

Abstract—A common solution to improving the

generalization problem and increasing the efficiency of
different ANNs is to use ANN ensembles. These methods focus
on the possibility of generating different neural nets for a
dataset and combining the results for acquiring a more accurate
regression. In this paper, a new ensemble method called
machine learner fusion-regression (MLF-R) is proposed to
increase the accuracy of the results through focusing on difficult
samples. The architecture of MLF-R includes two different
parts: the first is a training phase from which final nets are
selected after a filtering process; the second part is a weighted
decision maker including a backpropagation structure which
fuses the different nets derived from the first step to predict the
outputs. The results demonstrate MLF-R is more efficient than
bagging, different boosting methods and the implementation of
single ANN methods with 18% to 51% higher accuracy.
Moreover, MLF-R offers more stable results compared to the
other methods which have been tested in this paper.

Index Terms—Adaptive threshold, ensemble, fusion, neural
networks.

I. INTRODUCTION
There is a major impetus for using backpropagation neural

networks for prediction in different applications because they
can lead to an acceptable level of accuracy derived from a
desired size of training dataset [1]. However, there are some
regression problems which cannot be adequately predicted
when based on a single ANN because of the complexity of
the problem and large volume of data [2]. Therefore the
motivation for fusion of different ANNs is the potential for
obtaining more accurate predictions compared with those
which would be obtainable using single ANN [3]. Moreover,
ANNs are known as unstable learners due to the inherent data
and the random process which is used in the training. This
instability is further motivation for applying ANNs in an
ensemble mode [4]. According to [5], one or more of the
following strategies have been applied in the currently
developed ANN ensembles:

• Training a set of ANN on a constant dataset, but
varying the initial random weights during training.

• Using different ANN methods on a constant training
dataset.

• Altering ANN architecture, e.g. changing the
number of hidden units, during the training process
of constant datasets.

Manuscript received May 23, 2012; revised July 27, 2012.
Ali Shamsoddini is with School of Surveying and Spatial Information

Systems, University of New South Wales, Sydney, Australia (e-mail:
a.shamsoddini@ student.unsw.edu.au).

John C. Trinder is Visiting Emeritus Professor at School of Surveying and
Spatial Information Systems, University of New South Wales, Sydney,
Australia (e-mail: j.trinder@unsw.edu.au).

• Varying training datasets through different
procedures such as sampling data, boosting, using
different data sources, and disjoint training sets.
This strategy is applied more frequently than the
others.

It is also possible to create a neural network ensemble
using a combination of the above strategies [5]. In general,
there are two designs of ANN ensemble methods [6]:

• An ensemble of ANNs which are error-independent,
without removing some of them such as those in [1],
[7].

• Select the most error-independent ANNs among a
large number of nets which have been produced in
earlier stages [8], [9].

In this paper, a new ensemble method called machine
learner fusion-regression (MLF-R) is proposed which is
based on using a combination of variable initial random
weights for training datasets and different ANN methods.
The design of this method is similar to the second group
above, since it produces different nets, but some of them are
selected for more training as discussed later. In the next
section, details will be given on some ensemble methods,
especially bagging and boosting which will be used in this
paper. In section III, the methodology of the new algorithm
will be presented. The results will be shown in section IV and
section V will conclude this paper.

II. ENSEMBLE METHODS
There have been many approaches for aggregating

different neural networks following the mentioned strategies
in the above dot points, such as Bayesian voting and its
derivatives [10], manipulation of training and output sets [7],
[11], [12], and injection of randomness [13]. Bagging and
boosting are well-known among the methods belonging to
the group of methods which varying training datasets through
different procedures, and are more popular examples for
addressing regression problems.

Bagging provides different versions of the training
samples in a random process with replacement. Replacement
means that the chance of selecting a sample is the same as for
the samples which were selected in the last sampling. For an
arbitrary number of epochs, the training datasets are divided
into two parts including in-bag (almost 63% of training
sample size) and the remainder as out-bag in each training
step, and then the learner will be fed by in-bag data. At the
end of the iterations, the final output is determined by simple
averaging over all generated nets [11]. This technique is
appropriate especially for unstable learning machines such as
Tree-based algorithms and neural networks [14].

Boosting applies the hypothesis to the training data set
manipulation and was developed originally by Schapire [15]

Neural Networks Fusion for Regression Problems

Ali Shamsoddini and John C. Trinder

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

511

but it demanded a large number of training sets. Different
versions of this technique have been proposed; the demands
for large training data led to the development of other
boosting versions including: Adaboost (adaptive boosting);
Adaboost M1 and Adaboost M2 for classification; and
Adaboost.R for regression problems [7]. Adaboost.R2 which
will be used in this paper was developed to overcome some
deficiencies of Adaboost.R [16].

Adaboost.R2 focuses on the difficult cases whose
predictions are subject to larger errors than others, to improve
the performance of machine learner. This algorithm gives
initial weights to the training examples and updates these
weights according to the predicted accuracy of the training
examples in such a way that the probability of the selection of
difficult examples is increased for the next training.
Consequently, the next learning iteration is expected to be
based on more difficult examples since this selection is
random with replacement. In order to evaluate the prediction
quality of each example, the technique uses a loss equation,
which is used to calculate the difference between real and
predicted values, written in either linear, square law or
exponential forms [16]. The learning process will continue
until the desired number of epochs is finished or terminated
earlier if the value of the mean loss function is higher than 0.5.
At the end of a preset number of training episodes, the final
result is derived using the weighted median. Adaboost.RT
was developed to apply Adaboost M1 specifically for
regression problems [17]. The method in this paper uses a
different loss function compared to the previous versions of
Adaboost. Moreover, it uses a threshold to determine the
probability of difficulty for the examples in a different way
compared to Adaboost.R. Moreover, a weighted mean is used
to calculate the final output of this method. There are some
drawbacks with this method which will be addressed in the
next section.

III. METHODOLOGY
Fig. 1 show the structure of MLF-R, which is in two parts.

For the first part, machines are provided by different subsets
derived randomly with replacement in the same way as in
bagging and boosting. These subsets are used along with
some reserved datasets to train learners in a number of
iterations. The pseudo code of the step one is shown in Fig. 2.
After generating different versions of the nets, the more
reliable nets are selected in a filtering step as demonstrated by
the pseudo code in Fig. 3. Then, the selected learners are used
to form the inputs for the decision learner. In step two, the
decision learner is trained for a number of iterations using
these inputs and the reserved inputs which have been
predicted using the best learners derived from the previous
step. Finally, the weighting function will determine the final
output of the ensemble method. Fig. 4 shows the pseudo code
of this step.

A. Adaptive Threshold to Determine Difficult Examples
One of the most important issues related to the cases which

focus on difficult examples, is the criterion which is applied
to differentiate between the two different groups of examples,
including easy and difficult ones. The difficulty of this task

will increase when the ensemble method is dealing with a
regression problem. In classification problems there are
usually few classes, and a predefined margin for each class is
used to correctly identify easy examples from incorrect
predictions which are called difficult examples [9].

Fig. 1. The architecture of MLF-R; X1,…,Xn are different training subsets
which are collected randomly with replacement. R is reserved dataset. f(R)
and f(X1),…,f(Xn) are reserved data and different training subsets which are
predicted by selected regression models to be used in the second step after

filtering.

 For the regression problem it is more difficult to
determine a reliable boundary between easy and difficult
examples due to an inevitable discrepancy between predicted
and actual values. In [17], a constant value is preliminarily
selected according to the prediction error statistics of a single
machine. The problem is that the range of this value is infinite;
however, the authors have suggested executing a calibration
process before starting the ensemble method to find the
optimum value of the threshold to separate easy and difficult
examples. This calibration will add more time to the training.

Fig. 2. The pseudo code of the step 1 of MLF-R algorithm

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

512

For calculating the loss of the predicted training examples
the authors in [17] also proposed a relative error function
which does not work when there are some examples with
zero values in the training dataset. Finally, the threshold
which is utilized in the proposed methods is not set
automatically and consequently requires calibration.

Fig. 3. The pseudo code of the filtering process of the nets

In order to overcome the above deficiencies in the MLF-R

algorithm, the actual errors in the predicted examples are
assumed to be normally distributed variables. Therefore, the
losses of the predicted examples are calculated using the
following equation that is the same as the loss equation in
Adaboost.R2:

 ݈௧(݅) = | ௧݂(ݔ) − | (1)ݕ

where, ௧݂(ݔ) is the predicted value of the example i in
iteration t and ݕ is the actual value of the example. Then the
normalized losses (NL) of each training epoch are calculated
using the following equation:

ܮܰ = ()ିఓఙ (2)

where, ݈௧(݅) is loss for the example i in the iteration t. μ
represents the mean value of the losses while σ is the standard
deviation of these values. In this normal distribution, the
values which are less than threshold, Φ, are considered as
easy samples in the current training iteration. The
relationship between Φ and ߪே which is the standard
deviation of normalized loss values (almost equal to 1) is
determined as follows:

 Φ = – C×ߪே (3)

where, C is in [0, 2]. If C is 0, it means the examples whose
normalized loss values are less than the mean are considered
as easy examples and consequently the number of easy
examples will increase, whereas setting C to 2 can decrease
the number of easy examples. In order to avoid these extreme
situations, it is better to select a value for C between these
extremes, such as 1; however as the analyses of the effect of
different C values on the results (in the section IV) shows, the
value of C does not significantly influence the final outcome.
There are four advantages for this type of threshold:

• It is more logical and is based on statistical
definition.

• It is set automatically.
• Its variation is not infinite as in previous

methods.
• It is adaptive and focuses on relative errors. This

type of threshold prevents a learner from treating
all examples which are different in terms of
difficulty, in the same way.

Fig. 4. The pseudo code of the step 2 of MLF-R algorithm

B. Training Subset Selection
Using replacement in the sampling process generates some

overlapped subsets. Although, the probability of using easy
samples decreases during the iterations, they may still be
used in the next training subset. This consequently leads to
less emphasis on the more difficult examples. In order to
overcome this deficiency and increase attention on the
difficult samples, which is the aim of this new ensemble
method, hard partitioning [9] is used instead of the
probability updating. In this manner, the examples which are
predicted to an acceptable level of accuracy (NL less than Φ)
are removed from the training subset. Hence, there is no need
to update the probability of examples during the training
process.

The problem of using hard partitioning is over fitting the
networks as the end of the training process is approached,
since early-termination is not applied in this new algorithm.
In order to solve this problem, some of the examples are used
as reserved data (R) to be injected into the training samples
whenever required. The size of this reserved data can be a
proportion of the training data. For example in this study, 37%
of training data size is used to form the reserve dataset. The
number of injected examples from R should be the same as
the number of easy training examples which are removed.
This process should continue until all reserved examples are
used in training or the number of training examples is less
than 63%, which is the standard bootstrap distinct sample rate,

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

513

of the training dataset size at the beginning of the training
process. Under each of these conditions, there are two
different scenarios for the next iteration in each step of the
algorithm:

• The first step of this algorithm will start with the
same training and reserved datasets, because the aim
of this step is to look for the best machine learners
and they have to have the same conditions in terms
of training and reserved dataset at the beginning of
each epoch.

• For the second step, if the number of training
examples is less than the standard bootstrap distinct
sample rate, the training and reserved datasets will
be selected among those examples which formed the
previous training and reserved examples, as we are
looking for the best final results which can be
derived from the training and reserved datasets.

C. Filtering Less Accurate Nets
 It has been shown that the performance of an ensemble

method to generalize the results of the training for the rest of
datasets is a function of diversity and the accuracy of the
individual machines applied in the ensemble [18], [19]. The
diversity of the nets is provided through the strategy which
was presented in the previous subsection. The filtering
process which is developed in this study is applied to select
more accurate nets among all nets which are formed in step 1
of MLF-R. After generating the regression model of an
individual machine, the accuracy of this model is checked
through testing the model on the in-bag examples which are
used to form the regression model, and out-bag examples
which are not selected in the subset selection process. RMSE
are calculated for them. Afterwards, the weight of the current
learner is calculated as follows:

 δ= 0.5τ (4)

where, τ is derived through the following equation:

 τ = ݁ݔ(ఉିோெௌா) (5)

In (5), β is the RMSE of an individual machine, which is
derived before starting the algorithm. In this algorithm, δ is
utilized to judge the performance of the machine learners as
is shown in Fig. 2. In order to filter the generated nets, the
pseudo code in Fig. 3 is used.

D. Calculation of Final Output
After training the machine learners using different subsets

and selecting more accurate machine learners through the
filtering process, the training and reserved datasets are
predicted using the selected ANNs. Then these predicted
values are used together as training and reserved datasets in
the second step. β should be calculated using an individual
machine learner, which is supposed to be applied in step two,
provided by the predicted values. In this step, the machine
learner is trained as explained in subsection B. After finishing
a preset number of epochs, the results of m iterations are
combined together using following equation:

F final (xi) = ∑ ୣ୶୮ (భഃ)×((௫))సభ ∑ ୣ୶୮ (భഃ)సభ (6)

where, ்݂ (௧݂(ݔ) represents the predictions of the results
being derived in step 1 for the iteration t. In [17], a similar
weighted mean function has been proposed using the natural
logarithm; however our experience with the exponential form
shows this function is more efficient than a logarithm
function.

IV. RESULTS
In this study two backpropagation neural networks with

Gaussian and Sigmoid functions were used as machine
learners in steps 1 and 2, respectively. Also, in order to
demonstrate the new algorithm performance, it was
compared with six different methods including bagging,
Adaboost.R2 with three different loss functions, individual
backpropagation neural networks separately embedded by
Sigmoid and Gaussian activation functions. In order to ensure
conditions were equal for all these methods, the same
parameters were applied for all of these methods. In the first
step of this method seven nodes were used in the hidden layer
as in the other tested methods while the number of nodes in
the second step was three. Three different standard
benchmarks were used to test the methods. Housing and
Computer Activity datasets were downloaded through the
following website http://www.gatsby.ucl.ac.uk/~chuwei/regression.html,
while the Friedman#1 dataset was synthesized according to
[20]. Table I gives more details about these benchmarks.

TABLE I: INFORMATION SUMMARY OF DATASETS

Data Training
data

Reserved
data

Test
data

Attributes

continuous discrete

Housing 239 141 126 13 1
Computer
Activity 945 555 500 21 -

Friedman#1 756 444 400 10 -

A. Comparison of Different Ensemble Methods
In order to compare MLF-R with other methods, training

and reserved datasets were randomly selected 20 times, and
all methods were tested using them. The number of epochs
was set to 10 and C set to 1. Table II shows the mean RMSE
and standard deviation (SD) values derived from these 20
trials for each method.

TABLE II: THE RESULTS OF DIFFERENT METHODS

 Method/ Data
Housing

Computer
activity

Friedman#1

RMSE SD RMSE SD RMSE SD

ANN(Gaussian) 4.69 1.1 3.83 0.9 1.60 0.47
ANN(Sigmoid) 4.89 0.5 3.25 1.2 2.87 0.27
Adaboost.R2 (Linear) 4.23 0.6 3.08 0.3 1.27 0.06
Adaboost.R2 (Square
law)

4.22 0.5 3.14 0.4 1.28 0.06

Adaboost.R2
(Exponential)

4.04 0.5 3.04 0.4 1.30 0.07

Bagging 4.02 0.5 3.23 0.6 1.54 0.09
MLF-R 3.89 0.5 2.61 0.1 1.17 0.05

The superior results have been shown in bold. As the

results show, MLF-R will produce more promising results
than the other methods, as the RMSEs of its predictions are

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

514

less than for the others. Also, the low standard deviations of
MLF-R show this method has slightly more stable
performance than other methods.

In order to compare the relative performance of the
methods, a scoring matrix in percent is used [17], calculated
from (7). In addition to the relative performance of the
methods, this matrix shows the overall performance of the
methods for all datasets as shown in Table III:

,ܯܵ = ଵே × ∑ ோெௌாೖ,ೕିோெௌாೖ,୫ୟ୶ (ோெௌாೖ,ೕ,ோெௌாೖ,)ேୀଵ (7)

where, ܵܯ, is the scoring matrix element of ith method (the
header row of Table III) over jth method (header column of
Table III). This table demonstrates that the relative
performance of MLF-R is better than the other methods
ranging from 18% improvement on Adaboost R.2 method
with exponential loss function, to 51% improvement on
single neural networks with sigmoid function. Also, the
overall performance of MLF-R is significantly better than
other methods for the tested datasets.

TABLE III: THE SCORING MATRIX FOR DIFFERENT METHODS IN %

Method

A
N

N

(G
au

ss
ia

n)

A
N

N

(S
ig

m
oi

d)

A
da

bo
os

t.R
2

(L
in

ea
r)

A
da

bo
os

t.R
2

(S
qu

ar
e

la
w

)

A
da

bo
os

t.R
2

(E
xp

on
en

tia
l)

B
ag

gi
ng

M
LF

-R

to
ta

l

ANN
(Gaussian) 0 10 -32 -31 -36 -28 -51 -168

ANN
(Sigmoid) -10 0 -28 -28 -31 -26 -39 -161

Adaboost.R2
(Linear) 32 28 0 1.6 -5.1 4.6 -24 37

Adaboost.R2
(Square law) 31 28 -1.6 0 -6.7 3.3 -25 28

Adaboost.R2
(Exponential) 36 31 5.1 6.7 0 8.9 -18 69

Bagging 28 26 -4.6 -3.3 -8.9 0 -24 13
MLF-R 51 39 24 25 18 24 0 181

B. The Effect of C on the Results
As mentioned earlier, C is used to find the examples which

are predicted to an acceptable level of accuracy. In order to
show the effect of this factor on the results of MLF-R, C was
altered incrementally by 0.1in each trial and repeated 10
times on Friedman#1 data as synthesized data and Housing
datasets as a real case. The epoch number of MLF-R was set
to 10. Fig. 5 shows the results which demonstrates that C in [0,
2] has an insignificant effect on the performance of MLF-R
and consequently, there is no need to calibrate C values;
however using values near to zero causes RMSE to increase.

Fig. 5. The effect of varying C value on MLF-R performance

C. The Effect of Number of Epochs
Similar tests were run on Friedman#1 datasets, but the

variable parameter was the epoch number and C was set to 1.
The results are shown in Fig. 6, which demonstrates that the
performance of MLF-R improves using more epochs;
however, using more than 20 epochs cannot improve its
performance significantly.

Fig. 6. The effect of varying number of epochs on MLF-R performance

V. CONCLUSION
A new ensemble method was introduced in this paper

based on merging two different ANNs. The results show this
method can perform more effectively than the other
conventional methods such as bagging and Adaboost.R2 and
single ANNs. The proposed method uses an adaptive
threshold to separate difficult examples from easy examples
in a hard partitioning manner. This adaptive threshold is set
automatically, and also it was shown that this threshold does
not need a calibration process before it is applied. Moreover,
in the second step, a weighted ANN decision maker was
introduced to fuse the results of the different machine
learners. As was demonstrated, the larger number of epochs
can increase the accuracy of predictions; however, the
improvement rate will only slightly increase for the epoch
numbers more than 20. The most important issue is that the
conventional methods do not have the capability of fusing the
performances of different machine learners such as ANN and
support vector regression, which may provide errors in
different parts of datasets. It is believed that the proposed
method potentially is suitable as a hyper fusion method, but
this suggestion requires more investigation.

REFERENCES
[1] B. E. Rosen, “Ensemble Learning Using Decorrelated Neural

Networks,” Connection Science, vol.8, pp.373 – 384, Dec. 1996.
[2] M. M. Islam, Y. Xin and K. Murase, “A constructive algorithm for

training cooperative neural network ensembles,” IEEE Transactions on
Neural Networks, vol.14, pp. 820-834, July 2003.

[3] C.J. Merz and M.J. Pazzani, “Combining neural network regression
estimates with regularized linear weights,” in Advances in Neural
Information Processing Systems 9, MIT Press, 1997, pp. 564–570.

[4] H. Navone, P. Granitto, P. Verdes and H. Ceccatto, “A Learning
Algorithm for Neural Network Ensembles”, Revista Iberoamericana
de Inteligencia Artificial, vol. 3, pp. 70-74, 2001.

[5] A. J. C. Sharkey, “On Combining Artificial Neural Nets,” Connection
Science, vol.8, pp. 299 – 314, Dec. 1996.

[6] G. Giacinto and F. Roli, “Design of effective neural network ensembles
for image classification purposes,” Image and Vision Computing,
vol.19, pp. 699-707, Aug. 2001.

[7] Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

515

On-Line Learning and an Application to Boosting,” Journal of
Computer and System Sciences, vol.55, pp. 119-139, Aug. 1997.

[8] A. J. C. Sharkey and N. E. Sharkey, “Combining diverse neural nets,”
Knowl. Eng. Rev., vol.12, pp. 231-247, Sep. 1997.

[9] F. Zuo and P. H. N. D. With, “Cascaded face detection using neural
network ensembles,” EURASIP J. Adv. Signal Processing, vol.2008,
pp. 1-13, Jan. 2008.

[10] A., Tsymbal, S. Puuronen and D. W. Patterson, “Ensemble feature
selection with the simple Bayesian classification,” Information Fusion,
vol.4, pp. 87-100, June 2003.

[11] L. Breiman, “Bagging predictors,” Mach. Learn., vol.24, pp. 123-140,
Aug. 1996.

[12] Y. Freund, “Boosting a Weak Learning Algorithm by Majority,”
Information and Computation, vol.121, pp. 256-285, Sep. 1995.

[13] G. P. Zhang, “A neural network ensemble method with jittered training
data for time series forecasting,” Information Sciences, vol.177, pp.
5329-5346, Dec. 2007.

[14] T. Dietterich, 2000. “Ensemble Methods in Machine Learning,”
Multiple Classifier Systems, vol.1857, pp. 1-15, 2000.

[15] R. E. Schapire, “The Strength of Weak Learnability,” Mach. Learn.,
vol. 5, pp. 197-227, June 1990.

[16] H. Drucker, “Improving Regressors using Boosting Techniques,” in
Proc. the Fourteenth International Conference on Machine Learning,
Morgan Kaufmann Publishers Inc., 1997, pp. 107-115.

[17] D. P. Solomatine and D. L. Shrestha, “AdaBoost.RT: a boosting
algorithm for regression problems,” in Proc. IEEE International Joint
Conference on Neural Networks, vol.2, July 2004, pp. 1163-1168.

[18] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.12, pp.
993-1001, Oct. 1990.

[19] S. Hashem, “Optimal Linear Combinations of Neural Networks,”
Neural Networks, vol.10, pp. 599-614, June 1997.

[20] J. H. Friedman, “Multivariate Adaptive Regression Splines,” The
Annals of Statistics, vol.19, pp. 1-67, 1991.

Ali Shamsoddini is a PhD student at School of
Surveying and Spatial Information Systems,
University of New South Wales, in Sydney Australia,
since 2009. He is working on the quantification of
pine plantation using different remotely sensed
datasets including lidar, radar and optical data and
their fusion. Also, he is interested to use different
machine learning techniques for forest structure
mapping. His other interests are synthetic aperture

radar filtering, image fusion, and remote sensing of vegetation. He has a
bachelor degree in natural resource management from Agricultural Sciences
and Natural Resource Management University of Gorgan, Iran and
graduated a master of remote sensing and GIS from Tarbiat Modares
University, Tehran, Iran.

John Trinder graduated a BSurv from the University
of New South Wales (UNSW) in Sydney Australia in
1963, and MSc from ITC in The Netherlands in 1965
and PhD from UNSW in 1971. He was employed at
the University of NSW since 1965, progressing to the
position of Professor in 1991. He was Head of the
School of Geomatic Engineering (now School of
Surveying and SIS) at UNSW from 1990-1999, and
currently holds the position of Visiting Emeritus

Professor. John has undertaken teaching and research at UNSW for more
than 40 years, specializing in Photogrammetry and Remote Sensing, and has
published more than 170 scientific papers in journals and conference
proceedings. He was President of the International Society for
Photogrammetry and Remote Sensing (ISPRS) for the period 2000-2004 and
is currently an Honorary Member of ISPRS.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

516

