
  

  
Abstract—Two approaches, based on linear and conic splines, 

are proposed here for vectorizing image outlines. Both of the 
approaches have various phases including extracting outlines of 
images, detecting corner points from the detected outlines, and 
curve fitting. Interpolation splines are the bases of the two 
approached. Linear spline approach is straight forward as it 
does not have a degree of freedom.in terms of some shape 
controller in its description. However, the idea of the soft 
computing approach, namely simulated annealing, has been 
utilized for conic splines. This idea has been incorporated to 
optimize the shape parameters in the description of the 
generalized conic spline. Both of the linear and conic 
approaches ultimately produce optimal results for the 
approximate vectorization of the digital contours obtained from 
the generic shapes. Demonstrations and a comparative study 
also make the essential parts of the paper. 
 

Index Terms—Vectorization, corner points, generic shapes, 
curve fitting.  
 

I. INTRODUCTION 
Vectorizing outlines of images is required in various real 

life problems including font design, cartooning, pattern 
recognition, etc. It is one of the important problems of 
computer graphics, vision, and imaging. Various 
mathematical and computational phases are involved in the 
whole process. This is usually done by computing a curve 
close to the data point set. Computationally economical and 
optimally good solution is an ultimate objective to achieve 
the vectorized outlines of images for planar objects. 

Designing and modeling some appropriate curve scheme 
[1]-[3] is one of the important phases of capturing and 
vectorizing outlines of images. It plays a significant role in 
various applications. The representation of planar objects, in 
terms of curves, has many advantages. For example, scaling, 
shearing, translation, rotation and clipping operations can be 
performed without any difficulty. Although a good amount of 
work has been done in the area [4]-[16], it is still desired to 
proceed further to explore more advanced and interactive 
strategies. Most of the up-to-date research has tackled this 
kind of problem by curve subdivision or curve segmentation.  

The proposed work is the extension of the work in [17]. 
This work is a presentation of two approaches using linear 
and conic interpolations. The linear interpolant approach is 
straight forward. However, the conic approach is inspired by 
an optimization algorithm based on simulated annealing (SA) 
by Kirkpatrick et.al [18]. It motivates the author to an 
optimization technique proposed for the outline capture of 
planar images. In this paper, the data point set represents any 
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generic shape whose outline is required to be captured. We 
present an iterative process to achieve our objective. The 
algorithm comprises of various phases to achieve the target. 
First of all, it finds the contour [19] – [22] of the gray scaled 
bitmap images. Secondly, it uses the idea of corner points [23] 
– [29] to detect corners. That is, it detects the corner points on 
the digital contour of the generic shape under consideration. 
These phases are considered as preprocessing steps. Linear 
and conic interpolants are then used to vectorize the outline. 
The idea of simulated annealing (SA) is used to fit a conic 
spline which passes through the corner points. It globally 
optimizes the shape parameters in the description of the conic 
splines to provide a good approximation to the digital curves. 
In case of poor approximation, the insertions of intermediate 
points are made as long as the desired approximation or fit is 
achieved. 

The organization of the paper is as follows, Section 2 
discusses about preprocessing steps which include finding 
the boundary of planar objects and detection of corner points. 
Section 3 is about the interpolant forms of linear and conic 
spline curves. Overall methodology of curve fitting is 
explained in Section 4, it includes the idea of knot insertion as 
well as the algorithm design for the proposed vectorization 
schemes. Demonstration of the proposed schemes as well as 
comparative study is presented in Section 5. Finally, the 
paper is concluded in Section 6. 

 

II.   PREPROCESSING 
The proposed schemes start with finding the boundary of 

the generic shape and then using the output to find the corner 
points. The image of the generic shapes can be acquired 
either by scanning or by some other mean. The aim of 
boundary detection is to produce an object’s shape in 
graphical or non-scalar representation. Chain codes [21], in 
this paper, have been used for this purpose. Demonstration of 
the method can be seen in Fig. 1(b) which is the contour of 
the bitmap image shown in Fig. 1(a). 

Corners, in digital images, give important clues for the 
shape representation and analysis. These are the points that 
partition the boundary into various segments. The strategy of 
getting these points is based on the method proposed in [23]. 
The demonstration of the algorithm is made on Fig. 1(b). The 
corner points of the image are shown in Fig. 1(c).  

 

III. CURVE FITTING AND SPLINE 
The motive of finding the corner points, in Section 2, was 

to divide the contours into pieces. Each piece contains the 
data points in between two subsequent corners inclusive. This 
means that if there are m corner points cp1, cp2, …, cpm then 
there will be m pieces pi1, pi2, …, pim. We treat each piece 
separately and fit the spline to it. In general, the ith piece 
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contains all the data points between cpi and cpi+1 inclusive. 
After breaking the contour of the image into different pieces, 
we fit the spline curve to each piece. To construct the 
parametric spline interpolant on the interval ],[ 0 ntt , we have 

m
i RF ∈ , ni ,......,1,0= , as interpolation data, at knots ti, 

ni ,......,1,0= . 
 

 
 

(a) (b) (c) 

Fig. 1. Pre-processing steps: (a) Original image, (b) Outline of the image, (c) 
Corner points achieved. 

A. Linear Spline 
The curve fitted by a linear spline is a candidate of best fit, 

but it may not be a desired fit. This leads to the need of 
introducing some extra treatment in the methodology. This 
section deals with a form of linear spline. It introduces 
parameters t’s in the description of linear spline defined as 
follows: 
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and Pi and Pi+1 are corner points of the ith piece.  

B. Final Stage 
The curve fitted by a conic spline is a candidate of best fit, 

but it may not be a desired fit. This leads to the need of 
introducing some shape parameters in the description of the 
conic spline. This section deals with a form of conic spline. It 
introduces shape parameters u’s in the description of conic 
spline defined as follows: 
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Di and Di+1 are the corresponding tangents at corner points Pi 
and Pi+1 of the ith piece. The tangent vectors are calculated as 
follows: 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−−−=

−−+−=

−−−=

−
−

+−

2
)()(2

))(1()(
2

)()(2

2
1

11

02
010

nn
nnn

iiiiiii

PPPPD

PPaPPaD

PPPPD

,     (3) 

where 

11

1

−+

+

−+−

−
=

iiii

ii
i PPPP

PP
a . 

 
Obviously, the parameters ui's, when equal to 1, provide the 
special case of quadratic spline. Otherwise, these parameters 
can be used to loose or tighten the curve. This paper proposes 
an evolutionary technique, namely simulated annealing (SA), 
to optimize these parameters so that the curve fitted is 
optimal. For the details of SA approach, the reader is referred 
to [30].  

 

IV. SIMULATED ANNEALING (SA) 
Simulated annealing (SA) [19], [30] is a global 

optimization method based on the Monte Carlo method. It 
works on the analogy of the energy in an n-body system 
where the material is cooled to lower temperatures gradually 
to result in a perfect crystal structure. The perfect crystal 
structure is attained by having minimum energy in the 
material. This analogy translates to the optimization done in 
simulated annealing in finding a solution that has the lowest 
objective function value. The solution space is all the 
possible solutions. The current solution is the present state of 
the material. The algorithm iteratively tries to change the 
state of the material and check whether it has improved. The 
material’s state is changed slightly to find a neighboring state 
i.e. a close solution value in the solution space. It is possible 
that all neighboring states of current states are worse 
solutions. The algorithm allows going to a worse state with a 
certain probability. This probability decreases as the 
algorithm iterations proceed. Finally, it only allows a change 
in state if it is strictly better than the current solution. Details 
of SA theory can be found in [19], [30] and an example applet 
can be seen in [17]. A detailed description of the mapping of 
the SA technique on the proposed problem is given in the 
next section.  
 

V.   PROPOSED APPROACH 
The proposed approach to the curve problem is described 

here in detail. It includes the phases of problem matching 
with SA using conic splines, description of parameters used 
for SA, curve fitting, and the overall designs of algorithms 

A. Problem Mapping 
This section describes about the SA formulation of the 

current problem in detail. Our interest is to optimize the 
values of conic curve parameters u such that the defined 
curve fits as close to the original contour segments as 
possible. We use SA for the optimization of these parameters 
for the fitted curves. Hence the dimensionality of the solution 
space is 1 for conic curves. Each state in the SA solution 
space represents a value of u for conics.  

We start with an initial state that is a given value of u for 
conics. A starting temperature is also chosen arbitrarily. This 
temperature is an inherent internal parameter of SA and has 
no significance or mapping on our problem. The algorithm 
maintains a record of the best state ever reached throughout 
the algorithm run. This is the value of u for conics that has 
given the best curve fitting so far. This best solution gets 
updated whenever the algorithm finds a better solution. The 
algorithm iteratively looks for neighboring states that may or 
may not be better than the current one. These neighboring 
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states are values of u for conics that are slightly different from 
the values of u for conics. The cooling rate in SA is the factor 
affecting the likelihood of selecting neighboring values of u 
for conics that give a curve fitting worse than the values of u 
for conics. 

Note that we apply SA independently for each segment of 
a contour that we have identified using corner points. SA is 
applied sequentially on each of the segments, generating an 
optimized fitted curve for each segment. The algorithm is run 
until the maximum allowed time is reached, or an optimal 
curve fitting is attained.  

B. Initialization 
Once we have the bitmap image of a generic shape, the 

boundary of the image can be extracted using the method 
described in Section 2. After the boundary points of the 
image are found, the next step is to detect corner points as 
explained in Section 2. This corner detection technique 
assigns a measure of ‘corner strength’ to each of the points on 
the boundary of the image. This step helps to divide the 
boundary of the image into n segments. Each of these 
segments is then approximated by interpolating spline 
described in Sections 3.2. The initial solution of spline 
parameters u values for conics are randomly selected within 
the range [-1, 1].  

C. Curve Fitting 
After an initial approximation for the segment is obtained, 

better approximations are obtained through SA to reach the 
optimal solution. We experiment with our system by 
approximating each segment of the boundary using the conic 
splines of Section 3.2.  

The conic spline method is a variation of the quadratic 
spline. It provides greater control on the shape of the curve 
and also efficient to compute. The tangents, in the description 
of the spline, are computed using the arithmetic mean method 
described in Eqn. (3). Each boundary segment is 
approximated by the spline. The shape parameter u, in the 
conic spline, provides greater flexibility over the shape of the 
curve. These parameters are adjusted using SA to get the 
optimal fit.  

Since, the objective of the paper is to come up with optimal 
techniques which can provide decent curve fit to the digital 
data. Therefore, the interest would be to compute the curve in 
such a way that the sum square error of the computed curve 
with the actual curve (digitized contour) is minimized. 
Mathematically, the sum squared distance is given by:  
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where  
Pi,j = (xi,j, yi,j),    j = 1,2,…,mi ,       (5) 

are the data points of the ith segment on the digitized contour. 
The parameterization over t's is in accordance with the chord 
length parameterization. Thus the curve fitted in this way will 
be a candidate of best fit.  

Once an initial fit for a particular segment is obtained, the 
parameters of the fitted curve u’s for conics are adjusted to 
get better fit. Here, we try to minimize the sum squared error 
of Eqn. (4). Using SA, we try to obtain the optimal values of 
the curve parameters. We choose this technique because it is 

powerful, yet simple to implement and as shown in Section 6, 
performs well for our purpose. 

D.  Segmentation Using Intermediate Points 
For some segments, the best fit obtained through iterative 

improvement may not be satisfactory. In that case, we 
subdivide the segment into smaller segments at points where 
the distance between the boundary and parametric curve 
exceeds some predefined threshold. Such points are termed 
as intermediate points. A new parametric curve is fitted for 
each new segment.  

 

VI. OVERALL APPROACHES AND ALGORITHMS 
We can summarize all the phases from digitization to 

optimization discussed in the previous sections. The 
algorithms of the proposed schemes are contained on various 
steps. Algorithm 1 of Section 6.1 explains the mechanism for 
the computation of linear curve. Curve manipulation 
methodology with conics, using SA, has been laid down in 
Algorithm 2 of Section 6.2. A more detailed description for 
conics, describing the whole system with step by step flow, is 
shown in the flowchart demonstrated in Fig. 2. 

A. Algorithm 1 for Linear Interpolant 
The summary of the algorithm, designed for optimal curve 

design using linear interpolant, is as follows:  

Step AG1.1:  Input the image.  
Step AG1.2:  Extract the contours from the image in Step 
AG1.1.  
Step AG1.3:  Compute the corner points from the contour 
points in Step AG1.2 using the method in Section 2.  
Step AG1.4:  Fit the linear spline curve method of Section 
3.1 to the corner points achieved in Step AG1.3.  
Step AG1.5:  IF the curve, achieved in Step AG1.4, is 
optimal then GO To Step AG1.8, ELSE locate the 
appropriate intermediate points (points with highest 
deviation) in the undesired curve pieces.  
Step AG1.6:  Enhance and order the list of corner and 
intermediate points achieved in Step AG1.3 and AG1.5.  
Step AG1.7:  GO TO Step AG1.4.  
Step AG1.8:  STOP.  

B. Algorithm 2 for Conic Interpolant 
The summary of the algorithm, designed for optimal curve 
design using conic interpolant, is as follows:  

Step AG2.1:  Input the image.  
Step AG2.2:  Extract the contours from the image in Step 
AG2.1.  
Step AG2.3:  Compute the corner points from the contour 
points in Step AG2.2 using the method in Section 3.2 for 
conics.  
Step AG2.4:  Compute the derivative values at the corner / 
intermediate points.  
Step AG2.5:  Compute the best optimal values of the shape 
parameters ui’s for conics using SA.  
Step AG2.6:  Fit the spline curve method of Section 3.2 for 
conics to the corner / intermediate points achieved in Step 
AG2.2.  
Step AG2.7:  IF the curve, achieved in Step AG2.6, is 
optimal then GO To Step AG2.10, ELSE locate the 
appropriate intermediate points (points with highest 
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deviation) in the undesired curve pieces.  
Step AG2.8:  Enhance and order the list of the corner / 
intermediate points achieved in Step AG2.3 and AG2.7.  

Step AG2.9:  GO TO Step AG2.4.  
Step AG2.10:  STOP.  

 
 

Fig. 2. Flowchart of the system computation of conic curves using SA. 
 

Compute Tangent 
Vectors for segment 

using Arithmetic Mean 
Method 

Start of SA to get 
Optimized values for u
for fitted curve on given

segment 
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(a) 

 
(b) 

 
(c) (d) 

 
Fig. 3. Results of linear scheme: (a) Fitted outline of the image, (b) Fitted 
outline of the image with intermediate points. Results of conic scheme: (c) 

Fitted outline of the image, (d) Fitted outline of the image with intermediate 
points. 

 
 

  
(a) (b) (c) 

 

Fig. 4. Pre-processing Steps: (a) Original Image, (b) Outline of the image, (c) 
Corner points achieved, (d) Fitted Outline of the image. 

 

 
(a) 

 
(b) 

 
 

(c) (d) 
 
Fig. 5. Results of curve fitting. linear curve fitting: (a) Fitted outline of the 

image, (b) Fitted outline of the image with intermediate points. Conic curve 
fitting: (c) Fitted outline of the image, (d) Fitted outline of the image with 

intermediate points 
 

(a) (b) 

 
(c) 

Fig. 6. Pre-processing steps for curve fitting (a) Image of a plane, (b) 
Extracted outline (c) Initial corner points. 

 
 

 
(a) (b) 

 

 

(c) (d) 

Fig. 7. Results of linear scheme : (a) Fitted outline of the image, (b) Fitted 
outline of the image with intermediate points. Results of conic scheme: (c) 

Fitted outline of the image, (d) Fitted outline of the image with intermediate 
points. 

The above mentioned schemes and the algorithms have 
been implemented and tested for various images. Reasonably 
quite elegant results have been observed as can be seen in the 
following Section of demonstrations. 
 

VII. DEMONSTRATIONS 
The proposed curve scheme has been implemented 

successfully in this section. We evaluate the performance of 
the system by fitting parametric curves to different binary 
images.  

Fig. 3 shows the implementation results of the two 
algorithms for the image “Lillah” of Fig. 1(a). Figs. 3(a) and 
3(b) are the results for the linear scheme, respectively, 
without and with insertion of intermediate points. Similarly, 
Figs. 3(c) and 3(d) are the results for the conic scheme, 
respectively, without and with insertion of intermediate 
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points. 
Figs. 4 and 5 show the implementation results of a “Tua” 

image. Figs. 4(a), 4(b), 4(c) are respectively the original 
image of the Plane, its outline, outline together with the 
corner points detected. Fig. 5 shows the implementation 
results of the two algorithms for the “Tua” image in Fig. 4(a). 
Figs. 5(a) and 5(b) are the results for the linear scheme, 
respectively, without and with insertion of intermediate 
points. Similarly, Figs. 5(c) and 5(d) are the results for the 
conic scheme, respectively, without and with insertion of 
intermediate points. 

Figs. 6 and 7 show the implementation results of a “Fork” 
image. Figs. 6(a), 6(b), 6(c) are, respectively, the original 
image of the Fork, its outline, outline together with the corner 
points detected. Fig. 7 shows the implementation results of 
the two algorithms for the image in Fig. 6(a). Figs. 7(a) and 
7(b) are the results for the linear scheme, respectively, 
without and with insertion of intermediate points. Similarly, 
Figs. 7(c) and 7(d) are the results for the conic scheme, 
respectively, without and with insertion of intermediate 
points. 

One can see that the approximation is not satisfactory 
when it is achieved over the corner points only. This is 
specifically due to those segments which are bigger in size 
and highly curvy in nature. Thus, some more treatment is 
required for such outlines. This is the reason that the idea to 
insert some intermediate points is demonstrated in the 
algorithms. It provides excellent results. The idea of how to 
insert intermediate points is not explained here due to 
limitation of space. It will be explained in a subsequent paper. 

 
TABLE I: NAMES AND CONTOUR DETAILS OF IMAGES 

Image Name # of 
Contours 

# of Contour 
Points 

# of Initial 
Corner 
Points 

 

Lillah 2 [1522+161] 14 

 

Tua 2 [1045+285] 12 

 

Fork 1 [693] 10 

 
 

TABLE II: COMPARISON OF NUMBER OF INITIAL CORNER POINTS, 
INTERMEDIATE POINTS AND TOTAL TIME TAKEN (IN SECONDS) FOR CONIC 

INTERPOLATION APPROACHES 

Image 
# of Intermediate 
Points in Linear 

Interpolation 

Total Time Taken For Linear 
Interpolation 

Without 
Intermediate 

Points 

With 
Intermediate 

Points 
Lillah.bmp 29 2.827 3.734 
Tua.bmp 19 0.5053 0.8511 

Fork.bmp 9 0.2265 0.4029 

 
Tables I, II and III summarize the experimental results for 

different bitmap images. These results highlight various 
information including contour details of images, corner 
points, intermediate points, total time taken for linear 

interpolation, and total time taken for conic interpolation.  
 

TABLE III: COMPARISON OF NUMBER OF INITIAL CORNER POINTS, 
INTERMEDIATE POINTS AND TOTAL TIME TAKEN (IN SECONDS) FOR CONIC 

INTERPOLATION APPROACHES 

Image 
# of Intermediate 
Points in Conic 
Interpolation 

Total Time Taken for Conic 
Interpolation

Without 
Intermediate 

Points 

With 
Intermediate 

Points
Lillah.bmp 14 19.485 48.438 

Tua.bmp 80 67.066 503.657 

Fork.bmp 45 32.350 221.885 

  

VIII.   CONCLUSION 
Two optimization techniques are proposed for the outline 

capture of planar images. First technique uses simply a linear 
interpolant and a straight forward method based on 
distribution of corner and intermediate points. Second 
technique uses the simulated annealing to optimize a conic 
spline to the digital outline of planar images. By starting a 
search from certain good points (initially detected corner 
points), an improved convergence result is obtained. The 
overall technique has various phases including extracting 
outlines of images, detecting corner points from the detected 
outline, curve fitting, and addition of extra knot points if 
needed. The idea of simulated annealing has been used to 
optimize the shape parameters in the description of a conic 
spline introduced. The two methods ultimately produce 
optimal results for the approximate vectorization of the 
digital contours obtained from the generic shapes. The 
schemes provide an optimal fit with an efficient computation 
cost as far as curve fitting is concerned. The proposed 
algorithms are fully automatic and require no human 
intervention. The author is also thinking to apply the 
proposed methodology for another model curve namely cubic. 
It might improve the approximation process. This work is in 
progress to be published as a subsequent work. 
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