

Abstract—In recent years, the management and processing of
data streams has become a topic of active research in several
fields of computer science such as, distributed systems, database
systems, and data mining. A data stream can be thought of as a
transient, continuously increasing sequence of data. In data
streams' applications, because of online monitoring, answering
to the user's queries should be time and space efficient. In this
paper, we consider the special requirements of indexing to
determine the performance of different techniques in data
stream processing environments. Stream indexing has main
differences with approaches in traditional databases. Also, we
compare data stream indexing models analytically that can
provide a suitable method for stream indexing.

Index Terms—Data stream, indexing, data stream
processing.

I. INTRODUCTION
Data stream and its different applications have attached

more attention in several fields of computer science, such as
distributed systems, database systems, and data mining. Data
stream can be conceived as a continuous and changing
sequence of data that continuously arrives at a system to be
stored or processed [1], [2]. Data stream has many
applications such as network monitoring, telecommunication
systems, stock markets and sensor networks.

Data Streams have different challenges in many aspects,
such as computational, storage, querying and mining.
Specifically, issues related to storing and processing data
streams in a continuous and multiple input settings, raise new
sort of challenges [3]. In a traditional database management
system, storing these input data cannot be performed in an
easy and convenient way; in contrast, data streams must be
processed in an online manner to guarantee updated
responses and fast query answering with minimum delay.
Developing data stream management is an open and active
research field [4].

Continuous queries that run indefinitely, unless a query
lifetime has been specified, fit naturally into the mold of data
stream applications. Examples of these queries include
monitoring a set of conditions or events to occur, detecting a
certain trend in the underlying raw data, or in general
discovering relations between various components of a large
real time system. The kinds of queries that are of interest
from an application point of view can be listed as follows [5]:

Manuscript received March 21, 2012; revised May 2, 2012.
Mahnoosh Kholghi is with the Department of Electronic, Computer and

IT Islamic Azad University Qazvin, Iran and Young Researchers Club,
Qazvin Branch, Islamic Azad University, Qazvin, Iran (e-mail:
m.kholghi@qiau.ac.ir).

MohammadReza Keyvanpour is with the Department of Computer
Engineering Alzahra University Tehran, Iran (e-mail:
keyvanpour@alzahra.ac.ir).

(1) monitoring aggregates, (2) monitoring or finding patterns,
and (3) detecting correlations. Each of these queries requires
data management over some history of values and not just
over the most recently reported values. For example in case
of aggregate queries, the system monitors whether the current
window aggregate deviates significantly from that aggregate
in most time periods of the same size. In case of correlation
queries, the self-similar nature of sensor measurements may
be reflected as temporal correlations at some resolution over
the course of the stream. Therefore, the system has to
maintain historical data along with the current data in order to
be able to answer these queries.

There have been proposed a few indexing models
according to data stream requirements. There are few papers
concerning stream indexing. In literature we can find some
papers about sliding windows indexing over data streams [6],
[7]. A new model has been presented by Shivakumar and
Garcia-Molina that solves the sliding window problems [8].
We focus on a multi-resolution indexing architecture. The
architecture enables the discovery of "interesting" behavior
online, provides flexibility in user query definitions, and
interconnects registered queries for real-time and in-depth
analysis [5].

In the following sections, we focus on the requirements of
data stream processing and indexing. The rest of this paper is
structured as follow. Section II describes the applicability of
relational data indexing techniques in data stream
management systems. In Section III, we review data stream
indexing methods and their characteristics and challenges.
Section IV compares these methods with analytical criterions.
Section V concludes the paper.

II. THE REQUIREMENTS OF DATA STREAM INDEXING
There are various structures able to be used as an index. In

relational database management system we can find such
examples that we describe them shortly in Table I.

Indexing method analysis in environment of data stream
processing needs to take into consideration different
requirements [9]. Relations are indexed by keys; in case of
sequences, an order is imposed. But timeline domain
indexing in searching task is potentially helpful. As it’s
mentioned before, due to diverse requirements in data stream
environments, it’s not possible to directly use the general
indexing structures in those environments and only their
primitive principles are applied in defining a new structure;
because there are other measures that must be considered.

A system that manages these infinite heterogeneous data
streams must satisfy the following requirements [10]:
• Mechanism for rate control must be in place to deal with

data streams that are nearly always too fast for any
indexing system.

Comparative Evaluation of Data Stream Indexing Models

Mahnoosh Kholghi and MohammadReza Keyvanpour

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

257

• There must be capacity control because the data streams

are infinite while the storage space is finite.
• The structure of the data varies in time (i.e.,

heterogeneity of data streams), therefore adaptive
indexing methods must be developed.

• Data should be efficiently stored.
• Volume can be huge, therefore everything must be

appended-only; both indexing and query processing
must only use forward-only file access.

• Users can query and filter the index streams efficiently.

TABLE I: DATA INDEXING TECHNIQUES

Indexing
methods in
relational
database

management
systems

Characteristics

Applicability in
the structures of

data stream
indexing

Simple index
It is used on sorted files. Each

record of index file contains two
elements – key and pointer.

-

Indexes on
unsorted files

The both elements of the pair are
not in order. So, considering

various queries, the set of index is
needed.

-

B-tree

It has a tree-like structure
ordering data blocks into tree

structure. The tree is balanced if
length of all paths is the same

A particular kind
of it, tree, in
time index [11].

Hash index

Each pointer (address) of disk
block containing a desired record
is computed using a function (so

called hash function) and the
search key. Hash function maps

the set of all search keys to the set
of all records of blocks.

In STREAM
system [12]

Bitmap index

It provides pointers to the rows in
a table that contain a given key
value. Each bit in the bitmap

corresponds to a possible record.

In ArQss system
[8]

III. DATA STREAM INDEXING MODELS
There are various indexing models for data steams:

A. Bitmap Index Based Model
The problem of indexing continuous data streams in which

data are heterogeneous in structure can be solved with bitmap
indexing models. Such data streams arise naturally in many
real-life scenarios such as sensor networks. This index
structure uses bitmap based techniques to efficiently sketch
the structures to allow space-efficient lossless archiving of
the data stream. It also allows very fast query processing on
the archived data stream.

Data stream indexing system, ArQSS (Archiving and
Querying Sensor Streams) meets all the above requirements.
ArQSS uses an adaptive bitmap based index structure to
efficiently store incoming data readings into separate
indexing files [10]. These files can be quickly accessed by
ad-hoc user queries or stream filters. ArQSS offers a number
of tuning parameters so it can be configured to performance
optimization and controlled indexing rate. Several
optimization techniques have been proposed to automatically
configure ArQSS to achieve near-optimal performance, and a
user-specified indexing rate. The general structure of
indexing files is depicted in Fig. 1.

B. Sliding Window Based Model
There are at least three reasons why sliding window

indexes are useful [8]. The first is that application semantics
require a sliding window. A second reason is that user interest
in data may wane over time. A third reason is to reduce
storage costs.

Sliding window indexes have been in use for many years;
but the tremendous volumes of data that are today being
generated in some applications makes it worthwhile to study
these indexes carefully. Therefore, this method has two main
problems [13]: storing on disk and updated on-line.

C. Wave Indices
Several applications require indexing data of a past

window of days. For this several techniques have been
proposed to build wave indices [8]. In this method, the data of
a new day can be efficiently added and old data can be
quickly expired to maintain the required window. The main
idea is to split the index into several parts so that deletions
and insertions do not affect the entire index. Maintaining
clustered order on disk as well as temporarily storing parts of
the index in main memory is also discussed. The structure of
this model is shown in Fig. 2.

Fig. 1. The general structure of indexing files [10]

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

258

Results indicate that each of wave indexing schemes has
advantages and could be useful in some specific scenario,
depending on what the central performance metrics are and
on how much code can afford to write.

D. Time Index Model
Time index on checkpoints are a novel indexing technique

for temporal data streams which are sorted on the effective
start time attribute [11]. The index can be exploited a
processing complex temporal pattern queries (such as
multiway joins). In this approach indexes are built by
periodically checkpoint the execution of query on along the
time axis, and checkpoints are in turn indexed on their
checkpoint times. This process is shown in Fig. 3.

Conventional methods such as tree can be used for
implementing this type of indexing. For example,
checkpoints are stored at leaf nodes of a tree as variable
length records.

Fig. 3. Checkpointing a query execution and time index on checkpoints [11]

E. Multi-resolution Indexing Model
In this section, we introduce a multi-resolution indexing

architecture. Multi-resolution approach imposes an inherent
restriction on what constitutes a meaningful query. The core
part of the scheme is the feature extraction at multiple

resolutions. A dynamic index structure is used to index
features for query efficiency [14].

The key architecture aspects are:
• The features at higher resolutions are computed using the

features at lower resolutions; therefore, all features are
computed in a single pass.

• The system guarantees the accuracy provided to user
queries by provable error bounds.

• The index structure has tunable parameters to trade
accuracy for speed and space. The per-item processing
cost and the space overhead can be tuned according to
the application requirements by varying the update rate
and the number of coefficients maintained in the index
structure.

•

IV. COMPARATIVE EVALUATION OF DATA STREAMS
INDEXING MODELS

Stream indexing models can be evaluated in two distinct
ways through requirements related measures. These
evaluations are shown in Table II. Different data stream
systems have their specific and diverse features and
requirements. For evaluating indexing models that are
applied in these systems we have assumed that there is no
constant rate for input streams and consequently more data
processing is needed to answer the queries.

Based on our comparison, multi-resolution indexing
architecture model is time and space efficient and highly
improve query answering in compare with other methods.
Furthermore, this model considerably reduces the time unit
which is needed for processing each data item and also
minimizes the space needed for calculation. The structure of
this indexing has acceptable time and space complexity. This
complexity depends on updating rate and the number of
coefficients conserving factors.

Fig. 2. Basic index structures [8]

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

259

TABLE II: COMPARATIVE EVALUATION OF STREAM INDEXING MODELS
BASED ON QUALITY MEASURES

 Storage
Space

Online
Updating

Proper Storage
model

Sliding Window
Model Poor Poor Average

Timeline domain
indexing Average Good Poor

Wave Indexing Good Average Average

Bitmap Indexing
Model Good Average Good

Multi-resolution
Indexing Good Good Good

The timeline indexing models are mostly suitable for
temporary data stream management systems and they have
not proper performance to store data for a long time.

Based on evaluation measure, bitmap indexing model is an
efficient model. When streams have no constant input rate
and each tuples needs to be processed, sliding window model
does not perform well in this condition. Wave indexing
model has almost solve the problems of sliding window
model but still has low performance for storing data in
heterogeneous data stream systems whit continuous queries.

V. CONCLUSIONS
This paper focuses on challenges and requirements of data

stream indexing. Due to the nature of streaming data,
indexing models for data streams are different from those
models that are applied in relational database management
systems. These differences are rooted in infinite, dynamic
and in some cases heterogeneous nature of data streams. Each
of data streams indexing models are used in a specific system
and adapt to the requirements of those systems. Those models
which are efficient based on different performance measures
guaranty the query efficiency regarding to space and time
issues. By fully review various indexing models, in this paper
we presented a comparative evaluation of indexing models
for data streams based on significant and well-known
challenges in this field.

REFERENCES
[1] A. Das, J. Gehrke and M. Riedewald, "Approximate join processing

over data streams", in Proc. the 2003 ACM SIGMOD International
Conference on Management of Data, ACM Press, 2003.

[2] M. Garofalakis, J. Gehrke, R. Rastogi, "Querying and mining data
streams: you only get one look", in Proc. the 2002 ACM SIGMOD
International Conference on Management of Data, ACM Press, 2002.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, "Models
and issues in data stream systems", in Proc. the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on principles of database
systems, June 3-5, Madison, Wisconsin, USA, ACM, 2002.

[4] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U.
Cetintemel, Y. Xing and S. Zdonik, "Scalable distributed stream
processing", in Proc. C.I.DR-03: First Biennial Conference on
Innovative Database Systems, CA, 2003.

[5] C. Aggrawal, Data Streams: Models and Algorithms, Springer Science
Business media, LLC, 2007.

[6] L. Golab and M.T. Ozsu, "Issues in data stream management", ACM
SIGMOD Record, vol. 32, PP. 5-14, 2003.

[7] L. Golab, S. Garg, M.T. Ozsu, "On Indexing Sliding Window over
On-Line Data Streams", in Proc. 9th Int. Conf. on Extending Database
Technology(EDBT), 2004, pp. 712-729.

[8] N. Shivakumar, H. Garcia-Molina, "Wave-indices: indexing evolving
databases", in Proc. ACM SIG-MOD International Conference on
Management of Data, 1997, pp. 381-392.

[9] L. Golab, P. Prahladka and M.T. Ozsu, "Indexing the Result of Sliding
Window Queries", University of Waterloo Technical Report,
CS-2005-10, 2005.

[10] K. Q. Pu, Y. Zhu, "Efficient Indexing of Heterogeneous Data Streams
with Automatic Performance Configurations", in Proc. the 19th
International Conference on Scientific and Statistical Database
Management, 2007.

[11] T. Y. Cliff Leung, Richard R. Muntz, "Generalized Data Stream
Indexing and Temporal Query Processing", Research Issues on Data
Engineering: Transaction and Query Processing, Second Int.
Workshop, 1992.

[12] B. Shivnath, Adaptive Query Processing in Data Stream Management
Systems, Ph.D. Thesis, University of Stanford, Sep. 2005.

[13] M. Widera, J. Wrobel, A. Matonia, M. Jezewski, K. Horoba and T.
Kupka, "Indexing Biomedical Streams In Data Management System",
Journal of Medical Informatics and Technologies, vol. 91, MIT,
2005.

[14] T. Kahveci, A. Singh, "Variable length queries for time series data", in
Proc. the 17th International Conference on In Data Engineering
(ICDE), 2001, pp. 273-282.

Mahnoosh Kholghi received her B.S. in Software
Engineering from Islamic Azad University, Karaj
Branch, Karaj, Iran. She also received her M.S. in
Software Engineering at Islamic Azad University,
Qazvin Branch, Qazvin, Iran. Her research interests
include Data Stream Mining and Machine Learning.

MohammadReza Keyvanpour is an Assistant
Professor at Alzahra University, Tehran, Iran. He
received his B.S. in Software Engineering from Iran
University of Science &Technology, Tehran, Iran. He
received his M.S. and Ph.D. in Software Engineering
from Tarbiat Modares University, Tehran, Iran. His
research interests include image retrieval and data
mining.

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

260

