

Abstract— This paper proposes a general solution for the

School timetabling problem. Most heuristic proposed earlier
approaches the problem from the students’ point of view. This
solution, however, works from the teachers’ point of view i.e.
teacher availability for a given time slot. While all the hard
constraints (e.g. the availability of teachers, etc.) are resolved
rigorously, the scheduling solution presented in this paper is
an adaptive one, with a primary aim to solve the issue of clashes
of lectures and subjects, pertaining to teachers.

Index Terms— time tabling, scheduling, operational research,
artificial intelligence, heuristic.

I. INTRODUCTION
The class timetabling problem is a scheduling algorithm

with great interest and implications in the fields of
operational research and artificial intelligence. The problem
was first studied by Gotlieb, who formulated a class-teacher
timetabling problem by considering that each lecture
contained one group of students and one teacher, such that
the combination of teacher and students can be chosen freely
[1]. Dynamic changes in the context of timetabling problems,
had started to be studied at [23]. A survey of existing
approaches to dynamic scheduling can be found in
[24].Because of the size of real problem, almost all effective
solutions are heuristic in nature, and do not guarantee
optimality. Among the well known results there are [13-16]
that deal with various cases of the problem settings [17].
While setting a timetable, importance is given to effective
utilization of resources such as the classroom,the teacher,
etc.` This becomes a very tedious task which needs to be
addressed at least once a year by every academic institute.
Most institutes deal with this problem manually, i.e. a trial
and error method is used to set a timetable.

The general timetabling problem comes in many different
guises including nurse rostering (e.g. Cheang et al, 2003,
Burke et al. 2004), sports timetabling (e.g. Easton,
Nemhauser and Trick, 2004), transportation timetabling (e.g.
Kwan, 2004) university timetabling (Schaerf, 1999, Burke
and Petrovic, 2002, Petrovic and Burke, 2004), etc [3, 4, 5, 6].
A more indirect approach can also be seen in instruction
scheduling. [12] Due to the combinatorially explosive nature
of the problem, enumeration and other deterministic methods

 Manuscript received on July 1 10, 2012; revised July 30, 2012.
The authors was with the Departmnent of Computer Science, Ramnarain

Ruia College, Mumbai, India (email: anirudhananda@gmail.com;
manisha.ppai@gmail.com; abhijeet_gole@hotmail.com)

fail and heuristics is preferred [2]. Since the Timetabling
problem is a common problem faced

in most walks of life, its presence with other operational
research problems cannot be overlooked. For e.g., in
scheduling sports timetables, consideration is not only given
to scheduling a sport event, but also to reducing the cost
factor, distance traveled by teams, etc. The Traveling
tournament [18], where the total distance traveled by the
team is minimized, further increased the academic interest in
sports scheduling [19].

II. BACKGROUND
Timetabling is known to be a non-polynomial complete

problem i.e. there is no known efficient way to locate a
solution. Also, the most striking characteristic of
NP-complete problems is that, no best solution to them is
known. Hence, in order to find a solution to a timetabling
problem, a heuristic approach is chosen. This heuristic
approach, therein, leads to a set of good solutions (but not
necessarily the best solution).

In a general educational timetabling problem, a set of
events (e.g. courses and exams, etc) are assigned into a
certain number of timeslots (time periods) subject to a set of
constraints, which often makes the problem very difficult to
solve in real-world circumstances [2]. In fact, large-scale
timetables such as university timetables may need many
hours of work spent by qualified people or team in order to
produce high quality timetables with optimal constraint
satisfaction [7] and optimization of timetable’s objectives at
the same time.

These constraints are of two types Hard and Soft
constraints. Hard constraints include those constraints that
cannot be violated while a timetable is being computed. For
example, for a teacher to be scheduled for a timeslot, the
teacher must be available for that time slot. A solution is
acceptable only when no hard constraint is violated. On the
other hand soft constraints are those that are desired to be
addressed in the solution as much as possible. For example,
though importance is given to a teacher’s scheduling,
focus is on setting a valid timetable and this can lead to a
teacher going free for a time slot. Thus, while addressing the
timetabling problem, hard constraints have to be adhered, at
the same time effort is made to satisfy as many soft
constraints as possible. Due to complexity of the problem,
most of the work done concentrates on heuristic algorithms
which try to find good approximate solutions [8]. Some of
these include Genetic Algorithms (GA) [9], Tabu Search [10],
Simulated Annealing [11] and recently used Scatter Search

An Algorithm to Automatically Generate Schedule for
School Lectures Using a Heuristic Approach

Anirudha Nanda, Manisha P. Pai, and Abhijeet Gole

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

492

methods.
Heuristic optimization methods are explicitly aimed at

good feasible solutions that may not be optimal where
complexity of problem or limited time available does not
allow exact solution. Generally, two questions arise (i) How
fast the solution is computed? and (ii) How close the solution
is to the optimal one? Tradeoff is often required between time
and quality which is taken care of by running simpler
algorithms more than once, comparing results obtained with
more complicated ones and effectiveness in comparing
different heuristics. The empirical evaluation of heuristic
method is based on analytical difficulty involved in the
problem’s worst case result. In its simplest form the
scheduling task consists of mapping class, teacher and room
combinations (which have already been pre- allocated) onto
time slots.

One possible approach is as follows: We define a tuple as a
particular combination of identifiers such as class, teacher
and room, which is supplied as an input to the problem.[20]
The problem now becomes one of mapping of tuples onto
period slots such that tuples which occupy the same period
slot are disjoint (have no identifiers in common). If tuples are
assigned arbitrarily to periods, then in anything but the most
trivial cases, a number of clashes will exist. We can use the
number of clashes in a timetable as an objective measure of
the quality of the schedule. Thus, we adopt the number of
clashes as the cost of any given schedule. It is simple to
measure the cost of a schedule. For each period of the week,
we make a count of the number of occurrences of each
class, teacher and room identifier. The cost of the entire
timetable is the sum of each of the individual costs. This
procedure is discussed in more detail in Abramson [21].

The proposed algorithm aids solving the timetabling
problem while giving importance to teacher availability. This
algorithm uses a heuristic approach to give a general solution
to school timetabling problem. It takes the user input of a
number of subjects, number of teachers, subjects every
teacher takes, number of days in a week for which the
timetable needs to be set, number of time slots in a day and
the maximum lectures a teacher can conduct in a week.

It initially uses randomly generated subject sequence to
make a temporary time table. While generating this sequence,
care is taken to avoid repetition of subjects over a day. After
this, the teacher availability for each of the subjects allocated
for the respective slot is checked. Every time a teacher is
available for the subject at the allocated slot, the subject and
the teacher are entered into the output data structure and
marked as final. Before the allocation of this subject to the
output data structure, a check is also conducted on the
number of maximum lectures a teacher can conduct. If the
teacher has been allocated more than the allowed maximum
lectures the subject is moved into a Clash data structure.

To avoid cycling and to improve the search, this variable
selection criterion can be randomized. There are several
methods [22] which can be applied,

e.g.: – a random walk technique (with the given probability
p a random variable is selected)

 – not the worst variable, but a random selection of a
variable worse enough (e.g., from the top N worst variables),
or – a selection of a variable according to a probability based

on the above mentioned criteria (e.g., roulette wheel
selection).

A. Collision
There is a possibility that teacher availability for a subject

si may be at a slot where another subject sj is allocated. Under
such a situation, if sj is not present in the output data
structure, sj is moved into a Clash data (i.e. no more free time
slots are available), the Clash data structure is revisited and
an effort is made to allocate the subjects in it to an available
time slot in the day. If, however, it is not possible to allocate
any/all of the subjects in the Clash data structure, these
subjects are moved to the Day_Clash data structure. When
sequence for the next day is generated preference is
given to the subjects under Day_Clash.

B. Variables Used

Time slots of the time tables:- ts1, ts2, ts3…., tsn
List of Subjects:- s1,s2,s3, …., sn
Teachers:- t1,t2,t3, …., tn

Batches of students:- c1,c2,c3, ….., cn
Flags indicating finalized timeslots :- tsf1, tsf2, tsf3, ….., tsfn

Data structure to hold Final Timetable:-final_tt
Count for day of week: Daycount
Number of days of the week:- n
Data structure to hold Subject-clash within the day:- clash
Each element of Clash data structure:- clash_ele
Data structure for Subject-clash across days:- Dayclash
Each element of Dayclash data structure:-
day_clash_element
Subject contained in dayclash:- sdc

Teacher associated with subject in dayclash:- tdc

Max number of lectures of subject si in the week:-k
Counter for the number of subjects:- counter_sub
Random number indicating random slot allotment for

subject:- rand_sub_allot
Data structure to hold randomly allotted subject:-

rand_sub_seq
Data structure to hold all subjects:- init_sub

C. Assumption
This algorithm is designed to solve and generate school

time tables. The following is a list of assumptions made
while developing this algorithm:

• The algorithm produces optimum outputs in a
five-day week.

• The number of subjects (s1, s2, …, sn) need to
be finalized before the algorithm begins
execution.

• Number of teachers (t1, t2, …, tn) entered
before execution of the algorithm are assumed
to be constant and cannot be changed during or
after the algorithm has been executed.

• Any change in the above two assumptions will
require a new generation of Timetable for the
changed data.

• In each time table, all time-slot is filled with, a
unique combination of subjects without any
repetition of subjects.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

493

• Any teacher is allowed at most ‘k’ number of
lectures in a week. The value of k is accepted
before execution of the algorithm.

• It is assumed that a teacher cannot take more than
one lecture for the same class in a day.

• Timeslots ts1, ts2, … ,tsn once entered at
the beginning cannot be changed throughout
the execution.

• Every day in the week is assumed to have
equal number of time slots.

• Classrooms for any batch id fixed throughout the
day.

D. User-Input
Time slots of the time tables:- ts1, ts2, ts3…. Tsn
List of Subjects:- s1,s2,s3, …., sn
Teachers:- t1,t2,t3, …., tn
Max number of lectures of subject si in the week:- k
Batches of students:- c1,c2,c3, ….., cn
Count for day of week: Daycount

III. ALGORITHM
If(daycount>n)

end
generate()
Lbl2:For day_clash_element 1 today clash element n

Retrieve sdc from dayclash
 Retrieve tdc of sdc
rehabilitate(sdc)
For(ts1 to tsn)
 If(si exists in final_tt)
 Next iteration
 Else
 Lbl3:Retrieve si in tsi
 Retrieve ti of si

If(availability =0 for tsi)
 rehabilitate(si)

Else
If(ki>0)

Set si to tsi in final_tt
tsfi=1
ki - -

 Else
 Lbl3
 If (tsn has been reached)
 If(clash NOT empty)
 For clash_ele1 to clash_elen

 Retrieve each si inclash_elen

 Retrieve si with ti

 rehabilitate(si)
 Daycount++
 Else
 Daycount++

Else
 Continue

generate()

For (each subject si)
 Place si in sub_arr
 For(each dow)
 rand_seq=rand(sub_arr)

 if(dow=1)

 init_tt (dow)=rand_seq
 else
 curr_pos=length(rand_seq)-1
 temp_ele=rand_seq(last)
 for (each element in rand_seq)

 if(curr_pos==1)
 rand_seq(curr_pos)=temp_ele
 else

 rand_seq(curr_pos)=rand_seq(curr_pos-1)
 init_tt(dow)=rand_seq

End generate

rehabilitate(si)

 Lbl4:Retrieve tsj such that ti availability =1

If(tsfj=0)

If(ki>0)

Move sj to Clash
 Set ti,si in tsj in final_tt
 tsfi=1
 kj—

else
 Lbl4

Else if(tsfj=1)
 Lbl4

Else If(all tsfj=1)
 Mark sj

 Move sj to Dayclash
End rehabilitate

IV. RESULT

 Mon Tue Wed Thurs Fri

TS1 Mr. A/
Maths

Mr. A/
Physics

Mr. B/
History

Ms. C/
Geog

Ms. D/
Chem

TS2 Ms. D/
Chem

Mr. A/
Maths

Mr. A/
Physics

Mr. B/
History

Ms. C/
Geog

TS3 Ms. C/
Geog

Ms. D/
Chem

Mr. A/
Maths

Mr. A/
Physics

Mr. B/
History

TS4 Mr. B/
History

Ms. C/
Geog

Ms. D/
Chem

Mr. A/
Maths

Mr. A/
Physics

TS5 Mr. A/
Physics

Mr. B/
History

Ms. C/
Geog

Ms. D/
Chem

Mr. A/
Maths

Following are the results of the implementation of the

algorithm mentioned above.

• The algorithm after implementation, results in the
creation of a time table of batch/class of students
displaying a grid of time slots.

• Each time slot is filled by a teacher and the subject
that is being conducted. The output of the
algorithm’s implementation will be as per the
above Table 1.

• The allotments of teachers to the slots will change
the composition of the generated time table.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

494

• Hence, all clashes of availability of teachers will be
analyzed and the algorithm will be applied again
to improve by reducing the clashes.

V. CONCLUSION
The intention of the algorithm to generate a time-table

schedule automatically is satisfied. The algorithm
incorporates a number of techniques, aimed to improve the
efficiency of the search operation. It also, addresses the
important hard constraint of clashes between the availability
of teachers. The non-rigid soft constraints i.e. optimization
objectives for the search operation are also effectively
handled. Given the generality of the algorithm operation, it
can further be adapted to more specific scenarios, e.g.
University, examination scheduling and further be enhanced
to create railway time tables. Thus, through the process of
automation of the time-table problem, many an-hours of
creating an effective timetable have been reduced eventually.

The most interesting future direction in the development of
the algorithm lies in its extension to constraint propagation.
When there is a value assigned to a variable, such
assignment can be propagated to unassigned variables to
prohibit all values which come into conflict with the
current assignments. The information about such prohibited
values can be propagated as well.

REFERENCES
[1] D. Datta, Kalyanmoy Deb, Carlos M. Fonseca, “Solving Class

Timetabling Problem of IIT Kanpur using Multi- Objective
Evolutionary Algorithm.” KanGAL 2005.

[2] Edmund K Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic,
Rong Qu, “A Graph-Based Hyper-Heuristic for Educational
Timetabling Problems.” European Journal Operational Research, 176:
177-192, 2007.

[3] Awad and Chinneck, “Proctor Assignment” at Carleton University
(1998).

[4] Cheang B., Li H., Lim A. and Rodrigues B. 2003, “Nurse Rostering
Problems: A Bibliographic Survey.” European Journal of Operational
Research, 151(3) 447-460.

[5] Easton K., Nemhauser G. and Trick M. 2004, “Sports Scheduling.”
In: Leung J. (ed.) in Handbook of Scheduling: Algorithms, Models,
and Performance Analysis. Chapter 52, CRC Press.

[6] S. and Burke E.K. 2004. University Timetabling In: Leung J. (ed.)
“Handbook of Scheduling: Algorithms”, “Models, and Performance
Analysis.” Chapter 45. CRC Press.

[7] W. Legierski, “Constraint-based Techniques for the University
Course Timetabling Problem”, CPDC, (2005), pp.59-63.

[8] S. Abdullah, E. K. Burke and B. McCollum, “A Hybrid Evolutionary
Approach to the University Course Timetabling Problem”,
Proceedings of the IEEE Congress Evolutionary Computation,
Singapore, (2007).

[9] J. F. Gonçalves and J. R. De Almeida, “A Hybrid Genetic Algorithm
for Assembly Line Balancing”, Journal of Heuristics, Vol.8, (2002),
pp.629-642.

[10] G. Kendall and N. M. Hussain, “A Tabu Search Hyper Heuristic
Approach to the Examination Timetabling Problem at the MARA
University of Technology”, Lecture Notes in Computer Science,
Springer Verlag, vol.3616, (2005), pp.270-293.

[11] M. A. Saleh and P. Coddington, “A Comparison of Annealing
techniques for Academic Course Scheduling”, Lecture Notes in
Computer Science, Springer Verlag, vol. 1408, (1998), pp.92-114.

[12] Aubin J, Ferl and J. A, “A Large Scale Timetabling Problem”, Comput.
& Opr. Res., vol.16, no.1, pp.67-77, 1989.

[13] Dempster M. A. H, “Two algorithms for the timetable problem,”
Proc, of Conference, Oxford, July 1969, pp. 63-8.

[14] Dinkel J. J, Mote J, Venkataramanan M. A, “An efficient decision
support system for academic course scheduling,” Operations
Re-search 37(6), 1989, pp. 853-864.

[15] Gotlieb C.C, “The construction of class - teacher timetables”, IFIP
Congress 62, 1962, pp.73- 77.

[16] Do Xuan Duong ,Pham Huy Dien, “ Solving the Lecture Scheduling
Problem by the Combination of Exchange Procedure and Tabu
 Search Tecniques,” Studia Informatica Universalis, Vol.4, Number
2

[17] Easton, K., Nemhauser, G. and Trick, M, “ The traveling tournament
problem: description and benchmarks.” In Proc of the 7th.
International Conference on Principles and Practice of Constraint
Programming, Paphos, 580–584, 2001

[18] K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D, Briskorn, G.
Duran, J. Kyngäs, J. Marenco, C.C. Ribeiro, F. Spieksma, S. Urrutia
and R. Wolf, “A Framework for a Highly Constrained Sports
Scheduling Problem,” In Proc of the International MultiConference of
Engineers and Computer Science 2010 Vol III, IMECS 2010,Hong
Kong.

[19] D. Abramsom, M. Krishnamoorthy and H. Dang, “Simulated
Annealing Cooling Schedules for the School Timetabling Problem”
Aisa-Pacific Journal Of Operational Research, (1999).

[20] Abramson D. A., “Constructing School Timetables using Simulated
Annealing: Sequential and Parallel Algorithms”, Management Science,
37(1), 98-113, 1991.

[21] Z. Michalewicz and David B. Fogel, “How to Solve : Modern
Heuristics.” Springer, 2000.

[22] A. Elkhyari, C. Gu´eret, and N. Jussien, “Solving dynamic
timetabling problems as dynamic resource constrained project
scheduling problems using new constraint programming tools. In
Edmund Burke and Patrick De Causmaecker, editors, Practice And
Theory of Automated Timetabling, Selected Revised Papers,” pp.
39–59. Springer- Verlag LNCS 2740, 2003.

[23] W. Kocjan, “ Dynamic scheduling: State of the art report.” Technical
Report T2002:28, SICS, 2002.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

495

