
  

  
Abstract—The Cerebellar Model Articulation Controller 

(CMAC) neural network is an associative memory that is 
biologically inspired by the cerebellum, which is found in the 
brains of animals. The standard CMAC uses the least mean 
squares algorithm (LMS) to train the weights. Recently, the 
recursive least squares (RLS) algorithm was proposed as a 
superior algorithm for training the CMAC online as it can 
converge in one epoch, and does not require tuning of a learning 
rate. However, the RLS algorithm was found to be very 
computationally demanding. In this work, the RLS 
computation time is reduced by using an inverse QR 
decomposition based RLS (IQR-RLS) algorithm which is also 
parallelized for multi-core CPUs. Furthermore, this work 
shows how the IQR-RLS algorithm may be regularized which 
greatly improves the generalization capabilities of the CMAC. 
 

Index Terms—CMAC, inverse QR-RLS, regularization, 
recursive least squares. 
 

I. INTRODUCTION 
The Cerebellar Model Articulation Controller (CMAC) 

was invented by Albus [1] in 1975. The CMAC is modeled 
after the cerebellum which is the part of the brain responsible 
for fine muscle control in animals. It has been used with 
success extensively in robot motion control problems [2, 3]. 

In the standard CMAC, weights are trained by the least 
mean square (LMS) algorithm. Unfortunately, the LMS 
algorithm requires many training epochs to converge to a 
solution. In addition, a learning rate parameter needs to be 
carefully tuned for optimal convergence. Recently, the 
recursive least squares (RLS) algorithm was proposed for use 
in the CMAC [2]. The RLS algorithm does not require tuning 
of a learning rate, and will converge in just one epoch. This is 
especially advantageous for online learning used in methods 
such as feedback error learning [3]. In order to achieve such 
advantages, the price paid is an 2( )wO n computational 
complexity, where wn  is the number of weights in the CMAC. 
While fast ( )wO n  RLS algorithms exist, they are only suitable 
for input vectors which exhibit a time-shifting property [4]. 
This property does not exist in the CMAC. However, it is 
shown in [5] that by using a QR-decomposition based RLS 
algorithm, computation time can be reduced by half for a 
univariate CMAC. In this paper we show that the 
computation time can be further reduced for univariate and 
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additionally multivariate CMACs by using an inverse QR 
decomposition RLS (IQR-RLS) algorithm, tailoring it for the 
CMAC and finally parallelizing it for use on multi-core CPUs. 
While the complexity remains 2( )wO n , the new algorithm is 
fast enough to solve small problems at a reasonable speed. 

Secondly, it is well known that the standard CMAC can 
have significant generalization error [6-9]. In [9] a 
regularization term was applied to the LMS cost function 
which reduced the generalization error. In this paper we 
apply the regularization term to the RLS cost function, and 
derive a new IQR-RLS algorithm which computes a 
regularized weight vector in one epoch. 

This paper is organized as follows. In Section II a brief 
introduction to the CMAC is presented. In Section III, the 
IQR-RLS algorithm is explained, and a special algorithm 
tailored for the CMAC is presented. Section III presents a 
method for parallelizing the IQR-RLS algorithm for 
multi-core CPUs. In Section V the regularized IQR-RLS 
algorithm is derived, and the algorithm and results presented. 
Finally, in section VI the conclusions are presented. 

 

II. BRIEF OVERVIEW OF THE STANDARD CMAC 
The CMAC can be considered as a mapping

S M A P→ → → . Where S M→  is a mapping from a dn
-dimensional input vector 1 2[ ]

d

T
ny y y=y  where

iy ∈  to a quantized vector 1 2[ ]
d

T
nq q q=q  where 

iq ∈ . 
The mapping M A→  is a non-linear recoding from vector 

q  into a higher dimensional binary vector called the 
association vector, 1 2[ ]

w

T
nx x x=x  where wn  is the 

number of weights in the CMAC and {0,1}ix ∈ . The number 
of weights in the CMAC can be large but the association 
vector x will only contain m ‘1’s, where m is the number of 
layers in the CMAC (a selectable parameter which controls 
generalization).  

In the mapping A P→  the association vector is used to 
select and add m  values from an array of weights 

1 2[ ]
w

T
nw w w=w  where iw ∈  to form the output. 

This can be viewed as an inner product calculation Tx w.  
Learning in the CMAC corresponds to adjusting the value 

of the weights in order to produce a correct output for an 
input. In the standard CMAC, the LMS algorithm shown in 
(2.1) is used for this purpose, where k is the training sample 
iteration, β  is the learning rate, ( )d k  is the desired output, 
and ( ) ( 1)T k k −x w  is the actual CMAC output. 
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Fig. 1. A two-input CMAC example with four layers and 64 weights. 

 

( )( ) ( 1) ( ) ( ) ( ) ( 1)T Tk k k d k k k
m
β= − + − −w w x x w  (2.1) 

 
In Fig. 1 a visualization of a two input ( 2dn = ) CMAC is 

shown with quantized input [4 8]T=q , and 64wn = . Here 
4m =  layers are used, which correspond to the four weight 

tables on the right of the figure. We can see that the input 
vector slices through the four layers on both axes. The sliced 
letters for each layer activate a certain weight in its 
corresponding weight table. Here weights Bc, Fg , Jk  and No 
are activated. If put into activation vector form it will appear 
as, 

0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0

TAa Ba Bc Fg Jk No Pp⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

x  (2.2) 

 
We can also sparsely store this vector by simply storing the 

addresses of the activated weights, 
 
 [ ]9 25 41 57activatedAddresses =  (2.3) 
 

III. THE INVERSE QR-RLS ALGORITHM FOR THE CMAC 
QR-decomposition is a method for decomposing a matrix 

into two matrices, one orthogonal and the other upper 
triangular. It is useful for solving the linear least squares 
problem recursively [10] in a more numerically stable 
manner compared with standard RLS. Usually, using QR 
methods will degrade computational performance. However, 
the paper in [5] tailors the QR-RLS algorithm specifically for 
the CMAC resulting in halving the computation time. 
Unfortunately, the tailored algorithm is only suitable for 
univariate CMACs as the authors assume the association 
vector uses a method where the m ‘1’s are contiguous, which 
cannot be the case for multi-input CMACs. 

If the weight vector is required to be updated after every 
presented training sample, as it is required in the CMAC, a 
costly matrix back substitution step of 2( )wO n  time complexity 
needs to be carried out each time. We can avoid this back 
substitution step entirely by using an inverse QR-RLS 
algorithm, which instead allows the weights to be calculated 
directly. In ALGORITHM I we present an IQR-RLS algorithm 

that was derived in [11] which uses the Givens rotation 
method to perform the QR-decomposition, but has here been 
tailored for the CMAC in order to increase computational 
speed. 

Where ( )ia k , ( )ijr k  and ( ) ( )i
ju k  are the individual entries of 

( )ka , ( )kR  and ( )ku  respectively. Note that δ  is a constant 
that is usually set between 10 and 10000. Larger values give 
theoretically better results, though it was found that setting δ  
too large causes floating point inaccuracies. A value of 100 
was found to work well. 

A. Optimizations 
There are three speed improvements that are implemented 

in ALGORITHM I. The first improvement involves (3.5). The 
activatedAddresses array contains the array addresses of the 
m ‘1’s in the association vector like what is shown in (2.3). 
This array will have been calculated previously as part of the 
CMAC addressing algorithm which is not shown here but can 
be found in [6]. Here the address where the first ‘1’ appears in 
the association vector is recorded. The for loop in (3.6) then 
begins its computation from this address. This is because the 
( )ka  vector calculated in (3.3) will be zero up until the 

address of the first ‘1’ in ( )kx , as T−R  is lower triangular. If 
( )ia k  is zero then ( )s k  will equal zero, and ( )c k  will equal 

one resulting in no change for ( )ijr k  and ( )ju k , rendering any 
calculation redundant.                   g 
 

ALGORITHM I: IQR-RLS ALGORITHM FOR THE CMAC 
(0) , (0) , (0) ( 1),

0.001
w w

T
n nδ δ

ρ

−
×= = = >>

<

w 0 x 0 R I
 (3.1)

:for each training sample k  (3.2)
( ) ( 1) ( )Tk k k−= −a R x  (3.3)

(0)( ) , ( ) 1k kα= =u 0  (3.4)
1( )start activatedAddresses k=  (3.5)

: wfor i start n=  (3.6)
()givens  (3.7)

( ) ( ) ( ) ( 1)Te k d k k k= − −x w  (3.8)

( )

( )( )
( )wn

e kz k
kα

=  (3.9)

( ) ( 1) ( ) ( )k k z k k= − −w w u  (3.10)
 

MACRO: ()givens  
( ( ) ) )iif a k ρ>  (3.11)

2( ) ( 1) 2( ) ( ) ( )i i
ik k a kα α −⎡ ⎤= +⎣ ⎦  (3.12)

( )
( )

( )
( )

i
i

a k
s k

kα
−

=  (3.13)

( 1)

( )
( )( )

( )

i

i
kc k

k
α
α

−
=  (3.14)

1:for j i=  (3.15)
( 1)( ) ( ) ( 1) ( ) ( 1)i

ij ij jr k c k r k s k u k−= − − −  (3.16)
( ) ( 1)( ) ( ) ( ) ( ) ( 1)i i
j j iju k c k u k s k r k−= + −  (3.17)

 
The second improvement follows on from this where the 

calculation of (3.12) - (3.17) is gated by (3.11), and thus is 
only performed if the absolute value of ( )ia k  is greater than 
ρ  which is set to a small value just above zero. Values of 
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( )ia k  are often zero due to the sparseness of the CMAC input 
which leaves T−R  sparse, and the sparseness of the 
association vector. We set ρ  to be slightly larger than zero 
because during the matrix-vector multiplication in (3.3), 
values are often added and subtracted to form the sum of zero. 
Due to floating point inaccuracies the result will not equal 
exactly zero, hence the threshold. Furthermore, increasing ρ  
beyond the floating point inaccuracy boundary acts to 
decrease the accuracy of the solution and increase 
computation speed. Generally, a value for ρ  between 
0.000001 and 0.001 worked well.  

Thirdly, a sparse matrix-vector multiplication can be 
performed with (3.3) because ( )kx  or the association vector 
is sparse, and the addresses of the ‘1’s are known from the 
activatedAddresses array. Thus, only m values for each row 
of T−R  need to be added.  

It can be seen from (3.6) that computation time will 
increase with an increase in the number of weights required 
by the CMAC. We can combat this disadvantage for larger 
problems by using hash mapping to specify the number of 
weights to use. 

B. Results 
A two input sinc function was modeled on an Intel i5 CPU 

using the CMAC. Fig. 3 shows the computation times 
recorded for a particular number of weights compared against 
other RLS algorithms used in the CMAC. The number of 
weights used by the CMAC was controlled by modifying the 
quantization resolution used. IQR-RLS was found to be the 
fastest of the RLS algorithms. Although it was previously 
said that the QR-RLS algorithm can halve the computation 
time of the standard RLS algorithm, we did not implement 
those speed enhancements from [5] as they would restrict the 
CMAC to a single input only. The QR-RLS algorithm was 
then many times slower than standard RLS. 

Compared with the LMS algorithm which requires less 
than one microsecond per iteration, RLS is much slower. 
However, many epochs are required for the LMS algorithm 
to converge, which is not desirable in online learning. 

 

IV. PARALLELIZED IQR-RLS ALGORITHM 
The QR-RLS algorithm is naturally and optimally 

parallelized on a systolic array as is seen in [5]. The IQR-RLS 
algorithm from ALGORITHM I can also be parallelized in the 
same manner. A systolic array implementation of IQR-RLS 
is shown in Fig. 2 In this figure, each circle represents a 
processing element that also stores the values of T−R . The 
circles in the left most column implement (3.12) - (3.17), and 
all other circular processing elements implement (3.16) and 
(3.17). The square boxes calculate the weights using (3.8) - 
(3.10). 

Often access to systolic array hardware is not available, 
and only PCs are available.  Parallelization on a PC may be 
performed by emulating the systolic array computation 
structure with threading. However, this would introduce 
many threading overheads, and would potentially perform 
poorly. Here a simpler method is proposed to parallelize the 
IQR-RLS algorithm on a PC with a multi-core CPU by using 
the systolic array visualization.  

 

In a visual sense, ALGORITHM I sequentially updates the 
( )i
ju  and ijr  values in the systolic array row by row. It is, 

however, equally valid to update the ( )i
ju  and ijr  values column 

by column instead. If the column by column method is used, 
since each column is independent from one another in terms 
of other value dependencies (apart from c  and s ), it is 
possible to update each column simultaneously and without 
memory sharing bottlenecks. As it is a simple exercise to 
parallelize ALGORITHM I, we do not present the algorithm 
explicitly, but instead describe how it may be parallelized in 
two steps below. 

The first step that needs to be performed is sequential in 
nature. First, realize that the c  and s  values are constant 
across each row. Thus the values of c  and s  must first be 
sequentially calculated for each row and stored in an array. 
The value ( )wnα  is also calculated and stored as a by-product 
from calculating c and s.  

In step two we realize that we can update ( )i
ju  and ijr  column 

by column. Since each column is independent of one another, 
each column can be updated in a separate thread, one for each 
core on the CPU. We can further optimize by combining 
computation of shorter columns together to equalize thread 
computation times and by writing code to skip any 
calculations on rows where the ia  value is below the 
threshold ρ .  

Additionally, fine grained parallelism on a modern CPU 
can be achieved by using ‘Streaming SIMD Extensions’ 
(SSE). Currently, SSE instructions allow two double 
precision, and four single precision multiplications to be 
performed simultaneously. This is especially useful for the 
inner loop calculations (3.16) and (3.17).  

A. Results 
The algorithm was used to model a two input sinc function 

and was run on a 4-core Intel i5 processor. It was found that 
parallelization slightly slowed down computation for small 
problems due to threading overheads, but decreased 
computation times for larger problems. We can expect for 
this algorithm to become automatically faster as processor 
core counts increase. A computational time comparison 
between the sequential and parallel versions of IQR-RLS is 
plotted in Fig. 3. The parallel algorithm implements both 
threading and SSE based parallelization. 

 

 
 

Fig. 2. Parallel systolic array implementation of the IQR-RLS algorithm 
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V. REGULARIZED IQR-RLS 
The work in [6-9] shows that the generalization error of the 

CMAC can be significant. In [9] a method called  
‘regularization’ is presented for the LMS algorithm, which 
considerably reduces the generalization error.                                  
Regularization combats a design flaw in the CMAC by 
forcing activated weights to be similar, thus preventing 
certain weights dominating the contribution to the output 
calculation. Here we apply the same regularization concept 
but instead to the IQR-RLS algorithm. A partial 
mathematical derivation is given below based of the 
derivations found in [11]. First from [9] we use the least 
squares cost function ( )kε  where k is the number of training 
samples as, 

 

 

2

2

1
: ( ) 1

( ) ( ) ( )

( ) ( ) ( )
j

T
k

i j
j x k

d i i k

k d i w k
m

ε
λ=

=

⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦
⎜ ⎟= ⎡ ⎤⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠

∑
∑

x w

 (5.1) 

 
The first term in (5.1) is the error between the desired and 

actual CMAC output. The second term is the regularization 
term which adds to the cost if the activated weights are 
different to one another in value. The constant λ  is used to 
control the amount of regularization and it was found setting 
it to the reciprocal of δ  generally worked well. In order to 
easily solve this problem, (5.1) must be written in 
vector-matrix form. Define vectors ( )kw , ( )kd , ( )kh  and 
matrices ( )kX , ( )kΣ  as, 

 
 1 2 1

( ) ( ) ( ) ( )
w

w

T

n n
k w k w k w k

×
⎡ ⎤= ⎣ ⎦w  (5.2) 

 [ ] 1( ) (1) (2) ( ) T
kk d d d k ×=d   (5.3) 

 [ ] 1( ) (1) (1) (2) (2) ( ) ( )
w

T
n kk k k ×=h G q G q G q  (5.4) 

 [ ]( ) (1) (2) ( )
w

T
k nk k ×=X x x x  (5.5) 

 [ ]( ) (1) (2) ( )
w w

T
n k nk k ×=Σ G G G  (5.6) 

where, 

 1

( ) ( ) ( )( )
w

T

n

d k d k d kk
m m m ×

⎡ ⎤= ⎢ ⎥⎣ ⎦
q  (5.7) 

 ( )( ) ( )
w wn n

k diag k
×

⎡ ⎤= ⎣ ⎦G x  (5.8) 

 
( )( )diag kx  creates an w wn n×  zero matrix with the entries of 

( )kx  along the main diagonal. Using (5.2) - (5.8) we can 
rewrite the cost function as,  

 
 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k kε λ= − + −d X w h Σ w  (5.9) 

 
where T=a a a . Equation (5.9) can be rewritten as a single 
term by defining matrix ( )kA  and vector ( )ky  as 

 

 
( )

( )
( )

( )
w wk n k n

k
k

kλ + ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

X
A

Σ
 (5.10) 

 
( ) 1

( )
( )

( )
wk n k

k
k

kλ + ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

d
y

h
 (5.11) 

 
using (5.10) and (5.11) to rewrite ( )kε  then gives, 

 

 
2( ) ( ) ( ) ( )k k k kε = −y A w  (5.12) 

 
Now from [11] we see that since ( )kA  is ( )w wk n k n+ × , there 
exists a ( ) ( )w wk n k k n k+ × +  orthogonal matrix ( )kQ  such 
that, 

 

 
( )

( ) ( )
k

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R
Q A

0
 (5.13) 

 
where ( )kR  is the w wn n×  upper triangular Cholesky factor, 
and 0 is an (( ) )w w wk n k n n+ − ×  zero matrix. Similarly, 

 

 
( )

( ) ( )
( )
k

k k
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

z
Q y

v
 (5.14) 

 
where ( )kz  is a 1wn ×  vector, and ( )kv  is a (( ) ) 1w wk n k n+ − ×
vector. Since ( )kQ  is orthogonal, pre-multiplying each term 
in (5.12) does not change the value of the norm, 

 

 
2( ) ( ) ( ) ( ) ( ) ( )k k k k k kε = −Q y Q A w  (5.15) 

 
Substituting (5.13) and (5.14)  into (5.15) gives the desired 
form, 

 

 
2

( ) ( ) ( )
( )

( )
k k k

k
k

ε
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

z R w
v

 (5.16) 

 
It can be seen that the norm will be minimized if, 

 
 ( ) ( ) ( )k k k=R w z  (5.17) 
 
With (5.17) the weights can be solved for with back 

substitution. For IQR-RLS we need the 
1( )k−R  matrix 

however, so the derivation continues. Now the problem 
becomes how to update ( 1)k −R  to ( )kR  and ( 1)k −z  to ( )kz .  

First, consider the non-regularized solution. In the 
non-regularized solution, ( )kA  and ( )ky  in (5.12) are 
replaced with ( )kX  and ( )kd . Thus, in [11] it is shown that 
an ( 1) ( 1)w wn n+ × +  orthogonal matrix ( )kT  exists that will 
perform the non-regularized update by updating using the 
latest entry of ( )kX  and ( )kd , which are ( )kx  and ( )d k  
respectively, 

 

 
( 1) ( )

( )
( )T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.18) 

 
( 1) ( )

( )
( ) ( )

k k
k

d k k
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.19) 

 
However, with regularization, (5.12) uses ( )kA  and ( )ky  
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which is a composition of two matrices and two vectors 
respectively, so we must update with the latest entries of 

( )kX , ( )kd  and the latest entries of ( )kΣ , ( )kh  multiplied by 
λ  which are ( )kλG  and ( ) ( )k kλG q  respectively. There 

must then exist an (2 1) (2 1)w wn n+ × +  matrix ( )kT  such that, 
 

 

( 1) ( )

( ) ( )

( )

T T

k k

k k

kλ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

R R

T x 0
0G

 (5.20) 

 
and similarly to update ( 1)k −z  to ( )kz , 

 

 
( 1) ( )

( ) ( ) ( )
( )( ) ( )

k k
k d k k

kk kλ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

z z
T ζ

φG q

 (5.21) 

 
Unfortunately, if (5.20) and (5.21) are used, we cannot 

proceed with the same derivations found in [11] as the 
derivations are suited only to a ( 1) ( 1)w wn n+ × +  ( )kT  matrix. 
We, however, realize that ( )kR  may be calculated iteratively 
if we define ( ) ( )

wn k k≡R R , ( ) ( )
wn k k≡z z  and write ( )kG  

and ( )kq  in column form, 
 

 1 2( ) ( ) ( ) ( )
w

T
nk k k k⎡ ⎤= ⎣ ⎦G g g g  (5.22) 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
w

T
nk k k k k k k k⎡ ⎤= ⎣ ⎦G q g q g q g q

 (5.23) 
 

then we first update using ( )kx  and ( )d k , 
 

 0
0

( 1) ( )
( )

( )T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.24) 

 0
0

( 1) ( )
( )

( ) ( )
k k

k
d k k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.25) 

 
and using 1( )kg  to ( )

wn kg  we iteratively update until we have 
( )

wn kR , 

 0 1
1

1

( ) ( )
( )

( ) T

k k
k

kλ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.26) 

  

 
1( ) ( )

( )
( )

w w

w

w

n n
n T

n

k k
k

kλ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.27) 

 
and using 1( ) ( )k kg q  to ( ) ( )

wn k kg q  we iteratively update until 
we have ( )

wn nz , 
 

 0 1
1

11

( ) ( )
( )

( )( ) ( )

k k
k

kk kλ
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.28) 

  

 
1( ) ( )

( )
( )( ) ( )

w w

w
ww

n n
n

nn

k k
k

kk kλ
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.29) 

 
It is now clear that we need not continue with the derivation, 

as the regularizing equations (5.26) - (5.29) are in the same 
form as (5.18) and (5.19). Instead we can simply perform the 
final IQR-RLS update algorithm given in [11] for ( )kx  and 

( )d k  as is done in ALGORITHM I and then perform the 
algorithm wn  more times, but by replacing ( )kx  with 1( )kg  to 

( )
wn kg  and ( )d k  with 1( ) ( )k kg q  to ( ) ( )

wn k kg q . 
 
ALGORITHM II: REGULARIZED IQR-RLS ALGORITHM FOR THE 

CMAC 
First perform one run of ALGORITHM I, but replace line (3.10)
with (5.30) instead. 
 

( ) ( ) ( )k z k k=Temp u  (5.30)
 

Then while still inside training sample loop (3.2), 
1/λ δ=  (5.31)

1:for h m=  (5.32)
( )hp activatedAddresses k=  (5.33)

( ) ( ) ( )T
pk k kλ −=a R g  (5.34)

(0)( ) , ( ) 1k kα= =u 0  (5.35)
: wfor i p n=  (5.36)
()givens  (5.37)

( )

( ) ( ) ( ) ( 1) ( )
( )

( )w

p p
n

k k k k k
k

k

λ

α

⎡ ⎤− −⎣ ⎦+ =
g q g w u

Temp
 
(5.38)

( ) ( 1) ( )k k k= − −w w Temp  (5.39)
 

In ALGORITHM II the regularized IQR-RLS algorithm for 
the CMAC is presented. 

A. Optimizations 
Running the IQR-RLS algorithm wn  times for each row 

would slow the entire algorithm down significantly. However, 
an important observation to make is that only m rows of ( )kG  
will not be the zero vector. The zero vector rows can be 
ignored as they would produce a zero ( )ka  vector. Thus 
instead of running the algorithm wn  times more for 
regularization, it need only be run m more times, which is 
reflected in the for loop in (5.32). 

Another major optimization performed in ALGORITHM II is 
related to (5.33). Here we realize that we can start loop (5.36) 
from address p of the 'h th  ‘1’ in the association vector. This 
is because ( )p kg  is essentially the association vector with 
every entry, other than the 'p th  entry masked as zero, 
therefore every ( )ia k  value before the 'p th address will be 
zero making performing the givens macro redundant, as was 
explained in section III.A. 

B. Results 
It was found that the regularized RLS algorithm is able to 

compute the regularized weight vector in one epoch. In Fig. 4 
we see the output of a non-regularized CMAC on the left, 
modeling a sine function with the IQR-RLS algorithm. The 
CMAC sampled the sine function every 30 degrees, used a 
quantization resolution of 100, and had 10 layers. There is 
severe interpolation/generalization error between training 
samples. The figure on the right shows the CMAC trained on 
the same sine wave, but with regularization turned on.  The 
CMAC output is now almost a perfect sine wave. 

With regularization, training times take a hit. Fig. 3 shows 
a computation time comparison for the regularized IQR-RLS 
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algorithm. 
 

 
Fig. 3. Computation time per training sample vs. number of weights in the 
CMAC for various RLS-CMAC implementations. The number of weights 

was controlled by altering the quantization resolution. 
 

    
Fig. 4. Non-regularized CMAC output (left) and regularized CMAC output 

(right) for a sine wave modelling test. 
 

VI. CONCLUSION 
In this paper it was shown that the IQR-RLS algorithm is a 

superior choice over QR-RLS and standard RLS for training 
the CMAC neural network in one epoch. It was shown how 
the IQR-RLS algorithm can be optimized for use in the 
CMAC, and also how it can be parallelized for multicore 
CPUs through multithreading, and through the use of SSE 
instructions. The final experimental results show that the 
algorithm runs at improved speeds compared to previously 

suggested RLS algorithm for the CMAC. This paper also 
presented a newly derived IQR-RLS algorithm that 
implements regularization which helps to reduce the 
generalization error of the CMAC.  
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