
  

  
Abstract—A multi-agent (MA) cellular automaton (CA) 

model framework for simulating grapevine growth and crop in 
Chardonnay cultivated in northern New Zealand is presented. 
Estimating or projecting grape crop in quantity (grapes in tons 
per hectare (ha)) and berry quality in Brix (sugar content) is an 
extremely complex and challenging task. The crop depends on 
many factors, such as local weather and environmental 
conditions that interact with each other at varying degrees and 
over different time intervals in a “chaotic” manner. The key 
factors and their influences are simulated using CA rules, MA 
behaviour and interactions. Two sets of CA lattices and rules 
are used to simulate individual grapevine growth and vineyard 
phenological dynamics respectively. The results achieved show 
potential for simulating vine growth and yield in different grape 
varieties (Pinot Noir, Pinot Gris, Merlot and other wine styles) 
and scales, such as New Zealand’s major wine regions and that 
of the world’s, in ways not been explored previously. 
 

Index Terms—Component; climate effects; yield; vineyard.  
 

I. INTRODUCTION 
Obtaining an accurate estimation of grapes in quantity (i.e., 

tons/ha) and quality (sugar, aroma and other colour phenol 
contents) is an extremely complicated task, yet it has 
operational and economic significance to viticulturists and 
vintners (1) (2). Traditionally, vineyard yield and must 
composition are measured in terms of tons per hectare (ha) 
and Brix (and some occasions with pH and acidity) 
respectively. Over the years, there have been formulae 
developed to estimate the crop using vines/ha, clusters/vine, 
buds/vine and cluster/ berry weight values (sampled averages) 
for different varieties and the paper gives an outline on some 
basic formulae currently in use. Meanwhile, in any approach 
inconsistencies between a vineyard’s estimated and real crop 
figures are attributed to the following two factors;  

(1) 70% of the variation from year-to-year variability in 
the number of clusters and  

(ii)  30 % of it from the variability in cluster weight. 
 
From the initial introduction of Van Neumann 

neighbourhood rules in the 1950s (3) (4) to recent satellite 
imagery grid quantification research (5), there have been 
significant advances in the development and application of 
CA and other related hybrid approaches to simulating spatial 
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and temporal changes in a wide spectrum of disciplines. The 
second section of the paper briefly outlines a few CA 
frameworks specially developed for vegetation dynamics 
simulation. Consequently, details of a multi-agent CA 
framework being developed for simulating grapevine growth 
and yield in Chardonnay cultivated in northern New Zealand 
are presented.  

 

II. CROP ESTIMATION ISSUES IN VITICULTURE 
Adverse consequences of inaccurate grape crop estimation 

and related issues are well-known among viticulturists and 
vintners all over the world, and this has led to increased 
demand for improved techniques to better estimate the crop 
(6). Currently used conventional methods are:  
(i) destructively harvesting whole vines or segments of 

vines or  
(ii) randomly sampling and weighing bunches and then 

combining these with bunch counts.   
 
Both methods require adequate sampling and data 

interpretation for accurate crop estimation. However, 
vineyard management is seen to be understandably unwilling 
to commit sufficient resources during the busy harvest season. 
This unwillingness to allocate more resources during this 
time for proper sampling is a major impediment with these 
conventional methods. The present situation clearly indicates 
that there is a pressing need for less demanding methods in 
terms of resources for crop forecasting. 

A. Conventional Methods of Crop Estimation 
This is the more common one of the three conventional 

crop estimation methods and is based on formula (1). 
 
PY = (ANV x NC x CW) / 2000                    (1) 
where,  
PY   = predicted yield (tons/ acre)  
ANV  = actual number of vines / acre  
NC   = number of clusters/ vine  
CW   = cluster weight (in pounds) 
2000 =rough conversion of pounds to ton 

B. Lag Phase Method 
This method uses cluster weights collected during the “lag 

phase”, which refers to a period when seeds begin to harden 
and this occurs about 55 days after first bloom or corresponds 
to the accumulation of 1000-1300 growing degree days 
(GDD) or heat units. During this period berry growth slows 
down temporarily and it is considered that at this lag phase 
the berries have reached about 50% of their final weight. 
Based on this theory, the cluster weight at harvest can be 
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predicted by multiplying the lag phase weight by an “increase 
factor” of 2 as in formula (2).  However, the multiplier varies 
depending on the variety and season hence vineyard 
managers are advised to determine their own multipliers for 
each variety/ vineyard. Furthermore, GDD required for 
calculation with the lag formula can be obtained from any 
nearby meteorological station. The formula used for this 
method is as follows:    

 
PY= (ANV x NC x Lag CW x 2) / 2000                 (2) 
where, 
PY    = predicted yield (tons/ acre) 
ANV   = actual number of vines / acre 
NC    = number of clusters/ vine 
Lag CW  = cluster weight at lag phase (in pounds) 
 

C. More Elaborative Method 
This method includes average values for all possible 

variations from vine/ ha down to berry weight, as stated in 
(7).   

 
Predicted yield = (vines / ha) x (buds / vine) x (shoots/ bud) 
x (bunches / shoot) x (berries / bunch) x berry weight. 

 

III. CA FRAMEWORK IN VEGETATION DYNAMICS 
SIMULATION 

CA framework designs developed and implemented for 
vegetation dynamics simulation over the last six decades 
continue to gain popularity due to their ability to provide 
previously unknown new information on the likely patterns 
in the spatiotemporal changes of complex natural habitats. 
Increasingly, the new knowledge gained using CA models is 
described as detailed enough for management decision 
making in certain specific problem domains. Spatial patterns 
and trends over time in the dynamics of forest tree population 
(8), alpine tundra vegetation (9), rain forest species 
composition (10) and weed population (11) are among some 
useful simulations in this specific domain. The publications 
(8)-(10) describe how CA rules relating to a micro scale, i.e. 
individual plant, could be applied to simulate changes at 
meso/ macro scales influenced by different factors and at 
varying degrees, i.e., field under current and future scenarios 
as discussed below.    

In (12) the authors simulated the effects of future climate 
change scenarios under different greenhouse gas emissions 
and then estimated future irrigation requirements for 
vineyards in Spain by combining global circulation and crop 
models. The scenarios for different greenhouse gas emissions 
were produced by perturbing the water generator based on a 
Canadian climate change model (CGCM2) results for 
selected areas studied in the north east corner of the Iberian 
Peninsula. The “LARS-WG” weather generator was run with 
historical data covering a 42 year period to generate some 
100 possible local weather scenarios corresponding to years 
2010, 2015 and 2025 for the simulation.  In addition, 
CropSyst was used to simulate vineyard water balance. The 

crop simulation for 2005 reflected the FAO-56 1  crop 
co-efficiencies and even though the weather model suggested 
early spring and hastened harvest, interestingly this was 
concluded to be causing lesser burden on future irrigation 
requirements than earlier anticipated. Literature reviewed for 
this research reveals a paucity on examples of how CA can 
simulate vine growth on a temporally regular basis (e.g. 
hours, days), taking into account of realistic and actual 
changes in weather data. Such CA simulations can provide a 
means for model testing, fitting as well as yield prediction 
purposes under real and future potential weather change 
scenarios. They could enhance modeller ability to predict 
yields using real weather conditions of a grapevine’s growth 
cycles and under different vine management strategies for 
potential /target /actual yield. 

 

IV. MULTI-AGENT CA FRAMEWORK FOR SIMULATING 
GRAPEVINE GROWTH AND CROP 

This section presents details of a multi-agent CA 
framework with two different sets of lattices and rules for 
simulating an individual vine growth of Chardonnay grape 
and yield in a vineyard. 

At this initial investigation, an individual vine growth is 
divided into 1) budburst, 2) leaf growth, 3) clusters of 
inflorescence initiation, 4) flowering, 5) berry formation, 6) 
development and 7) ripening stages, and simulated using a l x 
l set of lattice and individual vine growth rules.  In this vine 
simulation, major growth factors (soil quality, water stress 
and exposure to solar radiation) and triggers, (daily 
maximum, minimum and soil minimum temperatures as well 
as GDD) are used to calculate a variable called “available 
energy” (AE), the driving force for vine growth (Fig. 1).   

The AE calculated using formula (3) and (4) is in turn 
utilised for growth in five vine organs, namely trunk, bud, 
shoot, leaf and cluster, depending on the “stage” of the vine 
growth (1-7).  A term “priority” is used to define the growth 
stage in the vine CA cycle. In modern day viticulture, annual 
grapevine growth cycle is divided into seven growth stages 
(also used in this study) based on temperature/day length/ 
growing degree days (GDD/ heat units) hence, temperature 
and GDD are used in the vine CA cycle to define the priority 
and stage. Any excess Energy not used in the current cycle 
will be stored in trunk as Stored Energy (SE). 

 
AE = ((GDD/DS)  x  AW  x  (TPV) )  + SE     (3) 
where, 
AE  =Available energy  
GDD  = Growing Degree Days 
AW   =Available water (1.0-0.0) 
DS  =Day segments (morning, noon, twilight and 

night) 
TPV  =Total photo synthesis value 
SE  =Stored energy 
     
TPV =(ALC x (A2 x L) / LA2              (4) 

 
1  Even though 56 (FAO-56) co-efficient is expected to provide a 

universally consistent methodology for obtaining reliable estimates of crop 
evapotranspiration it has its own limitations (13) 
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where, 
ALC  =Active leaf cover in cell 
CA2  =Cell area 2 (in centimetre2) 
L   =Light (1.0-0.0) 
Cells =Cells in grid 
 

 

 
 

Fig. 1. Schematic representation of the main processes relating to individual 
vine CA cycle.  Each vine growth is displayed by a set of l x l lattice cells 

simulated by vine rules. 
 
Vine organ initiation, growth, maturity and death vary 

based on the type of organ and are simulated using rules in 
the vine CA cycle. For example, organ “leaf” grows into a 
full leaf after unfolding from a “shoot”. The leaf growth 
continues until it reaches maximum leaf blade length, stays 
alive for several weeks producing energy via photosynthesis 
and then eventually dies off.  Similarly, each organ has its 
own growth phases and rules in the vine CA cycle (see Fig. 3 
for bud growth rules). 

A. CA Lattice for Grape Crop (Field) Simulation 
The grape crop simulation (field CA) displayed on a L x L 

set of lattice has its own set of rules. The field CA rules are 
applied to selected key parameters from the vine simulation 
along with environmental parameters whereby yield and 
related outcome/s at larger scales i.e., within a vineyard, are 
simulated. The key vine parameters used in the CA cycle are: 
vine canopy structure (buds/vine, clusters/vine, cluster 
weight). Random values are generated for environmental 
factors, such as soil quality, availability of water, solar 
radiation, temperature and humidity, to generate for 
“within-field” variability for the field CA cycle. Finally, the 
vineyard operations and results produced based on CA rules 
are displayed at different time intervals set by the user 
(Fig.2). 
 

 
 

Fig. 2. Schematic representation of the main processes on the crop simulation 
cycle displayed by L x L lattice cells based on vineyard rules. 
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B. Agents for Vineyard Management Operations 
Vineyard management operations, such as pruning, 

fertiliser application, spraying (pesticide/fungicide), 
irrigation and harvest are incorporated through agents. The 
agent rules are used for implementing the vineyard 
operations and to define their potential outcomes; loss of 
foliage, nutrient increase. 

V. RESULTS 
The initial results of this multi-agent CA framework for 

simulating perennial crop (Figs 3-6) show how grape crop 
simulation at meso/ macro scales, such as a vineyard, could 
be achieved using expertise represented by rules, and 
available data on factors pertaining to micro scale issues 
(individual vine growth).  

All Organs 
Variables: 
Death Threshold = 0oC 
 
Standard Organ death rule: 
IF Local Temperature < Death Threshold 
Organ is dead. 
 
Bud rules 
Variables: 
Frost Threshold = 2 degrees centigrade. 
Flower Daylength Threshold = 12 hours 
Flower Temp Threshold = 10 degrees centigrade 
 
Death: 
IF Local Temperature < Frost Threshold 
Decrement Remaining Buds 
IF Remaining Buds == 0 
Bud is dead 
ELSE IF Local Temperature < Death Threshold 
Bud is dead. 
 
Growth: 
Add Growth to Total Growth 
IF Total Growth >= Burst Threshold 
  IF Day Length > Flower Daylength Threshold AND Local 

Temperature >  Flower Temp Threshold 
Bud is dead 
Cause Vine to spawn new Shoot at Bud's location. 
Remove any excess Total Growth beyond Burst Threshold, return to 

Growth 
         Return any remaining Growth 
 

Fig. 3. Field CA rules for budburst, death and growth. 
 

 
Fig. 4 . CA simulation showing vine growth with various grapevine organs 

that are incorporated in the vine CA cycle. 

Fig. 5. CA simulation of grape vine growth and yield at larger scales, such as 
a vineyard or region.  By changing the vine and field parameters it is possible 

to simulate growth and yield in diffident grapevine varieties, such as 
Chardonnay, Pinot Noir and Pinot Gris. 

 

Fig. 6. Screen display showing the CA simulation of grape crop. The 
variability in yield within a vineyard is simulated based on variations 

generated in soil, availability of water, nutrients, solar radiation, temperature 
and humidity created with random number generators. 

 
The vine CA lattice simulates growth in vine organs (as 

explained in Section 4) beginning with budburst, leaves, 
clusters (fluoresce and berry) to produce grapes for both, in a 
vine (in berry weigh and berries/ cluster) and in a vineyard (in 
terms of grapes (tons/ha), Brix, pH and acidity). The user 
interface has buttons, tabs and scroll bars to set/ change 
critical parameters relating to individual vine growth, such as 
buds/ shoot, shoots/ vine, clusters/ shoot, berries/ cluster and 
berry size. These parameters could be used to change values 
based on the grape variety being simulated.  

 

VI. CONCLUSIONS 
The paper described the initial investigation so far 

conducted on simulating vine growth and vineyard yield in 
Chardonnay cultivated in northern New Zealand. Even 
without the vineyard operations designed for inclusion as 
multi-agents, the preliminary results of CA simulations (vine 
and field) are promising.  It is believed that on full 
implementation of the multi-agent based CA framework with 
an interface, the approach will enhance viticulturists’ ability 
to better predict their outcomes under different scenarios, 
such as pruning decisions, number of buds/ shoot to allow for 
full growth for that season, under future climate change and 
at different scales. The major benefit with the approach is that 
it provides an alternative method to estimating yield without 
incurring any additional cost, as this approach can be 
simulated with historic and other model prediction data. As 
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far as we are aware, this is the first attempt to contribute to 
‘precision viticulture’ (14) through the use of cellular 
automata that take into account detailed information 
concerning both resources (energy, water) as well as 
important botanical features (leaves, buds, etc). Finally, with 
the inclusion of a wine quality module vintage ratings as well 
could be predicted under different possible weather and other 
atmospheric conditions. 
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