

Abstract—DSS is a special type of IS and the theory of DSS

have been evolved since the inception of the field and shaped
into many diverse directions. As DSS has more specific nature
(its core concept) than any other system we need a suitable
Software Development Methodology that copes with the
significant characteristics of such kinds of systems. We believe
that Agile Methodology are the most suitable for DSS, despite
this there were significant limitations for both Agile
Methodologies and DSS Development Methodologies In this
paper we will preview DSS Development Methodologies,
compare between software development methodologies both
agile and traditional according to their suitability for building
DSS, and propose a new software development methodology.

Index Terms—DSS, software development methodology,

agile software development, knowledge management.

I. INTRODUCTION
Decision Support Systems (DSS) are an important class of

information systems (IS) that use data, models and
knowledge to help managers solve semi structured and
unstructured problems. Since the early 1970s, decision
support technologies and applications [1] have evolved
significantly. The advent of interactive computing coincided
with that of DSS, the birth of personal computing and the
web were contemporaneous with DSS's rapid growth, DSS
pioneers came from [2] a wide variety of backgrounds and
faced many challenges that they successfully overcame to
demonstrate the value of using computers, information
technologies and specific decision support software to
enhance and in some situations improve decision making.

However, the term DSS and its offshoot, Executive
Information Systems (EIS), have all but disappeared from
vendors web sites and a new generation of systems have
emerged, namely the Business Intelligence (BI)
applications.[3]. This is the viewpoint of many researchers
who involved in industrial application. For example Alter
who argues that “decision support” provides a richer basis
than “DSS” [4],and this is the viewpoint of many
Practitioners,however in academic discipline the term of DSS
serves as the basic concept of all the today’s interest in
building applications and technologies that support decisions,
furthermore , Choosing an appropriate approach or
methodology for building DSS [7] has been a popular and
controversial topic in the Information Systems (IS) literature

 Manuscript received May 20, 2012; revised June 29, 2012.

Natheer K. Garaibeh is with Ajloun University College, Balqa Applied
University, Jordan (e-mail: natheer_gharaibeh@bau.edu.jo;
natheer_garaybih@yahoo.com)

as a way of increasing DSS adoption and use.
Software engineering (SE) has long been argued to be at

the core of IS. IS researchers perform software engineering
research [6] to demonstrate the viability of new systems
concepts, but existing research paradigms do not fully
encompass the issues related to expanding the current
capabilities of information systems. Furthermore SDM [29]
have evolved from the classic waterfall model, to a spiral
model, to prototyping and, recently, to agile development
methodologies. The latter models seem to have worked well
for many kinds of Information Systems.

The concept of agility, referring to development
methodologies [25] that are more people oriented than
process-oriented and emphasizing flexibility and adaptability
over full description seems to positively affect the DSS
development field as well as software development field. In
other words, agile methodologies have more to do with the
DSS development rather than just software development
field. This combination between these two main ideas.

From this perspective, this paper argues that the
process-based view that has underlined DSS development for
so many years and agile development methodologies that are
more people oriented than process-oriented could usefully
give way to a knowledge- perspective since SDM is
fundamentally [18] knowledge structuring activity.

 A major goal of this ongoing research is to explore to what
extent does agile methodologies can be applied to DSS
development processes and whether they actually have
advantages over the traditional approaches or they can just be
used in the field of software engineering, The remainder of
this paper is structured as follows: Section 2 focuses on the
problem statement. Section 3 describes and discusses the
literature review surrounding DSS development. Section IV
discusses our preposition to solve the problem, and we
conclude and present future work in Section V.

II. PROBLEM STATEMENT AND METHODOLOGY
The inability of the DSS community [12] to come up with

unified and standardized methods to develop DSS is a
recurring topic that has kept researchers and practitioners
busy for the past three decades. Interestingly enough, none of
these approaches predominate and the various DSS
development processes usually remain very distinct and
project-specific.

A. Socio-Technical Factors
1) Human factors

In this paper, human factors cover the reasons why the
people involved, users and decision-makers, subjectively

DSS Development and Agile Methods: Towards a new
Framework for Software Development Methodology

Natheer K. Garaibeh, Member, IACSIT

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

438

oppose the computerized decision-making systems. This
opposition is based mainly on the Communications gaps
between users and developers, which are inevitable,
Furthermore, building DSS is difficult [7] because people
vary so much in terms of their personalities, knowledge and
ability, preferences, the jobs they hold, and the decisions they
need to make.
2) Conceptual factors

In this paper, conceptual factors cover the problems
encountered by the development of a DSS which is often an
undertaking of great complexity [7]. And the organizational
environment of DSS [8] is subject to significant change and
so even if the system requirements have been specified with
some accuracy at the start of the project they are likely to
change significantly over time as organizational structures
and personnel change.
3) Technical factors

In this paper, technical factors cover the problems
encountered by DSS related to purely software or hardware
considerations., DSS [9] has more Specific nature than any
other software - as shown in table-1 and is much more than
just a DBMS, MBMS, GUI, interface, and knowledge
component, DSS is complex system often composed of
heterogeneous subsystems (various databases, complex
mathematical libraries, proprietary data, etc.) and are
therefore difficult to integrate in only one
productive ,therefore we need for more analysis for the steps
of DSS development.

B. Research Methodology
Due to the nature of difficulties mentioned, we will not

claim to solve all of these problems; instead .we will try to
find how to manage these factors in order to develop DSS
successfully. SDMs are constantly evolving due to changing
technologies and new demands from users, there are some
SDMs suite DSS more than others; therefore, The essence of
this research is to answer the following question:: How can
we mix between Agile Development Methodologies (XP)
and DSS development Methodologies?

We applied the following research methodology:
1) Investigated the current DSS development methodologies.
2) Investigated the SDMs and identify deficiencies and

limitations for these methodologies according to DSS
characteristics). We want to choose an approach that
increases the chances of using DSS.

3) Propose a new SDM for development of DSS, based on 1
and 2.

4) Evaluate this methodology; by comparing it to the other
methodologies, design case study and by conducting a
scurvy.

III. LITERATURE REVIEW

A. Development Methodologies of DSS
Finding appropriate DSS development processes and

methodologies [12] is a topic that has kept researchers in the
decision support community busy for the past three decades
at least. We will not review studies before 1995 because the
DSS community has always shown great interest in the
underlying technology and rapidly emerging Information

Technology underpins DSS [26]. Studies on DSS
development conducted before 1995 [16] [17] have identified
more than thirty different approaches to the design and
construction of DSS. Interestingly enough, none of these
approaches predominate and the various DSS development
processes usually remain very distinct and project-specific

In the DSS literature, experts prescribe a variety of
approaches or methodologies for designing and developing
DSS. Everyone does not however agree on what
methodology works best for building different types of DSS.
For example Gachet [11] who proposed a bipartite approach
in which the software engineering part is separated from the
knowledge engineering part. Another example is Turban [9]
who described a development process consisting of 11
phases for DSS constructed by end users, also maracas [10]
Arnot [8] and Zaraté [15] Many researchers preview and
compare the Development methodologies of DSS
[7][13][28] .

Power [7] mentioned three approaches for building DSS:
systems development life cycle (SDLC) which is the most
commonly encountered term used to describe the steps in a
traditional systems development methodology, prototyping
approach and end-user development of DSS. In both of the
later two approaches a portion of the DSS is quickly
constructed, then tested, improved, and expanded.
Prototyping is similar to a related approach called rapid
application development (RAD).

B. Discussion
Gachet [11] proposed a framework that solve this problem,

whose cornerstone is the clear separation between the
container of the DSS (responsible for the system part) and the
contents of the IDSS (responsible for the knowledge base
part).But it gives quite a bit of responsibility to the kernel
component (The interface layer between the container and
the contents), which has to be able to communicate with both
the container and the contents of the IDSS.

The notion that a DSS evolves through an iterative process
of systems design and use has been central to the theory of
DSS since the inception of the field [23]. Terms such as
‘adaptive’ and ‘evolutionary’ capture the organic nature of
the development of a DSS. It has been clear that the
traditional approaches for analysis and design have proven
inadequate because there is no single comprehensive theory
of decision making, and because of the rapidity of change in
the conditions which decision makers face.

The main problem of the previous DSS development
methodologies is that they don’t handle the question of how
to manage the human (knowledge management), conceptual
and technical factors in order to develop DSS successfully;
we discussed these factors in section 3. This means that we
need to manage the steps of building DSS with respect to
these three important factors, therefore we need SE
methodologies.

From this perspective, there has been no research done to
investigate the DSS development by the new methodologies
of SE, such as Agile Development methodologies, which
promise relevance to the DSS development according to its
characteristics as we will show in the next section.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

439

C. Comparison between Traditional Methodologies and
Agile Methodologies

In this subsection we will compare between Traditional
Methodologies and Agile Methodologies according to their
suitability to DSS development and with respect to KM
factors .These factors include: knowledge sharing and
requirements volatility.

The main drawbacks of Traditional SE methodologies [24]
are that it does not address issues of how well users
internalize explicit knowledge and the sharing of tacit
knowledge that is not externalized. Agile development
approaches rely heavily on socialization through
communication and collaboration to access and share tacit
knowledge within the project team.

Traditional Methodologies work best when the
requirements of the software project are completely locked in
and frozen before the design and software development
commences. However, in DSS projects which have an
increasingly volatile business environment, firms are asking
for lighter weight, faster and more agile methodologies that
can accommodate the inevitable ongoing changes to
requirements.

To solve this problem we need a software methodology
that cope with knowledge management activities rates of
unpredictable change in software projects. This is a major
theme in the use of agile methods [19] [20].Agile methods
emphasis on people, communities of practice,
communication, and collaboration in facilitating the practice
of sharing tacit knowledge at a team level. Agile processes
use feedback, rather than planning as their primary control
mechanism. The feedback is driven by regular tests and
releases of the evolving software.

IV. THE PROPOSED SOLUTION
A. The Characteristics of DSS Development Methodology
1) Need for evolutionary

Developers of DSS need to adopt an evolutionary
approach [8] because the systems they build generally
address ill-structured decisions. It is extremely difficult a
priori to specify the system requirements in such an
nvironment. Constructing and using the initial versions of the
system will help to clarify these requirements. The
organizational environment of DSS is subject to significant
change and so even if the system requirements have been
specified with some accuracy at the start of the project they
are likely to change significantly over time as organizational
structures and personnel change.
2) Must be adaptive and iterative

The design of DSS must be adaptive ,the argument of this
assumption is drawn from an analysis of the early DSS
literature [23], and an analysis of the characteristics of many
case studies described. DSS must evolve or grow to reach a
‘final’ design because no one can predict or anticipate in
advance what is required. The system can never be final; it
must change frequently to track changes in the problem, user,
and environment because these factors are inherently
volatile.

 The more the customer is involved the more current

requirements the product will satisfy. It can be easily seen
that active user involvement [21] is a precondition for
iterative-incremental development since the feedback from
the end-user is necessary for its realization. And, both
principles equally contribute to achievement of fitness for
business purpose. This principle are often cited as typical
features of other agile methods [22]
3) Need for cooperation

The proccess of DSS development must guaranree
cooperation between the main stakholders, Zarate proposed
that three main actors must be participated in the
development process:end-users, experts and knowledge
engineers [15].we add the developer as 4th actor. The aim is
to help to design a system that the user will see as a real
partner. It will therefore involve sharing intelligence about
the situation by interacting and collaborating with partners
rather than remaining a passive user. The knowledge
engineer interacts directly with the expert and user to gain the
domain knowledge through the development process. Then
he interacts with the developer to build the final working
DSS.

B. The Relevance of XP
Although XP is being widely used among mainstream

software developers, its ideas have not been transferred into
the DSS community yet. In this ongoing research, we will
investigate reasons for adapting the values, principles, and
practices of XP to DSS in order to synthesize a new
methodology XPDSS

The three main Characteristics of the development
processes of DSS extremely highlights the core principles
and values of XP, The values of Extreme Programming [14]
are communication, simplicity, feedback and courage, and
these are further described through the principles rapid
feedback, assumption of simplicity, incremental change,
embracing change and quality work, which are well-suited
for the needs of the DSS development process. But the main
problem of XP when applying it to DSS is that it needs more
exploration, this feature can be taken from any DSS
framework in this paper we choose CAF-DMSS.

C. The Weaknese of XP
Although XP addresses the characteristics for DSS

development methodologies, it is primarily weak on 4th and
5th chrematistics.
1) XP is poor in multi perspective view.

We have to modify XP to provide a wider perspective of
views. XPDSS can increase the awareness of the scope by
using a framework for DSS techniques.
2) There is no Big Design Up Front.

XP de-emphasizes up front design because it is claimed
that everything is changing. Instead, a “metaphor” is used to
describe the basic elements and relationships of the
application [14]. However, for complex, DSS projects
upfront architectural design is considered to be essential to
solve this problem we need –before beginning XP.
3) XP is Extreme exploitation methodology.

As Stephens and Rosenberg [30] point out, in practice a
number of XP practices are in fact anti-learning. Simple
design and constant refactoring reduce the amount of
reflection and thinking ahead. Pair programming may

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

440

discourage an individual from working through a problem if
their partner knows how to solve it. Additionally, a customer
representative based on-site creates a single point of contact
for all the projects external knowledge needs. XP therefore
represents an extreme knowledge exploitation strategy that
relies on already skilled programmers and knowledgeable
customer representatives to be successful. In the next
section we will update the XP process by adding a new phase
that represents the Exploration phase.
4) XP has limited scope of applications.

XP regards a software development project as a system of
four control “variables”: Cost, Time, Quality and Scope. A
special problem arises when scope [14] is increased and time
shall be fixed (schedule). Because you cannot control
effectively with cost and quality, XP prevents this situation
XPDSS can increase the awareness of the scope by using a
framework for DSS techniques.

D. XPDSS
This review of theory and practice of DSS and producing a

new methodology by applying DSS concepts may help the IS
(Information systems) developers to have a clear mind of XP
and its extended copy XPDSS, and use this methodology in
the development of many kinds of applications.

 Fig. 1. Main steps of the proposed framework

XPDSS overcomes the limitation of both Agile

Methodologies and DSS Development Methodologies. It
consists of two main phases
• Explore phase: In determining the computation power

and software requirements for any DSS software we need
to a conceptual framework for DSS that can cope with the
diverse techniques and capabilities of DSS. This can be
achieved through the conceptual capability assessment
framework for DSS (CAF-DMSS).By using this
framework we can determine to which extent of the
computation power the 3 main components of DSS.

• Exploit phase: After determining the nature and

components of the initial spike for the given DSS, it will be
easier to apply XP practices to produce the final application,
Fig. 1 shows the main steps of the Proposed Framework

• Evaluation of XPDSS: There was always a sceptical

Consideration about silver bullets [27] in software
engineering literature, also Gachet [12] [13] wonders if
there are one-size-fits-all solutions for DSS applications.
Therefore it is not easy to say that the new methodology
XPDSS is typically relevant to DSS. However, a XPDSS is
currently under exploration and investigation.

V. CONCLUSIONS

The discussion of current development approaches of DSS
illustrates the importance of the concept of evolution for DSS
development. Terms such as adaptive and evolutionary
capture the organic nature of the development of a DSS.
However there has been no research done to investigate the
DSS development by the new methodologies of SE, such as
Agile Development methodologies. The good news for both
the agile community and DSS community is that the seeds of
XP have a huge potential to thrive and prosper in the DSS
development. XPDSS which has been emerged from
combining XP and DSS is a possible seed of XP.

We have described the initial step of an ongoing research
effort towards establishing a SDM for building DSS, the next
phases of this research are in progress, it is foreseen that
integration between Agile and DSS Development
Methodologies can be broadened into a more common model
(XPDSS).

The intent of the proposed framework is not to serve as a
“silver bullet” or panacea to all DSS development problems;
instead, it provides a systematic way to develop a DSS by
making the best use of well-organized XP practices and
several mechanisms from different disciplines, such as DSS
theory. By combining XP and DSS we increase the
opportunities of applying a rich field of problem solving
concepts such as DSS, with effective practices of XP.

REFERENCES
[1] J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda and C.

Carlsson, “Past, Present and Future of Decision Support Technology,”
Decision Support Systems, 33, pp 111-126 , 2002.

[2] D. J. Power, “A Brief History of Decision Support Systems”.
DSSResources.COM, World Wide Web, [Online]. Available:
http://DSSResources.COM/history/dsshistory.html, version 4.0, March
10, 2007.

[3] C. Carlsson E. Turban, “DSS: directions for the next decade”, Decision

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

441

Support Systems, Volume 33, Issue 2, 2002, Pages 105-110 .
[4] S. Alter, “A Work System View of DSS in its Fourth Decade”,

Decision Support Systems, 38(3), 2004.
[5] Pressman, R.S, Software Engineering: A Practitioner’s Perspective,

5th edition, McGraw-Hill, New York, 2000.
[6] D. G. Gregg, U. R. Kulkarni and A. S. Vinze , “Understanding the

Philosophical Underpinnings of Software Engineering Research in
Information Systems”. Information Systems Frontiers 3(2): pp 169-183
(2001).

[7] D J. Power, Decision Support Systems Hyperbook. Cedar Falls, IA:
DSSResources.COM, HTML version, 2000, accessed on (19/8/2008)
at URL http://dssresources.com/subscriber/password/dssbook

[8] D. Arnott,” Decision Support Systems Evolution: Framework, Case
Study, and Research Agenda” (Working Paper. No. 2002/07).
Melbourne, Australia: Decision Support Systems Laboratory, Monash
University, 2002.

[9] Turban, Aronson, and Liang, Decision Support Systems and Intelligent
Systems, Seventh Edition, Prentice Hall, 2005.

[10] G. M. Maracas, Decision support systems in the 21st century. Upper
Saddle River, NJ, Prentice Hall, 2003.

[11] A. Gachet, "Software frameworks for developing decision support
systems: a new component in the classification of DSS development
tools." Journal of Decision Systems 12(3/4): 271-281. , 2003.

[12] A. Gachet and R. Sprague , “ A Context-Based Approach to the
Development of Decision Support Systems”, Proceedings of the
Workshop on Context Modeling and Decision Support-Paris, 2005.

[13] A. Gachet and P. Haettenschwiler, "Development Processes of
Intelligent Decision Making Support Systems”: In Intelligent
Decision-Making Support Systems (i-DMSS): Foundations,
Applications and Challenges, Springer pp 97-121, 2006.

[14] K. Beck, Extreme Programming Explained: Embrace Change.
Longman Higher Education 2000.

[15] P. Zarate and C. Rosenthal-Sabroux, “a cooperative approach for
intelligent decision support systems” in Proceedings of the
Thirty-First Hawaii International Conference (HICSS.1998) Volume:
5, On page(s): 72-81 vol.5 , 1998.

[16] B Arinze, “A Contingency Model of DSS Development Methodology."
Journal of Management Information Systems 8(1). pp 149-166, 1991

[17] K. B. C. Saxena, “Decision support engineering: a DSS development
methodology”. 24th Annual Hawaii International Conference on
System Sciences (HICSS'91), Los Alamitos, CA, IEEE Computer
Society Press. 1991

[18] B. Crawford, C. Castro and E. Monfroy, “ Knowledge Management in
Different Software Development Approaches”, in Advances in
Information Systems, Volume 4243 ,pp 304-313 Springer Berlin /
Heidelberg , 2006.

[19] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New
Directions on Agile Methods: A Comparative Analysis”, in

Proceedings of the 25th International Conference on Software
Engineering ICSE'03: IEEE Press, 2003.

[20] D. Cohen, M. Lindvall, and P. Costa,”An Introduction to Agile
Methods”, vol. 62. ,Elsevier, Amsterdam , 2004

[21] M. N. Aydin, F. Harmsen, K. Slooten., and R. A. Stagwee , “An Agile
Information Systems Development Method in use”. Turk J Elec Engin,
12(2), 127-138, 2004.

[22] K. Beck. et al., 'Manifesto for Agile Software Development', The Agile
Alliance, February 2001, [Online]. Available:
http://www.agilealliance.org/

[23] P. G. W.Keen and M. S. Scott Morton, Decision support systems: an
organ.izational perspective. Reading, Mass., Addison-Wesley Pub. Co.
1978

[24] T. Chau, F. Maurer and G. Melnik, "Knowledge Sharing: Agile
Methods vs. Tayloristic Methods", Twelfth International Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
pp. 302, 2003.

[25] M. Fowler and J. Highsmith. 2001. The Agile Manifesto. Software
Development Magazine. August.

[26] Sdmagazine, [Online]. Available:
http://www.sdmagazine.com/documents/s=844/sdm0108a/0108a.htm

[27] F. P. Brooks “No silver bullet. Essence and accidents of software
engineering”. IEEE Computer, 20(1), 1987.

[28] Andrew Blair, John Debenham, Jenny Edwards, “A comparative study
of methodologies for designing IDSSs”, European Journal of
Operational Research 103,277-295, 1997.

[29] B. W. Boehm: “A view of 20th and 21st century software engineering.”
ICSE 2006: 12-29 , (2006)

[30] M. Stephens and D. Rosenberg, “Extreme Programming Refactored:
The Case Against XP”, Apress , 2003.

Natheer K. Gharaibeh received his B.S. degree
(Computer Science) in 1999 from Yarmouk
University – Irbed - Jordan. In 2002, he earned his
Master Degree in Computer Information Systems
from UBFS (University of Banking and Financial
Science) - Amman. A Ph.D. was received in 2009 in
Computer Information System from UBFS – Amman.

He is employed as Assistant Professor at Ajloun
University College, Balqa Applied University in Jordan from Oct. 2009 till
now. Before that he worked as full time Lecturer in Balqa Applied University.
He also work as part-time Lecturer at Jordan University of Science and
Technology (JUST) and other Jordanian universities. He published more
than ten papers in International Conferences and Journals. His current
research interests are: Decision Support systems, Data warehouse, Data
mining, ontology and Software Engineering.

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

442

