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Abstract—Considering the nonlinear characteristic of 

components in vehicle is very important in designing the 
controller of automobile active suspension system. To show the 
importance of this effect, a nonlinear optimal control method 
is employed in this paper. At first, an optimal law is developed 
for active suspension by the states prediction of a nonlinear 
quarter car model. The states of quarter car model are first 
predicted by Taylor series expansion and then a control law is 
introduced by minimizing the local differences between the 
predicted and desired states. In this way, the well defined sky 
hook linear model is selected as the reference model to be 
tracked by the nonlinear optimal controller. In order to 
decrease the vertical accelerations and improve the behavior 
of the reference model, the sky hook model is controlled 
beforehand by the LQR method. Derived control law has an 
analytical form which is easy to apply. The simulations show 
that under the proposed controller, the car has well passenger 
comfort and safe maneuverability. 
 

Index Terms—Hydraulic dynamics, nonlinear model, 
nonlinear optimal active suspension control, quarter model, 
sky hook model. 

 

I.  INTRODUCTION  
One of the most important problems and noticeable 

industries of the world automobile manufacture is increase 
in driving qualification and also more comfort for drivers 
and passengers. Usual passive suspension systems have 
mostly concluded of hydraulic dampers and convoluted 
springs. In order to improvement the comfort of the 
passengers, passive elements must be located on its soft part. 
But in order to increase the qualification of driving, the 
springs and dampers must be selected in the kind of harder 
ones to eliminate the wheels swings and decrease the 
pitching and rolling movements. This discrepancy in 
selection the type of springs and dampers indicates that by a 
passive suspension system we cannot attain to both two 
objectives, and we must accept a compromise at this matter. 
Therefore, the suspension system needs to change the 
system specifications in a dynamic aspect according to the 
conditions of the road [1]. Various control strategies such as 
optimal control [2], nonlinear control [3], robust control [4], 
adaptive control [5] and intelligent control [6] have been 
proposed in the past years to control the active suspension 
system.  

But control approaches for active suspensions based on 
the linear assumption of vehicle model have difficulties in 
practical application for good performance. In this paper, 
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according to system requirements, an optimal nonlinear 
approach [7] is applied. The proposed controller has two 
distinguished features: firstly, it is based on continuous 
nonlinear model and can handle the model nonlinearity 
successfully. Secondly, the optimal control law provides the 
possibility of using lower control energy for achievement of 
the specified performance and also some physical limits of 
control input can be satisfied. Application of classic optimal 
control theory to the nonlinear system requires that the 
derived nonlinear two point boundary value (TPBV) 
problem or Hamilton–Jacobi–Bellman (HJB) partial 
differential equations must solve [8]. It is very difficult or 
even impossible to find an analytical solution for this 
problem. Also, numerical computation approaches are not 
easy to implement and need online dynamic optimization. 
In this paper, a new optimal predictive approach is utilized 
to design a nonlinear controller. This method, which 
employs a nonlinear continuous time dynamic model, leads 
to an analytical closed form control law which is suitable to 
implement. 

 

II. QUARTER MODEL WITH HYDRAULIC ACTUATOR 

A. Nonlinear Model 
The quarter car model shown in Fig. 1 will be used to 

design active suspension controllers. In Fig. 1 the sprung 
mass, sm  represents the car chassis, while the unsprung 
mass, usm , represents the wheel assembly. The parameters 

sk  and sb  are the suspension stiffness and the damping rate 
of the suspension that are placed between the car body and 
the wheel assembly, while the spring, tk  serves to model the 
compressibility of the pneumatic tire. The variables sx , usx  
and r  are the car body travel, the wheel travel and the road 
disturbance, respectively. The force sf  that is applied 
between the sprung and unsprung masses is generated by 
means of a hydraulic actuator placed between the two 
masses. Hence, s Lf AP=  where LP  is the pressure drop 
across the hydraulic actuator piston and A  is the piston area. 
The hydraulic actuator considered here is a four-way valve-
piston system, see [9] for more details. As shown in [10] the 
rate of change of LP  is given by 

( )
4

t
L tp L s us

e

V P Q C P A x x
β

= − − −& & &                       (1) 

where tV  is the total actuator volume, eβ  is the effective 
bulk modulus, Q  is the load flow and tpC  is the total piston 

leakage coefficient of the piston. In addition, the servo 
valve load flow equation is given by 
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( )s v L
d v

P sign x P
Q C wx

ρ
−

=                                  (2) 

where dC  is the discharge coefficient, w  is the spool valve 

area gradient, vx  is the valve displacement from its ”closed” 
position, ρ  is the hydraulic fluid density and sP  is the 
supply pressure. However, since we want to include the 
possibility of the term ( )s v LP sign x P−  becoming negative, 
we replace (2) with the corrected flow equation: 

( ) ( )s v L
s v L d v

P sign x P
Q sign P sign x P C wx

ρ
−

= −⎡ ⎤⎣ ⎦              (3) 

Finally, the spool valve displacement is controlled by the 
input to the servo valve u , which could be a current or a 
voltage. The valve dynamics are approximated by a linear 
filter with time constant τ .This is a good approximation if 
the frequency is not too high, and it is regularly used by 
active suspension designers in industry. The steady-state 
gain is taken to be one: 

( )1
v vx x u

τ
= − +&                                         (4) 

where τ  is the time constant. 

 
Fig. 1. Quarter car model 

In the modeling phase of the control design several 
specifications are used. The suspension structure is defined 
by the dynamics of the nonlinear components. The 
performance demands for ride comfort, road holding and 
suspension deflection are taken into consideration. The 
trade-off between performance specifications is defined by 
a nonlinear function. The force equations of the quarter-car 
model are 

( )
s s s

us s s t

m k b s

m k b k s

F F F f

F F F F f

= + +

= − + + +
              (5) 

Where the forces from the sprung mass acceleration and 
the unsprung mass acceleration, the suspension damping 
force, the suspension spring force, the tire force, 
respectively, are as follows 

( ) ( )( )
( ) ( )
( )

3

.

s

us

s

s

t

m s s

m us us

l nl
b s us s s us s us s us s

l nl
k s us s s us s

k t us

F m x

F m x

F b x x b x x sign x x x x

F k x x k x x

F k x r

=

=

= − + − − − −

= − + −

= −

&&

&&

& & & & & & & &         (6) 

Here, parts of the nonlinear suspension damping sb  are 
l
sb , 

nl
sb . The 

l
sb  coefficient affects the damping force 

linearly while 
nl
sb  has a nonlinear impact on the damping 

characteristics. Parts of the nonlinear suspension stiffness 

sk  are a linear coefficient 
l
sk  and a nonlinear one, 

nl
sk . 

The state variables are defined to be 1 sx x= , 2 sx x= & , 

3 usx x= , 4 usx x= & , 5 Lx Pμ= , 6 vx x= . Observe that 

the pressure drop LP  has been scaled by a constant μ  

which was taken to be 610− , the objective of this scaling 
being to improve numerical conditioning during control 
design and closed-loop simulation. Then, the nonlinear 
state-space model for the quarter car dynamics can be 
written as 

( ) ( )( ),X t f t X t Bu Dr= + +&                                  (7) 

In this paper, we assume that the suspension deflection 
limit is 8cm±  and that the maximum spool valve 

displacement is 0.01cm± . The parameter values are taken 
from reference [10] and are listed in Table I. 
 

TABLE I: PARAMETERS OF THE QUARTER CAR MODEL 
290sm kg=  16812l

sk N M=  1000l
sb Ns M=  

59usm kg=  9 5/ 2 1/ 21.545.10 N m kgγ =  500nl
sb Ns M=

11sβ −=  
1
30

sτ =  10342500sP pa=

500tb Ns M=  16812nl
sk N M=  4 23.35.10A m−=

 

B. Sky Hook Model 
In this paper we need a reference model and desired 

states. The model considered as reference is the skyhook 
model presented by Karnop for the first time. This model 
contains a virtual concept and doesn’t exist in reality. In 
previous works, this Model has been considered as a 
reference Model, singularly [11]. In Fig. 2, the Sky Hook 
Model has been shown. Equations of this Model are written 
in the form of state space as the following equation. 
Choosing the state variables as in (8) the state space 
representation of the Sky Hook Model can be written as 
Equation (9): 

( ), , ,Y r y y y y yus us us s s= − −& &                              (8) 

[ ]

[ ]

1 2
1 ( )2 1 3 2

3 2 4
1

4 4 3

y r y

y k y k y b r y ut s tmus
y y y

y b y k y us sms

= −⎧
⎪
⎪ = − + − −
⎪⎪
⎨ = −⎪
⎪

= − + +⎪
⎪⎩

&&

&&

&

&

                (9) 

 
Fig. 2. Sky Hook Used as Reference Model 

International Journal of Machine Learning and Computing, Vol. 2, No. 4, August 2012

356



III. ACTIVE SUSPENSION DESIGN 

A. Optimal Controller Design for the Sky Hook Model 
In this Article, the controlled model of sky Hook is 

considered for more decrease the vertical acceleration, as 
reference model, and consequently through definition the 
desired states based on the controlled model of Sky Hook, 
non-linear model of automobile suspension, follows the 
behavior of controlled linear model. The equations in state 
space for the sky hook can be written as: 

( ) ( )Y t AY t Bu Dr= + +& &                                    (10) 

Using linear optimal control theory 

U KY= −                                                 (11) 

B. Nonlinear Optimal Controller Design for Nonlinear 
Model 

The main goal of the control system is to make the actual 
state nx  ( 1, 2,..., 4n = ) to follow the desired state ndx . Briefly, 
the states for the next time interval, ( )nx t h+ , is first 
predicted by Taylor series expansion and then the current 
control u  will be found based on continuous minimization 
of predicted tracking error. Note that h denotes to the 
predictive period and is a real positive number. Let us first 
approximate ( )nx t h+  by a k th-order Taylor series at t : 

( ) ( ) ( ) ( ) ( ) ( )
2

...
2! !

k
k

n n n n n
h hx t h x t hx t x t x t

k
+ = + + + +& &&           (12) 

Now, the key issue is to choose the order k  in a way 
which is suitable for the purposes of controller design on 
the basis of predictions. The expansion order k is 
determined as the lowest order of the derivative of state nx  
in which the input u  first appears explicitly. Hence, state 
vector ( )X t h+  is as follows: 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )1
1 2, , , ,..., ,kX t h L t X t W t W t W t L t X t u t−+ = +& (13) 

Note that the arguments of functions may be frequently 
dropped through the rest of paper for simplicity of notations. 
Now, we consider a performance index that penalizes the 
next instant tracking error and the current control 
expenditure in the following form: 

( ) ( ) ( )( ) ( ) ( )( ) ( )21 1[ ]
2 2

T
d dJ u t X t h X t h Q X t h X t h Ru t= + − + + − + +

  (14) 
where the matrix Q  is symmetric positive semi-definite, R  
is symmetric positive definite and dX  is desired states 
vector. Minimization of the performance index must be 
sought in order to improve the tracking accuracy of states at 
the next instant and consequently obtain the optimum 
behavior of the vehicle. We can expand the desired states in 
the same manner as we did before: 

( ) ( ) ( ) ( ) ( ) ( )
2

...
2! !

k
k

nd nd nd nd nd
h hx t h x t hx t x t x t

k
+ = + + + +& &&         (15) 

Now, the expanded performance index can be obtained as 
a function of control input by substituting Eq. (13) into (14) 
as: 

( ) ( ) ( ) ( )2
1 2 1 2

1 1[ ]
2 2

T
d dJ u t L L u X Q L L u X Ru t= + − + − +            (16) 

The necessary condition for optimality is 

( )2 1 20 T
d

J L Q L L u X Ru
u

∂ = = + − +
∂

                         (17) 

which, leads to 
( ) ( )1

2 2 2 1
T T

du L QL R L Q L X
−

= − + −                        (18) 

It is considered that the analytically defined predictive 
control law Eq. (18), is a closed form which depends on the 
states of the system and disturbance input. Generally, the 
proposed control law has two free parameters: the 
predictive time h and the weighting matrix Q and R. The 
dynamic performance of the controller is extremely 
sensitive to the values of these parameters. In the derived 
control law, the predictive period h  is treated as a 
controller parameter rather than the integration step size. 
Also, it can be established that a certain degree of 
robustness in the presence of some modeling uncertainties 
is achievable through small values of h . We see that the 
proposed tracking controller technique naturally leads to a 
special case of feedback linearization. But the current 
control law (18) has some important advantages over the 
input/output linearization control. It can be established that 
the predictive controller is robust in the presence of a class 
of modeling uncertainties and doesn’t need the exact 
knowledge of the system nonlinearity unlike the feedback 
linearization. Optimal property of the proposed control law 
is another important advantage that provides the possibility 
of limiting the control effort by regulation of weighting 
matrix Q and R. 

 

IV. SIMULATION AND DISCUSSION 
Computer simulations are carried out to verify the 

effectiveness of the designed nonlinear optimal control 
system. Matrix Q  and R  and the predictive period h  of 
the Nonlinear Optimal control are accurately regulate for 
the computer simulations. Let the set of typical road 
disturbance be in the form of 

( )
( )( )1 cos 8 0.5 0.75

1 1.25
0

a t t

r t b t
otherwise

π⎧ − ≤ ≤
⎪⎪= ≤ ≤⎨
⎪
⎪⎩

                           (19) 

where a  and b  denote the bump amplitude (Fig. 3). This 
type of road disturbance has been used by [12] in their 
studies.  

 
Fig. 3. Typical road disturbance 
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In order to fulfill the objective of designing an active 
suspension system i.e. to increase the ride comfort and road 
handling, there are two parameters to be observed in the 
simulations. The two parameters are the car body 
acceleration and the wheel deflection. Fig. 4 shows the 
suspension travel of controller for active suspension system 
and passive suspension system for comparison purposes. 
The result shows that the suspension travel within the travel 
limit i.e. 8cm±  and the result also shows that the active 
suspension utilizing the proposed controller, tracked 
reference model properly. Fig. 5 illustrates clearly how the 
proposed controller, can effectively absorb the vehicle 
vibration in comparisons to the passive system. The body 
acceleration in the proposed control design system is 
reduced significantly, which guarantee better ride comfort. 
In this paper, the peak values of the vertical acceleration are 
also presented. These values indicate the maximum 
magnitudes of the related acceleration experienced by the 
vehicle body or passenger. The peak values are calculated 
as: 

 
( )max 1,...,iX x i n

∞
= =                               (19) 

 
Here, .

∞
 is the ∞ -norm. Peak values for the vertical 

acceleration are depicted in Fig. 6. As seen, the peak values 
are substantially decreased by the proposed controller.  

 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 4. The suspension travels: (a) passive suspension, (b) Active 
suspension by nonlinear optimal controller, (c) Sky Hook Model. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. The body accelerations: (a) passive suspension, (b) Active 
suspension by nonlinear optimal controller, (c) Sky Hook Model. 
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Fig. 6. The peak values for vertical accelerations 

 

V. CONCLUSION 
An automotive suspension supports the vehicle body 

(sprung mass) on the axles (unstrung mass) and has the 
following three basic tasks: 

1. To isolate a car body from road disturbances in order 
to provide good ride Quality. 

In general, ride quality can be measured by the vertical 
acceleration of the passenger’s locations. Roll and pitch 
accelerations are not important to improve ride quality even 
though they are critical quantities for handling issues. Ride 
quality is very subjective, however, many experimental tests 
have shown that is closely correlated with the acceleration 
level and frequency distribution, particularly in the low 
frequency range (1 - 10 Hz). 

2. To keep good road holding and handling on a rough 
and bumpy road, a winding road, and maneuvers of 
acceleration lane change and braking. 

It is difficult to quantify handling issues because they are 
subjective. The easiest quantity is road holding which is 
represented by the tire deflection. Road holding is easier to 
quantify and is related to the variations in the normal forces. 
Tire force variations are directly related to tire deflections, 
reducing tire deflection results in improved traction, braking 
and cornering. 

3. To support the vehicle static weight. 
This task is measured by the suspension deflection (rattle 

space) and depends on the type of suspension used. 
According to these aims, an optimization law is 

developed for suspension system control based on the states 
prediction of a nonlinear quarter car model. The proposed 
control law minimized the states tracking errors and led to a 
special case of feedback linearization. The main features of 
the proposed controller are as follows. 

1) The controller is based on a nonlinear model and 
can handle the model nonlinearity successfully. 

2) The proposed optimal nonlinear control law is given 
in an analytical form which is easy to implement 
and the online optimization is not necessary. 

3) The simulation results indicate that a stable and safe 
dynamic behavior through reduced body 
acceleration can be achieved when the proposed 
optimal controller is applied. 

The proposed control design shows good performances, 
through time simulation performed on a nonlinear model. 
Hence this new active strategy exhibits significant 
improvements on the achieved performances. Moreover, 
proposed controller compared to passive suspension. The 
simulations suggest that the proposed controller is an 
excellent option for active suspension system. 
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