
  

  
Abstract—Several prominent philosophers of science 

(Cartwright [2], Dupré [3], Hausman [8], [9], Hitchcock [10]) 
pose a problem for the probabilistic theory of causally called the 
unanimity theory. In this paper, I focus on Hitchcock’s criticism 
of the unanimity theory. I critically examine Hitchcock’s 
argument against the unanimity theory. After introducing the 
desirable features of the unanimity theory, I show that the 
unanimity theory too does the same job Hitchcock’s theory is 
intended to do. I conclude that the criticism of the unanimity 
theory on the contrary reveals the versatility of the unanimity 
theory some philosophers of science and some computer 
scientists ([17], [21]) do not notice. 
 

Index Terms—Binary, causality, contrast, disjunctive factors, 
ternary, population, probabilistic theory, unanimity.  
 

I. INTRODUCTION 
Several leading philosophers of science (Cartwright [1]) 

have developed probabilistic theories of causality in 40 years. 
Suppes [21] and Good [7] championed probabilistic analyses 
of causality. Inspired by their analyses, Cartwright [1], 
Skyrms [18], Eells and Sober [4], and Sober [19] developed 
the probabilistic theory of causality. In particular, Eells [5] 
significantly articulated it, which is called the unanimity 
theory. Two features of the unanimity theory are worth 
noticing. First, the probabilistic theory of causality explicates 
a causal role of a factor X for another factor Y always relative 
to population P exemplifying a kind or type. The causal role 
of X for Y is different depending on what population (strictly 
speaking, population kind or type) we are considering (Eells 
[5]). For example, smoking may be a positive causal factor of 
lung cancer in population P exemplifying middle age, while 
smoking may be a neutral or negative causal factor of lung 
cancer in population P exemplifying all features of human 
beings. Second, the probabilistic theory of causality assesses 
causal significance of X for Y in each of the background 
contexts relative to population P.  

A formally intriguing but uneasy criticism has been raised 
of the probabilistic theories of causality. This criticism, 
which might be seemingly devastating to the probabilistic 
theories of causality, is due to the problem of disjunctive 
factors. In order to assess the causal significance of a 
medicine for patients’ recovery, a medical team divides the 
study group of patients into three treatment groups, and in 
turn provides the first group with placebo A, the second 
group with a moderate dose B and the third group with a 
strong dose C. Suppose that the probability of recovery Y 
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given each of A, B, C is as follows: Pr(Y｜A) = 0.2, Pr(Y｜
B) = 0.4, Pr(Y｜C) = 0.9. The medical team wants to know 
whether the moderate dose B is a positive causal factor for the 
patients’ recovery Y. This example is introduced by 
Hitchcock [8] who slightly modifies the original example 
Humphreys [10] first presented. According to the 
probabilistic theories of causality, the medical team compares 
the probability of Y in the presence of B, i.e., Pr(Y｜B), with 
the probability of Y in the absence of B, i.e., Pr(Y｜–B) in 
which ‘–’ refers to ‘negation’. Since –B, the absence of B, is 
equivalent to a disjunctive factor A v C (in which ‘v’ refers to 
‘or’), the medical team needs to assess the probability of Y in 
the presence of A v C, i.e., Pr(Y｜A v C). In computing 
Pr(Y｜A v C), each disjunct, A and C, of the disjunctive 
factor A v C confers different probabilities on the factor Y. 
The problem then arises of how one identifies a single 
causally significant probability of the factor Y in the presence 
of the disjunctive factor A v C. Hitchcock [10] introduces two 
problems due to the problem of disjunctive factors, and 
argues that the probabilistic theories of causality cannot meet 
them. Humphreys [10], as far as I know, first posed the 
problem of disjunctive factors and the two problems due to it 
for the probabilistic theories of causality. Suppose that Pr(A) 
is equal to Pr(C). Then, Pr(Y｜–B) = [Pr(A) Pr(Y｜A) + 
Pr(C) Pr(Y｜C)] / [Pr(A) +Pr(C)] = [(0.5) (0.2) + (0.5) (0.9)] 
/ [(0.5) + (0.5)] = 0.55. So Pr(Y｜B) < Pr(Y｜–B), which tells 
us that B is a negative causal factor for Y. Hitchcock [10] 
claims that this casual claim conflicts with our intuition that 
the moderate dose has positive causal significance for 
patients’ recovery. This is the first problem the probabilistic 
theories of causality confront. Again, suppose instead that 
Pr(A) is 0.6 and Pr(C) is 0.1. Then, contrary to the previous 
case, B is now a positive causal factor for Y since Pr(Y｜B) > 
Pr(Y｜ –B). Thus what causal significance B has for Y 
depends on the ratio of Pr(A) to Pr(C). Hitchcock [10] finds 
it odd that the objective causal significance of B for Y 
depends on the ratio of Pr(A) to Pr(C). This is the second 
problem he raises for the probabilistic theories of causality. 
Hitchcock [10] further argues that the unanimity theory, 
which is founded on the binary contrast, cannot convey 
information about complex relations of causal relevance such 
that, as doses of medicine change, so does the probability of 
patients’ recovery change. Hitchcock claims that ternary 
contrast instead should be considered not only to meet the 
problem of disjunctive factors but also to explicate the 
complex relations of causal relevance. Inspired by Holland 
[9], Hitchcock claims that B is, with regard to Y, contrasted 
not with –B but with a specific alternative to B, which is the 
ternary contrast. He compares Pr(Y｜B) and Pr(Y｜A), and 
Pr(Y｜B) and Pr(Y｜C), which are the ternary relations. B is 
a positive causal factor for Y relative to A, Pr(Y｜B) > Pr(Y｜
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A), whereas B is a negative causal factor for Y relative to C, 
Pr(Y｜B) < Pr(Y｜A). We also see that as doses of medicine 
change, so does the probability of patients’ recovery change: 
Pr(Y｜A) < Pr(Y｜B) < Pr(Y｜C). Hitchcock formally 
generalizes these complex relations of causal relevance in 
terms of a conditional probability distribution function f(x) = 
Pr(Y｜X = x) where X is a random variable standing for 
doses of medicine. Y is of course also a random variable. In 
this example, Hitchcock considers only two cases of effect, 
i.e., recovery and none- recovery, so that Y has only two 
values 1 and 0. The ternary theory introduces a conditional 
probability distribution function fi(x) = Pr(Y = y｜X = x & 
Ki), and contrasts different values of the random variable X 
with regard to values of a random variable Y. “i ”of  fi(x) 
represents each i of the background contexts Ki, so that the 
function fi(x) may have different shapes, depending on what 
background context it is relative to. The ternary theory 
(Hitchcock [10]) is a generalization of Holland’s [11] 
interpretation of causal relevance such that X is a positive, 
negative, or neutral cause of Y with respect to an alternative 
to X. Suppose that the values of the random variable X are 
doses of medicine determined as the result of a random 
experiment, values of a random variable Y are recovery or 
non-recovery, and the random experiment is relative to, for 
example, a background context K2. If the probability of Y 
given X = 2 (e.g., a moderate dose of medicine) is greater 
than the probability of Y given X = 1 (e.g., a placebo), then X 
= 2 tends to cause Y when compared with X = 1. If the 
probability of Y given X = 3 (e.g., a strong dose of medicine) 
is greater than the probability of Y given X = 2, then X = 3 
tends to cause Y when compared with X = 2. Thus the ternary 
theory allegedly meets the two problems by showing that the 
moderate dose of medicine is a positive causal factor for the 
patients’ recovery without depending on Pr(X1) and Pr(X3). 
Hitchcock goes further. The function fi(x) has a shape of 
probability increasing relative to the background context K2 

such that f2(l) < f2(2) and f2(2) < f2(3), assuming that f2(1) = 
Pr(Y｜X = 1 & K2) = 0.2, f2(2) = Pr(Y｜X = 2 & K2) = 0.4 
and f2(3) = Pr(Y｜X = 3 & K2) = 0.9. y of Y=y, which represents 
different non-negative values of the random variable Y, will not 
appear in f2(x). For, in this example, Hitchcock considers only two 
cases of effect, i.e., recovery and none- recovery, so that Y has only 
two values 1 and 0. If the above random experiment is relative 
to another background context, then fi(x) may have a shape of 
probability decreasing or a shape of probability not changing. 
The relations, f2(l) < f2(2) and f2(2) < f2(3), convey the 
information about the function fi(x) such that the probability 
of Y increases from X = 1 through X = 2 to X = 3. Hitchcock 
[8] claims that only the ternary theory conveys the 
information about the function fi(x), and is superior to the 
unanimity theory.  

In this paper I shall first introduce the probabilistic theory 
of causality which is called the unanimity theory. Second, I 
shall show how the unanimity theory too conveys the 
information about the complex relations of causal relevance 
the ternary theory is intended to do. Third, I shall argue that 
the unanimity theory and the ternary theory both carve up the 
same causal structure in two formally different but 
conceptually consistent ways, while revealing the desirable 

feature of the unanimity theory. 

II. THE PROBABILISTIC THEORY OF CAUSALITY: THE 
UNANIMITY THEORY1 

A type-level relation between a factor X and another factor 
Y expresses causal tendency of a factor X for another factor Y. 
A question arises about what it means to say that X has causal 
tendency for Y. The basic idea of theories of probabilistic 
causation is that causal tendency is explicable in terms of 
probabilistic relevance, that is, the comparison between the 
probability of Y in the presence of X and the probability of Y 
in the absence of X. The probabilistic relevance indicates that 
causal tendency of X for Y should be relative to “some 
individual, individuals, or population” (Eells [5]). For, 
whatever an interpretation of probability may be, we cannot 
consider probability values without applying the (conditional) 
probability to a population. The relativity of probability 
values to populations allows us to consider the relativity of 
probabilistic relevance to populations, and of causal tendency 
to populations. The basic idea of type-level theories of 
probabilistic causation is “A property-level probabilistic 
causal claim must be made relative to a particular, token, 
population”(Eells [5]).  

What does it mean to say that causal tendency of X for Y is 
relative to a population? It means that causal tendency of X 
for Y “can vary from population to population and from 
individual to individual” (Eells [5]). In order to understand 
this answer, we need to notice that the token population must 
be considered as the relevant token population of “a certain 
given kind”: “A token population is always a token of many 
types, or kinds, and the kind of causal significance a factor X 
for a factor Y, in a population P, can depend on what kind, Q, 
of population we think of P as exemplifying” (Eells [5]). This 
point comes from the fact that “probability values can depend 
on what kind we associate with a given population”; more 
strictly speaking, the fact that probability values are 
explicated in terms of “frequencies in hypothetical 
populations of the relevant kind” (Eells [5]).  

Consider an actual population P. We can consider the 
population P as the result of an experiment that could be 
repeated. Suppose that we are concerned with Pr(Y｜ X) and 
Pr(Y｜-X) in the experiment. The experiment can proceed as 
follows. Let us provide a set of individuals in the population 
P with a certain “distribution of initial conditions” (Eells [5]). 
The initial conditions are “factors that are causally relevant to 
the way individuals in P are, with respect to having or 
lacking” the factors X and Y. The factors X and Y are not the 
members of these initial conditions. If there are k initial 
conditions, e.g, I1, … , Ik, then a distribution of initial 
conditions has the frequencies of the 2k possible 
combinations of Ik’s and - Ik’s. A distribution of initial 
conditions is called “an experimental set-up,” which gives 
the individuals in the population P “propensities of various 
strengths to have or lack” the factors X and Y. If we repeat the 
experiment under the experimental set-up, then we 
“distribute these conditions in exactly the same way, in a 
(possibly) different population of individuals” (Eells [5]).  So 

 
1 This section is excerpted from Kim [14].  
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the result of the experiment is the resulting conditional 
frequencies that involve X and Y in P. The resulting 
conditional frequencies are supposed to be different from one 
experiment, or hypothetical population, to another 
experiment, or another hypothetical population, assuming 
that indeterminism holds in the world. That is, these 
propensities will be different “from individual to individual, 
depending on which of the initial conditions are present and 
absent in the individuals” (Eells [5]). The distribution of 
initial conditions is a kind or type Q population P 
exemplifies.  

What is important is that the probability of Y in the 
presence of X and the probability of Y in the absence of X are 
different, depending on which kind or type Q a population P 
is considered as exemplifying, in other words, under which 
set of initial conditions, or which experimental set-up an 
experiment is repeated. Consider, for example, the 
probability of a coin coming up with a head when it is tossed. 
Then, the coin tossing is an experiment that is endowed with 
a distribution of initial conditions, e.g., I1, … , Ik. Let 20 trials 
on which a coin is tossed be an actual population P. We can 
envisage the sequence of hypothetical populations, P1(=P), 
P2, …, Pn, that would result from conducting the experiment 
finitely many times. Then, the resulting conditional 
frequencies of a coin coming up with a head when it is tossed 
are expected to be different from a hypothetical population 
(e.g., P1) to another hypothetical population (e.g., P2). Note 
that the probability of a coin coming up with a head on a coin 
tossing is identified with the average hypothetical relative 
frequency of a coin coming up with a head on a coin tossing 
across infinitely many different experiments (infinitely many 
finite frequencies P1(=P), P2, …) of the random experiment 
setting Q, that is, across infinitely many different 
experiments endowed with a set of initial conditions, i.e., a 
kind or type Q. (The average hypothetical relative frequency 
is intended to indicate a modality of causal tendency by 
washing out the effect of accidental coincidences in an actual 
and single population.) What is important is that the token 
populations P1(=P), P2, …, Pn are considered as 
exemplifying a kind or type Q, i.e., a distribution of the initial 
conditions. On the other hand, consider a different set of 
initial conditions, e.g., J1, … , Jm, and associate it with the 
above infinitely many different experiments, P1(=P), P2, …. 
The different set of initial conditions is a different kind or 
type Q* the token populations, P1(=P), P2, …, Pn, exemplify. 
That is, the infinitely many finite frequencies, P1(=P), P2, …, 
have both Q and Q*. Then, the probability of a coin coming 
up with a head on a coin tossing is expected to be a different 
average hypothetical relative frequency of a coin coming up 
with a head on a coin tossing across infinitely many different 
experiments (infinitely many finite frequencies P1(=P), 
P2, …) of the different random experiment setting Q*. Thus, 
the conditional probability values, which are interpreted as 
hypothetical relative frequencies, depend on which set of 
initial conditions, or which population type a population is 
considered as exemplifying.  

The relativity of the (conditional) probability values to a 
population exemplifying a kind or type allows us to consider 
the relativity of probabilistic relevance to a population (i.e., 
the probability of Y in the presence of X and the probability of 

Y in the absence of X relative to a population P exemplifying 
a type or kind Q), which is intended to explicate causal 
tendency of X for Y. Consider an example of causal tendency 
of smoking for lung cancer relative to a population P. Then, 
we can consider two different kinds or types Q and Q*, i.e., 
two different sets of initial conditions, or two different 
experimental settings. Consider, for example (Eells [5]), the 
actual human population that exemplifies both the kind 
human Q and the more complicated kind Q* described as 
everyone’s actual causal conditions. Then, relative to the 
token population of Q, smoking is a positive causal factor for 
lung cancer in the token population. But relative to the token 
population of Q*, smoking is a negative or neutral causal 
factor for lung cancer in the token population. Thus, causal 
tendency of smoking for lung cancer may be different, 
depending on which of the two different kinds or types Q and 
Q* the token population P is considered as exemplifying.  

Let me summarize the heart of the theory of type-level 
probabilistic causation. Type-level probabilistic causation is 
a relation among four components: a causal factor X, an 
effect factor Y, a token population P within which the first 
factor is some kind of cause of the second factor, and a kind 
or type Q that is associated with the given token population P 
(Eells [5]). 

The relativity of probability values to a population allows 
us to consider the relativity of probabilistic relevance to a 
population P of a type Q. A question arises about how 
probabilistic relevance explicates causal tendency of X for Y. 
Consider a causal claim, “Smoking, X, causes lung cancer, Y, 
relative to a population P of Q.” We can envisage that there 
are, in a population, numerous factors including smoking, X, 
(e.g., a genetic factor, polluted air and so on) causally 
relevant to lung cancer, Y. Then, the above question is 
paraphrased as follows: How can we assess causal tendency 
(or causal significance) of X for Y in a population in terms of 
probabilistic relevance?  

The theory of probabilistic causation answers this question 
as follows: In assessing causal significance of X for Y, we 
should hold fixed, in background contexts, all the factors, 
independently of X (in the sense that X is not a cause of those 
factors), causally relevant to Y. Consider, for example, 
residents in the city whose air is polluted (Skyrms [18], Eells 
[5]). In what follows, the concept of causal independence will 
be used in the same sense. They will refrain from smoking, 
since they are afraid of being exposed to both of the two 
hazard factors, that is, smoking and the polluted air. On the 
other hand, residents in the country do not hesitate to smoke, 
since they are not worried about the double hazard factors. So 
living in the country Z brings about both smoking X and 
being healthy -Y (Y: getting lung cancer). Then, even though 
smoking X does not cause the country residents’ health -Y 
(i.e., they do not get lung cancer), it is positively correlated 
with the country residents’ health. Smoking X lowers the 
probability of lung cancer Y, since smoking X is positively 
correlated with living in the country Z, which is negatively 
correlated with lung cancer Y. So it seems that the country 
residents’ smoking is beneficial to their health. But notice 
that living in the country Z plays a common causal role in 
bringing about the country residents’ smoking X and the 
country residents’ health -Y. So the relation between smoking 
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and health is a spurious correlation. Let us hold fixed living 
in the country Z (which is, independently of smoking X, 
causally relevant to getting lung cancer Y) in background 
contexts: Pr(Y ｜ X&Z) > Pr(Y ｜ -X&Z) and Pr(Y ｜

X&-Z) > Pr(Y ｜ -X&-Z). Then, positive probabilistic 
relevance of X to -Y disappears in the subpopulation Z, and X 
is positively probabilistically relevant to Y.   

                                                           
                           X                   +                    −Y 

                                                                 − 

                                         

                                   + +                  ++                                                  

                                                 Z 
Fig.1. Common cause and spurious correlation. 

 

As the Fig. 1 indicates, spurious correlation arises when a 
third factor is correlated with a causal factor and an effect 
factor. By holding fixed the third factor (which is, 
independently of X, causally relevant to Y) in a background 
context, Pr(Y ｜ X&Z) > Pr(Y ｜ -X&Z) and Pr(Y ｜ 
X&-Z) > Pr(Y｜ -X&-Z), and we can assess true causal 
significance of X for Y. This is a crucial reason why all the 
factors, which are, independently of a factor X, causally 
relevant to another factor Y, should be held fixed in 
background contexts.  

Let me introduce a formal generalization of background 
contexts. (Eells [5]) Let all the factors, independently of X, 
causally relevant to Y, be F1, … Fn. The factors F1, …, Fn are 
supposed to be held fixed positively or negatively as follows. 
Since there are n of these factors, there are 2n ways in which 
they can be held fixed, 2n maximal conjunctions. Of these 2n 
maximal conjunctions, let K1, …, Km be conjunctions that 
have non-zero probability both in conjunction with X and in 
conjunction with –X: for i = 1, … , m, Pr(X&Ki) > 0 and 
Pr(-X&Ki) > 0. These Ki’s are called "background contexts." 
(Ibid.) Thus, the theory of probabilistic causation requires 
that all the factors, causally independent of X, causally 
relevant to Y should be held fixed in background contexts Ki. 
The unanimity theory explicates causal tendency of X for Y 
relative to a population P of a population type Q as follows: X 
is a positive, neutral or negative causal factor for Y in a 
population P of Q if and only if Pr(Y｜ X&Ki) >, =, < Pr(Y｜ 
-X&Ki) for each i.  

This inequality or equality must hold for each of the 
background contexts Ki, which is called the condition of 
“contextual unanimity.” Otherwise, X is mixed for Y. That is, 
a factor X is a mixed causal factor for a factor Y if X does not 
unanimously have positive, negative or, neutral probabilistic 
significance for Y when all the factors, independent of X, 
causally relevant to Y are held fixed in background contexts 
Ki. Thus, the unanimity theory explicates four types of causal 
relevance (i.e., positive, negative, neutral and mixed causal 
relevance) in terms of probabilistic relevance across the 
background contexts. The case of mixed causal relevance 

needs more explanation. Suppose, for example, that ingesting 
acid (or alkali) raises the probability of death. Suppose that 
among the individuals who ingest acid (or alkali), there are 
individuals who have already ingested alkali (or acid). Then, 
for them, ingesting acid (or alkali) does not increase the 
probability of death. Cartwright [1] calls this “causal 
interaction.” The case raises a question about what kind of 
causal significance theories of probabilistic causation assign 
to ingesting acid (or alkali) for death. The unanimity theory 
answers this question as follows. In the general population, 
i.e., in the whole population including those who have 
already ingested alkali (or acid) and those who have not, 
ingesting acid (or alkali) is mixed for death, while, in the 
subpopulation of individuals who have already ingested 
alkali (or acid), ingesting acid (or alkali) is a negative causal 
factor for death. Thus, the unanimity theory allows us to 
consider causal truth in subpopulations, and allows us to see 
“reversals of causal roles across subpopulations” in the above 
case (Eells [4]). If a theory of probabilistic causation claims 
that ingesting acid (or alkali) is a positive causal factor for 
death in the general population, then it will neglect crucial 
aspects of causal truth. Consider, for example, that agents are 
willing to make a decision. Then, the agents are in general 
concerned with in which of the subpopulations they are 
located. If so, then causal truth not in the general population 
but in subpopulations should guide them to make a rational 
decision. The unanimity theory provides the agents with the 
crucial aspects of causal truth in subpopulations, and can 
guide their rational decision.  

Notice how the unanimity theory explicates the reversal of 
causal role across subpopulations in the above case of 
ingesting acid (or alkali). The unanimity theory requires that 
we should hold fixed ingesting alkali (or acid) in the general 
population that combines those who have already ingested 
alkali (or acid) and those who have not. Then, we can 
conclude that ingesting acid (or alkali) is mixed for death in 
the general population. The factor of ingesting alkali (or acid) 
is called an “interactive factor.” The interactive factor is the 
factor with which a factor X interacts in the production of 
another factor Y. So the unanimity theory requires us to hold 
fixed not just positive, negative and mixed causal factors for 
Y but also the factors with which X interacts in the production 
of Y. By holding fixed the interactive factors (e.g., ingesting 
alkali (or acid)), we can assess causal significance of the 
uncombined causal factor (e.g., ingesting acid (or alkali)) for 
death: Ingesting acid (or alkali) is mixed for death in the 
general population, while it is a negative causal factor for 
death in the subpopulation of those who have already 
ingested alkali (or acid). There is a special case of causal 
interaction in which combined causal factors poses a problem 
for the unanimity theory. Notice that when X interacts with F 
with regard to Y, the interactive factor F is not always a 
positive, negative, or mixed causal factor for Y. There is the 
case in which an interactive factor F is causally neutral for Y. 
Consider, for example, that a physiological factor F is a 
neutral factor for lung cancer Y. And the physiological factor 
F is also positively causally relevant to smoking X. Smoking 
X is mixed for lung cancer Y since X interacts with F with 
regard to Y.   (See below Fig.1) 
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                X                 mixed                   Y 
                                             

                     positive                         neutral                                                  

                                       

                                             Z 

Fig. 2.  Mixed causal relevance. 

 
As we will see in a moment, an intermediate factor 

smoking X should not be held fixed. Since F is causally 
neutral for Y, it prima facie seems that, in assessing the causal 
significance of X for Y, F does not definitely need to be held 
fixed. But if F is not held fixed, then this case can conceal 
that X is mixed for Y (since X interacts with F with regard to Y) 
in assessing the causal significance of X for Y. So even 
though F is causally neutral for Y, it should be held fixed 
since X interacts with it with regard to Y (See Eells [5], for 
details). This is the crucial kind of case in which interactive 
factors should be held fixed.  

Let me summarize the unanimity theory: Relative to a 
population P of a population type Q, all the factors, causally 
independent of X (i.e., X is not a cause of those factors), 
causally relevant to Y (i.e., all the factors which are positive, 
negative, neutral, or mixed causal factors for Y) should be 
held fixed in background contexts Ki. Also, all the factors that 
are causally independent of X and with which X causally 
interacts with regard to Y should be held fixed in background 
contexts Ki. Then, X is a positive, neutral or negative causal 
factor for Y in population P of Q if and only if Pr(Y｜ 
X&Ki) >, =, < Pr(Y｜ -X&Ki) for each i. Otherwise, X is 
mixed for Y.  

At this point, it is worth noticing that the theory of 
probabilistic causation confronts a problem of circularity. In 
order to judge that one factor is positively causally relevant to 
another factor, we need to hold fixed all the factors, 
independently of the first factor, causally relevant to the 
second factor in background contexts. Thus, the causal 
relevance of the first factor to the second factor is explicated 
in terms of the causal relevance of the third factor to the 
second factor. So the theory of probabilistic causation 
confronts circularity. But two points are worth noticing. First, 
the theory of probabilistic causation is a theory of the 
“relation between probability and causation” (Cartwright [1], 
[2], Eells [5]). In other words, it is not a theory that reduces 
causation to probability but a theory about relations between 
probabilistic causal relations. Of course, a question arises 
about why causal relevance is associated with probabilistic 
relations. We already discussed an answer to this question in 
the previous section. Cartwright proposes a profound 
ontological answer to the question. Capacities associate 
causal relevance with probabilistic relations. I will discuss 
Cartwright’s accounts of capacities in chapter 2. Second, 
Skyrms [18] makes the following point. “X is a causal factor 
for Y” is characterized not in terms of X being causally 
relevant to Y but in terms of the other factors than X. So the 
circularity with the theory of probabilistic causation is not so 
vicious as it could be. 

III. SEEMINGLY MULTIPLE WAYS BUT ONE WAY OF 
CONTRAST 

The unanimity theory is also a ternary theory: it says that a 
factor X is a causal factor for another factor Y relative to a 
population P (Eells and Sober [6]). Strictly speaking, the 
unanimity theory is a quandary theory which says that a 
factor X is a causal factor for another factor Y relative to a 
population P exemplifying a kind, or type Q. Hitchcock’s 
ternary theory too is the same as the unanimity theory in that 
it too carves up causal structure relative to a population P 
exemplifying a kind, or type Q. Hitchcock did not notice how 
versatile the relativity of causal roles to population would be 
while I do. The causal significance of X for Y depends on 
which population we are considering. This is understood in 
two ways. First, a population P always exemplifies a 
population type Q. The causal significance of X for Y depends 
on which population type Q the population P is taken to 
exemplify. For example, smoking may have a positive causal 
significance for lung cancer in a population of middle-aged 
human beings. But smoking may not have positive causal 
significance for lung cancer in a population of teen-aged 
human beings. Second, a population P, in which a factor is a 
causal factor for another factor, is basically taken as a 
homogeneous subpopulation. Causal role may be different, 
depending on which subpopulation we are considering. For 
example, if X is a positive causal factor for Y in a 
homogeneous subpopulation, then X may be a negative 
causal factor for Y in another homogeneous subpopulation. If 
this causal information is true, then X is causally mixed for Y 
in a subpopulation into which the two subpopulations are 
combined. Let us see how this feature of the probabilistic 
theory of causality conveys information about the function 
fi(x) the ternary theory alone allegedly does.  

Consider, for brevity, only the three cases of the 
experiment relative to a background context K2 in terms of 
Hitchcock’s ternary theory introduced in the previous section, 
f2(1) = Pr(Y｜X = 1 & K2) = 0.2, f2(2) = Pr(Y｜X = 2 & K2) = 
0.4 and f2(3) = Pr(Y｜X = 3 & K2) = 0.9. Let X = 1, X = 2, X 
= 3 be in turn X1, X2, X3, which constitute a partition of doses 
of medicine. See Fig. 3.  

                

 
According to the unanimity theory, the relations between 

X1, X2, X3 and Y relative to the background context K2 are 
Pr(Y｜X1&K2), Pr(Y｜X2&K2), Pr(Y｜X3&K2). These three 
conditional probabilities are in turn equivalent to f2(1) = 

Y

－Y 
－Y 

－Y 

0.2 

0.4 0.9 

X1 X2 X3 

Fig. 3.  A partition of doses of medicine. 

Y
Y 
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Pr(Y｜X =1 & K2) = 0.2, f2(2) = Pr(Y｜X =2 & K2) = 0.4, 
f2(3) = Pr(Y｜X =3 & K2) = 0.9. Consider, relative to K2, a 
subpopulation whose individuals have the property of X1 or 
X2. That is, a population type of the subpopulation is X1 or X2. 
(The shaded parts in Figure 2 are the relations between X1, X2 
and Y in the subpopulation X1 or X2.)  

Let the subpopulation relative to K2 be K1
2. In the 

subpopulation K1
2, X2 is not only the absence of X1 but also 

only alternative to X1. Therefore, in the subpopulation K1
2, 

Pr(Y｜X1) < Pr(Y｜－X1), that is, Pr(Y｜X1) < Pr(Y｜X2). 
Again, consider a subpopulation whose individuals have the 
property of X2 or X3. (The shaded parts in Figure 3 are the 
relations between X1, X2, and Y in the subpopulation X2 or X3.) 

Let the subpopulation be K2
2. In the subpopulation K2

2, X3 
is not just the absence of X2 but also only alternative to X2. 
Therefore, in the subpopulation K2

2, Pr(Y｜X2) < Pr(Y｜－

X2), that is, Pr(Y｜X2) < Pr(Y｜X3). Again, consider a 
subpopulation whose individuals have the property of X1 or 
X3. (The shaded parts in Figure 4 are the relations between X1, 
X3, and Y in the subpopulation X1 or X3.) 

Let the subpopulation be K3
2. In the subpopulation K3

2, X3 
is not just the absence of X1 but also only alternative to X1. In 
the subpopulation K3

2, Pr(Y｜X1) < Pr(Y｜－X1), that is, 
Pr(Y｜X1) < Pr(Y｜X3). Let us follow the transition of the 
probability of Y from the subpopulation K1

2 through the 
subpopulation K2

2 to the subpopulation K3
2. Then it is easy to 

see that the probability of Y increases from X1 through X2 to 
X3. This conveys the information exactly about f2(x) such that 
f2(l) < f2(2) and f2(2) < f2(3). By considering each of the three 
subpopulations K1

2, K2
2, K3

2 as the third relatum, the 
unanimity theory shows that the comparison between Pr(Y｜
X) and Pr(Y｜－X) conveys the information about f2(x). 

 

IV. A TOPOGRAPHY OF PROBABILISTIC THEORIES OF 
CAUSALITY: THE VERSATILITY OF THE UNANIMITY THEORY 

Hitchcock does not notice that the unanimity theory is 
developed in the context of a three-place theory of causality: 
it says that a factor is a causal factor for another factor 
relative to a population of a certain type or kind. Therefore, 
the theory is, as it should be, sensitive to the mechanism by 
which subjects are assigned to the three treatment groups. 
This sensitivity is not an objection to the theory but rather 
clearly reveals a desirable feature of the unanimity theory. 
Several philosophers (Hausman [8], [9], Schaffer [17]), 
which have discussed what should be contrasted as causal 
relata, argue that ternary (or quandary) contrast meets several 
crucial problems with theories of causation allegedly due to 
binary contrast. They at least implicitly credit their arguments 
for quandary contrast to Hitchcock’s [10] ternary 
probabilistic theory of causality. My discussions in this paper 
may lead them to reconsider the relation between binary 
contrast and ternary contrast. At least as far as causal 
relevance is relative to population, the ternary contrast is 
founded on the binary contrast. Hitchcock does not notice 
that Eells’ solution is developed in the context of a 
three-place theory of causality: it says that a factor is a causal 
factor for another factor relative to a population of a certain 
type or kind. Therefore, the theory is, as it should be, 

sensitive to the mechanism by which subjects are assigned to 
the three treatment groups. This sensitivity is not an objection 
to the theory but rather clearly reveals a desirable feature of 
the unanimity theory. In the footnote of his paper, Hitchcock 
mentions Eells’ response to his paper, and notes that the 
unanimity theory is three-place theory. But it is interesting 
that Hitchcock disregards the desirable feature of the 
unanimity theory. Let us generalize the relation between the 
ternary theory and the unanimity theory. The unanimity 
theory and the ternary theory both explicate the same 
relations of causal relevance in each i of Ki in two different 
ways as follows. In each single background context, the 
ternary theory considers, as a third relatum, a third 
non-negative value that a random variable takes, while, in 
each single background context, the unanimity theory 
considers subpopulation as a third relatum. There is no 
conflict between the two ways. In each single i of Ki, the 
unanimity theory and the ternary theory both carve up the 
same causal structure in two conceptually different but 
consistent ways. It is worth noticing that Suppes [21] makes 
the same point. Suppes presents a quantitative probabilistic 
theory of causality as well as the probabilistic theory of 
causality. The quantitative theory is conceptually equivalent 
to the probabilistic theory of causality but different from the 
probabilistic theory of causality only in the form of analysis. 
The quantitative theory coincides with the ternary theory in 
the sense that probabilities are defined over random variables 
rather than events. The conceptually equivalent relation 
between the two theories too confirms that the unanimity 
theory coheres with the ternary theory.  

Now I shall deliver a strong message to those who 
disregard the unanimity theory in favor of Hitchcock’s 
ternary theory. Contrary to Hitchcock’s criticism of the 
unanimity theory, the unanimity theory is more versatile than 
the ternary theory. The ternary contrast compares a factor X 
and a single third factor W that is a member of the set of the 
other factors than X. But the ternary contrast cannot compare 
X and －X, even though it is intended to compare them. Since 
－X indicates a complement of a singleton set including only 
X, －X refers to any of the other factors than X (i.e., W1, W2, 
W3, … Wk), which can be disjunctively conjoined in different 
ways (i.e., W1 v W2, W1 v W3, W1 v W2 v W3, … ). This is the 
very problem of disjunctive factors, which is the one we 
should have met. Hitchcock’s theory is motivated by the 
problems with probabilistic theories of causality due to the 
problem of disjunctive factors. But Hitchcock’s theory 
cannot solve the problem of disjunctive factors per se. In the 
experimental situation of dose of medicine, the ternary theory 
clearly cannot compare B and A v C with regard to patients’ 
recovery Y since his theory does not consider a disjunctive 
factor. His theory never assesses causal significance of a 
disjunctive factor for another factor. Hitchcock would say 
that he dissolves the problem of disjunctive factors. Then his 
response is merely a rhetorical defense. Hitchcock merely 
bypasses the problem of disjunctive factors since the problem 
of disjunctive factors per se still remains intact, as far as we 
keep considering it as a genuine problem of the probabilistic 
theories of causality.  

Against my criticism of the ternary, Hitchcock would 

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

324



  

claim that the ternary theory is more versatile than the 
unanimity theory. Hitchcock [10] claims that the ternary 
theory is more practical than the unanimity theory since it 
provides information about causal significance of moderate 
dose for patients. The information helps doctors to make a 
rational decision. But the unanimity theory also provides the 
very information for doctors to do so. Hitchcock should 
notice that the information about causal significance of the 
disjunctive factor A v C for patients’ recovery too guides 
doctors to make a rational decision. As far as Hitchcock 
bypasses answering the problem of disjunctive factors per se, 
he should instead accept Eells’ solution if he agrees with my 
argument for Eells’ solution founded on the unanimity 
theory.      

Hitchcock could claim that in the above experiment 
situation causal significance of the disjunctive factor A v C 
for Y impairs our intuition that moderate dose of medicine is 
the best treatment to patients. So it could be a strategy in that 
experimental situation to bypass assessing causal 
significance of A v C for Y. But the situation is a particular 
one that meets the alleged ordinary intuition. We need to see 
that our ordinary intuition is different in the other situations. 
We should not always consider the moderate dose of 
medicine as the best treatment. Considering possibly many 
different situations, it is truly necessary to assess causal 
significance of disjunctive factors for another factor. 
Hitchcock also claimed that it is not admissible that objective 
causal significance of a factor for another factor is different 
depending on what causal significance the other factors have 
for the third factor. But causal significance of a factor for the 
third factor is different, depending on propensities 
individuals have to locate themselves in subpopulations 
exemplifying the other factors as types or kinds. The ternary 
theory too assumes populations where the relations between 
variables hold. So if we consider a general theory that holds 
for situation as many as possible, then we certainly need 
information about causal significance of disjunctive factors 
for another factor.        

 My criticism of Hitchcock’s arguments for the ternary 
theory and against the unanimity theory is worth noticing 
today. Several philosophers of science (Hausman [9], Maslen 
[15], Northcott [16], Schaffer [18]), which have discussed 
what should be contrasted as causal relata, argue that the 
ternary contrast is not only distinct from the binary contrast 
but also meets the problems with theories of causation 
allegedly due to the binary contrast. They at least implicitly 
credit their arguments for the ternary contrast to Hitchcock’s 
argument for the ternary contrast. For example, Hausman’s 
[9] formulation of causal generalizations in some 
homogeneous background contexts is as follows:  

 
“In population P, X = x* as compared to X = x’ causes 
Y” is true if and only if  
(a) in population P, Pr(Y | X = x*) > Pr(Y | X = x’) and  
(b) the probability difference in (a) is due to the causal 
inference of X = x* as compared to X = x’ in some 
causally homogeneous circumstance occupied by 
members of population P.  

 
Hausman’s formulation of causal generalizations is 

different from the unanimity theory in two ways. First, a 
factors X is replaced by a random variable X = x. Second, the 
comparison of a factor X and ~X (i.e., absence of X) does not 
exist. Instead, a value (e.g., smoking a pack of cigarettes) of a 
random variable X is compared with the other values (e.g., 
smoking two packs of cigarettes) of the variable X. Hitchcock 
[10] calls this relation of contrast the ternary relation. As 
Hausman [8], [9] mentioned elsewhere, the introduction of 
random variables and the comparison between values of a 
variable are indebted to Hitchcock’s [10] ternary 
probabilistic theory of causation. As Hitchcock argues, so 
does Hausman would claim that the two features of the 
ternary theory render his formulation of causal 
generalizations more practical, or practically more competent 
than causal generalizations founded on the unanimity theory. 
It is obvious that Hitchcock’s ternary theory and Hausman’s 
theory of causal generalizations coincide formally and 
conceptually. I can also argue that Hausman’s theory too is 
founded on the unanimity theory by showing that the 
unanimity theory conveys the same information Hitchcock’s 
ternary theory is intended to do. 

Some computer scientists, for example, Pearl [17], who 
have worked much on causality in A.I., do not notice the 
problem with the ternary contrast Hitchcock employs. My 
discussions will alert them to watch out toying with the 
ternary contrast. At least as far as causal relevance is relative 
to population, the binary contrast and the ternary contrast 
coincide and moreover, the ternary contrast is reducible to the 
binary contrast.  
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