In 
navigation scenario, we obtained the p-value (1-tailed) of 
0.000, significantly lower than 0.05, and the Z of -4.374 
based on negative ranks accepting our hypothesis that 
software archive mining based on files association rules 
using support-new confidence model has higher navigation 
efficiency than using support-confidence model. In error 
prevention scenario case, we obtained the p-value (1-tailed) 
of 0.000, significantly lower than 0.05, and the Z of -6.055 
based on positive ranks concluding that software archive 
mining based on files association rules using support-new 
confidence model has no difference in error prevention 
efficiency from using support-confidence model. 

Finally, we applied Two Proportion Z Tests for closure 
scenario. The result is shown in Table 4. As the p-value is the 
lowest possible significance with which it is possible to reject 
the null hypothesis H0

CLO. We found Z = ඥPearson Chi − Square = 
0.000 and p-value (1-tailed) of 0.5, larger than 0.05, that 
mean software archive mining based on files association 
rules using support-new confidence model is not different in 
closure efficiency from using support-confidence model. 

 
TABLE III: WILCOXON SIGNED RANK SUM TEST FOR NAVIGATION AND 

PREVENTION 
 Navigation Prevention 
 MNEW-MCLASSIC MNEW-MCLASSIC 
Z -4.374a -6.055b 
Asymp. Sig. (2-tailed) 0.000 0.000 
a. Based on negative ranks. 
b. Based on positive ranks. 
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We can infer that the effectiveness of file modification 
association rules using support-new confidence model is 
higher than using support-confidence model only in 
navigation scenario. 
 

TABLE IV: TWO PROPORTION Z TEST FOR CLOSURE 

 Value df Asymp. Sig.  
(2-sided) 

Exact Sig.  
(2-sided) 

Exact Sig. 
(1-sided) 

Pearson 
Chi-Square 0.000a 1 1.000   

Continuity 
Correction 0.000 1 1.000   

Likelihood 
Ratio 0.000 1 1.000   

Fisher's 
Exact Test    1.000 0.578 

N of Valid 
Cases 120     

a. 0 cells (0%) have expected count less than 5. The minimum expected 
count is 19 

 

B. Validity and Reliability 
In spite of having achieved statistical significance in the 

study, one must consider the following validity and reliability 
of our study: 

• The software project that we used its archive for 
analysis is a popular open-source personal financial 
manager software, having a number of transactions 
per week and stable for over 10 years; 

• We selected the test sets from the historical 
transactions, represented real actions in the past, and 
generated queries and expected results from them 
[11]; 

• The efficiency evaluation that we used are the 
calculated F-measure and Feedback, which are 
widely used in information retrieval research [12]. 

 

VI. CONCLUSIONS AND FUTURE WORK 
This article shows that software module modification 

association rules derived by using the support-new 
confidence model were more effective than those derived by 
using the support-confidence model in navigation scenario. 
We found that in navigation scenario, the classical model can 
generate a lot of false positive rules in high rank position 
while the new model can generate only a bit of false positive 
rules.  But in error prevention and closure scenarios, the 
classical and new model can derive near or same number of 
false positive rules. Our results indicates that association 
rules discovery using support-new confidence model can also 
be effectively applied in software archives such as the one we 
studied. 

We believe that this finding may stimulate further studies 
in the support-new confidence model. And hopefully, 
motivate them to invest on association mining to support 
software maintenance and evolution activities. 

The future work, we want to detect the ordering of changes 
or sequence rules such as "Given a single change, can system 
point programmer to entities that should typically be changed 
in ordering, too"? Moreover, we believe that the new 

association rule mining model can effectively applied for fine 
granularity associations, analyzing variables, methods and 
classes. 
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