
 

 
 

 

  
Abstract—A common solution to improving the 

generalization problem and increasing the efficiency of 
different ANNs is to use ANN ensembles. These methods focus 
on the possibility of generating different neural nets for a 
dataset and combining the results for acquiring a more accurate 
regression. In this paper, a new ensemble method called 
machine learner fusion-regression (MLF-R) is proposed to 
increase the accuracy of the results through focusing on difficult 
samples. The architecture of MLF-R includes two different 
parts: the first is a training phase from which final nets are 
selected after a filtering process; the second part is a weighted 
decision maker including a backpropagation structure which 
fuses the different nets derived from the first step to predict the 
outputs. The results demonstrate MLF-R is more efficient than 
bagging, different boosting methods and the implementation of 
single ANN methods with 18% to 51% higher accuracy. 
Moreover, MLF-R offers more stable results compared to the 
other methods which have been tested in this paper.    
 

Index Terms—Adaptive threshold, ensemble, fusion, neural 
networks. 
 

I. INTRODUCTION 
There is a major impetus for using backpropagation neural 

networks for prediction in different applications because they 
can lead to an acceptable level of accuracy derived from a 
desired size of training dataset [1].  However, there are some 
regression problems which cannot be adequately predicted 
when based on a single ANN because of the complexity of 
the problem and large volume of data [2]. Therefore the 
motivation for fusion of different ANNs is the potential for 
obtaining more accurate predictions compared with those 
which would be obtainable using single ANN [3]. Moreover, 
ANNs are known as unstable learners due to the inherent data 
and the random process which is used in the training.  This 
instability is further motivation for applying ANNs in an 
ensemble mode [4]. According to [5], one or more of the 
following strategies have been applied in the currently 
developed ANN ensembles: 

• Training a set of ANN on a constant dataset, but 
varying the initial random weights during training. 

• Using different ANN methods on a constant training 
dataset. 

• Altering ANN architecture, e.g. changing the 
number of hidden units, during the training process 
of constant datasets. 
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• Varying training datasets through different 
procedures such as sampling data, boosting, using 
different data sources, and disjoint training sets.  
This strategy is applied more frequently than the 
others. 

It is also possible to create a neural network ensemble 
using a combination of the above strategies [5]. In general, 
there are two designs of ANN ensemble methods [6]:  

• An ensemble of ANNs which are error-independent, 
without removing some of them such as those in [1], 
[7]. 

• Select the most error-independent ANNs among a 
large number of nets which have been produced in 
earlier stages [8], [9]. 

In this paper, a new ensemble method called machine 
learner fusion-regression (MLF-R) is proposed which is 
based on using a combination of variable initial random 
weights for training datasets and different ANN methods. 
The design of this method is similar to the second group 
above, since it produces different nets, but some of them are 
selected for more training as discussed later. In the next 
section, details will be given on some ensemble methods, 
especially bagging and boosting which will be used in this 
paper. In section III, the methodology of the new algorithm 
will be presented. The results will be shown in section IV and 
section V will conclude this paper.  

 

II. ENSEMBLE METHODS 
There have been many approaches for aggregating 

different neural networks following the mentioned strategies 
in the above dot points, such as Bayesian voting and its 
derivatives [10], manipulation of training and output sets [7], 
[11], [12], and injection of randomness [13]. Bagging and 
boosting are well-known among the methods belonging to 
the group of methods which varying training datasets through 
different procedures, and are more popular examples for 
addressing regression problems.  

Bagging provides different versions of the training 
samples in a random process with replacement. Replacement 
means that the chance of selecting a sample is the same as for 
the samples which were selected in the last sampling. For an 
arbitrary number of epochs, the training datasets are divided 
into two parts including in-bag (almost 63% of training 
sample size) and the remainder as out-bag in each training 
step, and then the learner will be fed by in-bag data. At the 
end of the iterations, the final output is determined by simple 
averaging over all generated nets [11]. This technique is 
appropriate especially for unstable learning machines such as 
Tree-based algorithms and neural networks [14].   

Boosting applies the hypothesis to the training data set 
manipulation and was developed originally by Schapire [15] 
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but it demanded a large number of training sets. Different 
versions of this technique have been proposed; the demands 
for large training data led to the development of other 
boosting versions including: Adaboost (adaptive boosting); 
Adaboost M1 and Adaboost M2 for classification; and 
Adaboost.R for regression problems [7]. Adaboost.R2 which 
will be used in this paper was developed to overcome some 
deficiencies of Adaboost.R [16].  

Adaboost.R2 focuses on the difficult cases whose 
predictions are subject to larger errors than others, to improve 
the performance of machine learner. This algorithm gives 
initial weights to the training examples and updates these 
weights according to the predicted accuracy of the training 
examples in such a way that the probability of the selection of 
difficult examples is increased for the next training. 
Consequently, the next learning iteration is expected to be 
based on more difficult examples since this selection is 
random with replacement. In order to evaluate the prediction 
quality of each example, the technique uses a loss equation, 
which is used to calculate the difference between real and 
predicted values, written in either linear, square law or 
exponential forms [16]. The learning process will continue 
until the desired number of epochs is finished or terminated 
earlier if the value of the mean loss function is higher than 0.5. 
At the end of a preset number of training episodes, the final 
result is derived using the weighted median. Adaboost.RT 
was developed to apply Adaboost M1 specifically for 
regression problems [17]. The method in this paper uses a 
different loss function compared to the previous versions of 
Adaboost. Moreover, it uses a threshold to determine the 
probability of difficulty for the examples in a different way 
compared to Adaboost.R. Moreover, a weighted mean is used 
to calculate the final output of this method. There are some 
drawbacks with this method which will be addressed in the 
next section. 
 

III. METHODOLOGY 
Fig. 1 show the structure of MLF-R, which is in two parts. 

For the first part, machines are provided by different subsets 
derived randomly with replacement in the same way as in 
bagging and boosting. These subsets are used along with 
some reserved datasets to train learners in a number of 
iterations. The pseudo code of the step one is shown in Fig. 2. 
After generating different versions of the nets, the more 
reliable nets are selected in a filtering step as demonstrated by 
the pseudo code in Fig. 3. Then, the selected learners are used 
to form the inputs for the decision learner. In step two, the 
decision learner is trained for a number of iterations using 
these inputs and the reserved inputs which have been 
predicted using the best learners derived from the previous 
step. Finally, the weighting function will determine the final 
output of the ensemble method. Fig. 4 shows the pseudo code 
of this step. 
 

A. Adaptive Threshold to Determine Difficult Examples 
One of the most important issues related to the cases which 

focus on difficult examples, is the criterion which is applied 
to differentiate between the two different groups of examples, 
including easy and difficult ones. The difficulty of this task 

will increase when the ensemble method is dealing with a 
regression problem. In classification problems there are 
usually few classes, and a predefined margin for each class is 
used to correctly identify easy examples from incorrect 
predictions which are called difficult examples [9]. 

 
Fig. 1. The architecture of MLF-R; X1,…,Xn are different training subsets 
which are collected randomly with replacement. R is reserved dataset. f(R) 
and f(X1),…,f(Xn) are reserved data and different training subsets which are 
predicted by selected regression models to be used in the second step after 

filtering. 
 

     For the regression problem it is more difficult to 
determine a reliable boundary between easy and difficult 
examples due to an inevitable discrepancy between predicted 
and actual values. In [17], a constant value is preliminarily 
selected according to the prediction error statistics of a single 
machine. The problem is that the range of this value is infinite; 
however, the authors have suggested executing a calibration 
process before starting the ensemble method to find the 
optimum value of the threshold to separate easy and difficult 
examples. This calibration will add more time to the training.  
 

 
Fig. 2. The pseudo code of the step 1 of MLF-R algorithm 
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For calculating the loss of the predicted training examples 
the authors in [17] also proposed a relative error function 
which does not work when there are some examples with 
zero values in the training dataset. Finally, the threshold 
which is utilized in the proposed methods is not set 
automatically and consequently requires calibration. 
 

 
Fig. 3. The pseudo code of the filtering process of the nets 

 
In order to overcome the above deficiencies in the MLF-R 

algorithm, the actual errors in the predicted examples are 
assumed to be normally distributed variables. Therefore, the 
losses of the predicted examples are calculated using the 
following equation that is the same as the loss equation in 
Adaboost.R2: 
 
                            ݈௧(݅) =  | ௧݂(ݔ) −  |                                    (1)ݕ

 
where, ௧݂(ݔ)  is the predicted value of the example i in 
iteration t and ݕ is the actual value of the example. Then the 
normalized losses (NL) of each training epoch are calculated 
using the following equation: 
 
ܮܰ                        = ()ିఓఙ                                      (2) 

 
where, ݈௧(݅) is loss for the example i in the iteration t. μ 
represents the mean value of the losses while σ is the standard 
deviation of these values. In this normal distribution, the 
values which are less than threshold, Φ, are considered as 
easy samples in the current training iteration. The 
relationship between Φ and ߪே which is the standard 
deviation of normalized loss values (almost equal to 1) is 
determined as follows: 
 
                           Φ = – C×ߪே                                      (3) 

 
where, C is in [0, 2]. If C is 0, it means the examples whose 
normalized loss values are less than the mean are considered 
as easy examples and consequently the number of easy 
examples will increase, whereas setting C to 2 can decrease 
the number of easy examples. In order to avoid these extreme 
situations, it is better to select a value for C between these 
extremes, such as 1; however as the analyses of the effect of 
different C values on the results (in the section IV) shows, the 
value of C does not significantly influence the final outcome. 
There are four advantages for this type of threshold: 

• It is more logical and is based on statistical 
definition. 

• It is set automatically.  
• Its variation is not infinite as in previous 

methods. 
• It is adaptive and focuses on relative errors. This 

type of threshold prevents a learner from treating 
all examples which are different in terms of 
difficulty, in the same way. 

 
Fig. 4. The pseudo code of the step 2 of MLF-R algorithm 

 

B. Training Subset Selection 
Using replacement in the sampling process generates some 

overlapped subsets. Although, the probability of using easy 
samples decreases during the iterations, they may still be 
used in the next training subset. This consequently leads to 
less emphasis on the more difficult examples. In order to 
overcome this deficiency and increase attention on the 
difficult samples, which is the aim of this new ensemble 
method, hard partitioning [9] is used instead of the 
probability updating. In this manner, the examples which are 
predicted to an acceptable level of accuracy (NL less than Φ) 
are removed from the training subset. Hence, there is no need 
to update the probability of examples during the training 
process.     

The problem of using hard partitioning is over fitting the 
networks as the end of the training process is approached, 
since early-termination is not applied in this new algorithm. 
In order to solve this problem, some of the examples are used 
as reserved data (R) to be injected into the training samples 
whenever required. The size of this reserved data can be a 
proportion of the training data. For example in this study, 37% 
of training data size is used to form the reserve dataset. The 
number of injected examples from R should be the same as 
the number of easy training examples which are removed. 
This process should continue until all reserved examples are 
used in training or the number of training examples is less 
than 63%, which is the standard bootstrap distinct sample rate, 
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of the training dataset size at the beginning of the training 
process. Under each of these conditions, there are two 
different scenarios for the next iteration in each step of the 
algorithm: 

• The first step of this algorithm will start with the 
same training and reserved datasets, because the aim 
of this step is to look for the best machine learners 
and they have to have the same conditions in terms 
of training and reserved dataset at the beginning of 
each epoch. 

• For the second step, if the number of training 
examples is less than the standard bootstrap distinct 
sample rate, the training and reserved datasets will 
be selected among those examples which formed the 
previous training and reserved examples, as we are 
looking for the best final results which can be 
derived from the training and reserved datasets. 

 

C. Filtering Less Accurate Nets 
     It has been shown that the performance of an ensemble 

method to generalize the results of the training for the rest of 
datasets is a function of diversity and the accuracy of the 
individual machines applied in the ensemble [18], [19]. The 
diversity of the nets is provided through the strategy which 
was presented in the previous subsection. The filtering 
process which is developed in this study is applied to select 
more accurate nets among all nets which are formed in step 1 
of MLF-R. After generating the regression model of an 
individual machine, the accuracy of this model is checked 
through testing the model on the in-bag examples which are 
used to form the regression model, and out-bag examples 
which are not selected in the subset selection process. RMSE 
are calculated for them. Afterwards, the weight of the current 
learner is calculated as follows: 

                                  δ= 0.5τ                                        (4) 

where, τ is derived through the following equation: 

                                  τ = ݁ݔ(ఉିோெௌா)                                ( 5 ) 

In (5), β is the RMSE of an individual machine, which is 
derived before starting the algorithm.  In this algorithm, δ is 
utilized to judge the performance of the machine learners as 
is shown in Fig. 2. In order to filter the generated nets, the 
pseudo code in Fig. 3 is used. 

D. Calculation of Final Output 
After training the machine learners using different subsets 

and selecting more accurate machine learners through the 
filtering process, the training and reserved datasets are 
predicted using the selected ANNs. Then these predicted 
values are used together as training and reserved datasets in 
the second step. β should be calculated using an individual 
machine learner, which is supposed to be applied in step two, 
provided by the predicted values. In this step, the machine 
learner is trained as explained in subsection B. After finishing 
a preset number of epochs, the results of m iterations are 
combined together using following equation: 

F final (xi) = ∑ ୣ୶୮ (భഃ)×((௫))సభ ∑ ୣ୶୮ (భഃ)సభ                       (6) 

where, ்݂ ( ௧݂(ݔ)  represents the predictions of the results 
being derived in step 1 for the iteration t. In [17], a similar 
weighted mean function has been proposed using the natural 
logarithm; however our experience with the exponential form 
shows this function is more efficient than a logarithm 
function. 
 

IV. RESULTS 
In this study two backpropagation neural networks with 

Gaussian and Sigmoid functions were used as machine 
learners in steps 1 and 2, respectively. Also, in order to 
demonstrate the new algorithm performance, it was 
compared with six different methods including bagging, 
Adaboost.R2 with three different loss functions, individual 
backpropagation neural networks separately embedded by 
Sigmoid and Gaussian activation functions. In order to ensure 
conditions were equal for all these methods, the same 
parameters were applied for all of these methods. In the first 
step of this method seven nodes were used in the hidden layer 
as in the other tested methods while the number of nodes in 
the second step was three. Three different standard 
benchmarks were used to test the methods. Housing and 
Computer Activity datasets were downloaded through the 
following website http://www.gatsby.ucl.ac.uk/~chuwei/regression.html, 
while the Friedman#1 dataset was synthesized according to 
[20]. Table I gives more details about these benchmarks. 
      

TABLE I: INFORMATION SUMMARY OF DATASETS   

Data Training 
data 

Reserved 
data 

Test 
data 

Attributes 

continuous discrete

Housing 239 141 126 13 1 
Computer 
Activity 945 555 500 21 - 

Friedman#1 756 444 400 10 - 

 

A. Comparison of Different Ensemble Methods 
In order to compare MLF-R with other methods, training 

and reserved datasets were randomly selected 20 times, and 
all methods were tested using them. The number of epochs 
was set to 10 and C set to 1. Table II shows the mean RMSE 
and standard deviation (SD) values derived from these 20 
trials for each method.  
 

TABLE II: THE RESULTS OF DIFFERENT METHODS  

    Method/ Data 
Housing 

Computer 
activity 

Friedman#1 

RMSE SD RMSE SD RMSE SD 

ANN(Gaussian) 4.69 1.1 3.83 0.9 1.60 0.47
ANN(Sigmoid) 4.89 0.5 3.25 1.2 2.87 0.27
Adaboost.R2 (Linear) 4.23 0.6 3.08 0.3 1.27 0.06
Adaboost.R2 (Square 
law) 

4.22 0.5 3.14 0.4 1.28 0.06

Adaboost.R2 
(Exponential) 

4.04 0.5 3.04 0.4 1.30 0.07

Bagging 4.02 0.5 3.23 0.6 1.54 0.09
MLF-R  3.89 0.5 2.61 0.1 1.17 0.05

 
The superior results have been shown in bold. As the 

results show, MLF-R will produce more promising results 
than the other methods, as the RMSEs of its predictions are 
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less than for the others. Also, the low standard deviations of 
MLF-R show this method has slightly more stable 
performance than other methods.   

In order to compare the relative performance of the 
methods, a scoring matrix in percent is used [17], calculated 
from (7). In addition to the relative performance of the 
methods, this matrix shows the overall performance of the 
methods for all datasets as shown in Table III: 

,ܯܵ                 =  ଵே × ∑ ோெௌாೖ,ೕିோெௌாೖ,୫ୟ୶ (ோெௌாೖ,ೕ,ோெௌாೖ,)ேୀଵ                (7) 

where, ܵܯ, is the scoring matrix element of ith method (the 
header row of Table III) over jth method (header column of 
Table III). This table demonstrates that the relative 
performance of MLF-R is better than the other methods 
ranging from 18% improvement on Adaboost R.2 method 
with exponential loss function, to 51% improvement on 
single neural networks with sigmoid function. Also, the 
overall performance of MLF-R is significantly better than 
other methods for the tested datasets. 
 

TABLE III: THE SCORING MATRIX FOR DIFFERENT METHODS IN % 

Method 
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ANN 
(Gaussian) 0 10 -32 -31 -36 -28 -51 -168

ANN 
(Sigmoid) -10 0 -28 -28 -31 -26 -39 -161

Adaboost.R2 
(Linear) 32 28 0 1.6 -5.1 4.6 -24 37 

Adaboost.R2 
(Square law) 31 28 -1.6 0 -6.7 3.3 -25 28 

Adaboost.R2 
(Exponential) 36 31 5.1 6.7 0 8.9 -18 69 

Bagging 28 26 -4.6 -3.3 -8.9 0 -24 13 
MLF-R 51 39 24 25 18 24 0 181

 

B. The Effect of C on the Results 
As mentioned earlier, C is used to find the examples which 

are predicted to an acceptable level of accuracy. In order to 
show the effect of this factor on the results of MLF-R, C was 
altered incrementally by 0.1in each trial and repeated 10 
times on Friedman#1 data as synthesized data and Housing 
datasets as a real case. The epoch number of MLF-R was set 
to 10. Fig. 5 shows the results which demonstrates that C in [0, 
2] has an insignificant effect on the performance of MLF-R 
and consequently, there is no need to calibrate C values; 
however using values near to zero causes RMSE to increase. 
 

 
Fig. 5. The effect of varying C value on MLF-R performance 

C. The Effect of Number of Epochs 
Similar tests were run on Friedman#1 datasets, but the 

variable parameter was the epoch number and C was set to 1. 
The results are shown in Fig. 6, which demonstrates that the 
performance of MLF-R improves using more epochs; 
however, using more than 20 epochs cannot improve its 
performance significantly. 
 

 
Fig. 6. The effect of varying number of epochs on MLF-R performance 

 

V. CONCLUSION 
A new ensemble method was introduced in this paper 

based on merging two different ANNs. The results show this 
method can perform more effectively than the other 
conventional methods such as bagging and Adaboost.R2 and 
single ANNs. The proposed method uses an adaptive 
threshold to separate difficult examples from easy examples 
in a hard partitioning manner. This adaptive threshold is set 
automatically, and also it was shown that this threshold does 
not need a calibration process before it is applied. Moreover, 
in the second step, a weighted ANN decision maker was 
introduced to fuse the results of the different machine 
learners. As was demonstrated, the larger number of epochs 
can increase the accuracy of predictions; however, the 
improvement rate will only slightly increase for the epoch 
numbers more than 20. The most important issue is that the 
conventional methods do not have the capability of fusing the 
performances of different machine learners such as ANN and 
support vector regression, which may provide errors in 
different parts of datasets. It is believed that the proposed 
method potentially is suitable as a hyper fusion method, but 
this suggestion requires more investigation. 
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