

Abstract—In the recent years, lots of research on image

databases has led to proposition of different kinds of
multi-dimensional indexing structures to support similarity
search in image database systems. Most of current commercial
multi-dimensional image indexing structures cannot manage
image data points in high dimensional spaces. Such that
sequential scanning of these high-dimensional data points can
be faster than using a multi-dimensional indexing structure.
Therefore, another class of multi-dimensional indexing
structures especially has developed for high-dimensional spaces.
Due to importance and variety of high-dimensional indexing
structures, we first classified them based on their main idea and
then we evaluated them according to suggested design
requirements of desired high-dimensional indexing structures.
We hope this proposed framework will lead to development of
more efficient structures to support similarity search in
high-dimensional spaces.

Index Terms—High-dimensional space, multi-dimensional
indexing structure, image database.

I. INTRODUCTION
Due to the advances in hardware technology and increase

in the production of digital images in various applications, it
is necessary to develop efficient techniques for storing and
retrieval of such images. Content-based image retrieval is
introduced to use the content of the image directly in the
retrieval process. In this retrieval approach, visual features
like color, shape and texture are extracted from each image
object and mapped to multi-dimensional feature vectors.
Therefore, images are represented as a vector of extracted
visual features [1, 2]. A content-based image retrieval system
performs image retrieval by computing similarities between
images in image database and the image query, and returns
the results, which are most similar to the image query. The
similarity of two features is a function of their distance in the
multi-dimensional space, and efficient similarity search is
supported by a multi-dimensional indexing structure [1, 3].

Several multi-dimensional indexing structures have been
proposed in the past decades. Increasing of the
dimensionality strongly aggravates the quality of the
multi-dimensional indexing structures. Usually these
structures exhaust their possibilities until dimensions around

Manuscript received April 17, revised May 20, 2012.
Mohammadreza keyvanpour is withDepartment of Computer Engineering,

Alzahra University, Tehran, Iran (e-mail: Keyvanpour@alzahra.ac.ir).
Najva izadpanah izadpanah was with Department of Computer

Engineering, Islamic Azad University,Qazvin branch, Qazvin, Iran(e-mail:
n.izadpanah@qiau.ac.ir)

Haleh karbasforoushan was with Department of Computer Science,
University of Southern California, Los Angeles, CA, USA.

15[4]. However, it is shown that in high-dimensional data
spaces, multi-dimensional indexing structures tend to
perform worse than the sequential scanning of the data base.
This fact is due to the curse of dimensionality phenomena [4],
[5]. Hence new approaches have been recently proposed for
indexing of multi-dimensional objects especially for
high-dimensional spaces. Due to importance and variety of
high-dimensional indexing structures, we classified and
evaluated them in this study.

The rest of the paper is organized as follows: We describe
multi-dimensional indexing structures in section 2. Then in
section 3, the proposed framework for classification and
evaluation of high-dimensional indexing structures is
presented. And, Section 4 includes the conclusion.

II. MULTI-DIMENSIONAL INDEXING STRUCTURES
Many multi-dimensional indexing structures have been

proposed to improve the multi-dimensional image databases
performance. Most of the multi-dimensional indexing
structures are based on the principle of hierarchical
partitioning of the data space, so that they have a tree-like
structure [4]. In these structures, as shown in Fig. 1, data
points are stored in data nodes and each directory node points
to a set of sub trees. There is a single directory node, which is
called the root. The index structures are height-balanced; it
means the lengths of the paths between the root and all data
nodes are identical [3], [6].

Based on how the data are partitioned in the space,
multi-dimensional indexing structures can be classified into
two categories: space partitioning-based indexing structures,
and data partitioning-based indexing structures [7].

Space-partitioning-based indexing structures either
partition the data space through assigning a hash code to each
point (like what is done in Grid- Files), or hierarchically
partition the data space in to sub regions by an iso-oriented
hyper-plane, passing through a data point (like what is done
in k-D-B-tree [3], [5], [6].

Data-partitioning-based indexing structures hierarchically
partition the database into overlapping regions that enclosed
either by a MBR (Minimum Bounding Rectangle) (like what
is done in R-tree and R*-tree) or by a hyper-sphere (like what
is done in SS-tree) [3], [6].

Unfortunately, overlap between regions degrades
efficiency of data-partitioning-based indexing structures [3].
Some improvements are also proposed to reduce the overlap
between regions; for example SR-tree uses intersection of
hyper-rectangle and hyper-sphere instead of hyper rectangles
to reduce overlaps between regions, and x-tree introduced
super nodes to prevent overlaps between regions [3], [4].

Classification and Evaluation of High-dimensional Image
Indexing Structures

Mohammadreza Keyvanpour, Najva Izadpanah, and Haleh Karbasforoushan

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

252

Fig. 1. Multi-dimensional indexing structure

Experience has shown that neither of these approaches is

suitable for high-dimensional data space and sequential scan
performs better than them in spaces with dimensions beyond
15[4].

III. PROPOSED FRAMEWORK FOR CLASSIFICATION AND
EVALUATION OF HIGH-DIMENSIONAL INDEXING

STRUCTURES
This section includes the proposed framework for

classification and evaluation of high-dimensional indexing
structures. Components of this framework include both
classification of high-dimensional indexing structures based
on their main idea, and evaluation of these methods
according to design requirements of desired
high-dimensional indexing structures.

A. Classification of High-Dimensional Indexing Structures
According to our study on high-dimensional indexing

structures, here, we have classified high-dimensional
indexing structures based on their main idea. Our
classification of high-dimensional indexing structures is
shown in Fig. 2.

Fig. 2. Classification of high-dimensional indexing structures

1) Vector-approximation-based indexing structures
Due to the inefficiency of traditional multi-dimensional

indexing structures in high-dimensional spaces, vector
approximation is used to limit the size of the data. Vector
approximation-based indexing structures use compression
techniques like vector quantization in indexing of data points.
The most common vector-approximation-based indexing
structure is VA-File [8]. VA-File uses vector quantization to
reduce the size of database and thus reduce the number of
data nodes access during the search. An example of the
VA-File structure with two dimensions is illustrated in Fig. 3.
The data space is quantized into the cells and The VA-File
stores the approximating value of every data point. Motivated
by the inefficiency of VA-file for clustered databases,
VA+-File [9] is proposed to use PCA transformation of data
space that is more adapted to the clustered distribution of data
points. In IQ-Tree [10], the idea of vector quantization was

adopted to a hierarchical indexing structure. IQ-tree has a
structure like R*-Tree, and in this structure data nodes are
approximated using vector quantization. A-tree [11] is one of
the most efficient vector approximation-based indexing
structures. It also has a structure like R*-Tree, and in this
structure MBRs of data nodes and data point are
Approximated through proposed relative approximation. In
relative approximation each MBR or data point is
approximated by their relative positions in terms of parent’s
MBR. Representation of relative approximation of an MBR
or a data point in the A-tree defines with the concept of VBR
(Virtual Bounding Rectangle). In A-tree, the virtual
bounding rectangle has been defined as in (1) [11].

))Q(b),...,Q(b),...,Q(b),(bQ(

))Q(b),...,Q(b),...,Q(b),(Q(b
)(

nj21v
nj21v

vv,iV

′=′
=

′=
 (1)

where, v is the vector quantization of the start point of the
MBRi relative to its parent’s MBR, v' is the quantization of
the start point of the MBRi relatively to its parents MBR, Q
and Q' are the quantization functions for start point and end
point. bj and b'j (j=1,…, n) are start point and end point of the
MBRi in n-dimensional space.

RA+-Blocks [12] is another improvement of VA-file on
both uniform and clustered data sets. It divides data space
into compact and disjoint regions and then uses RA-Blocks
technique to approximate each region to improve VA-file on
both uniform and clustered datasets.

Fig. 3. An example of VA-File structure. (a): data space, (b): approximation

points

2) Hybrid partitioning-based indexing structures
Hybrid partitioning-based indexing structures take

advantages of both space-partitioning-based and data-
partitioning-based indexing structures, as combines positive
aspects of them in a single structure to face the problem of
curse of dimensionality.

Hybrid tree [13] is proposed to use hybrid partitioning in
order to achieve a scalable indexing structure in
high-dimensional spaces. Hybrid tree recursively partitions
data space into two overlapping sub spaces, using a single
dimension. Hybrid tree performs insertion and deletion
operations in the similar way to data-partitioning-based
structures. Reference [14] has claimed that data points reside
in the same node in Hybrid tree structure might not be
spatially adjacent points in the real data space, thus it leads to
increase in the number of disk access during search.

 High-dimensional indexing structures

Vector approximation-based indexing structures

Hybrid partitioning based indexing structures

Pyramid partitioning based indexing structures

Clustering-based indexing structures

Data projection-based indexing structures

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

253

Motivated by this limitation, SH-tree [14] is proposed to
include balanced nodes in hybrid tree structure to keep nearly
spatially adjacent data points in the data space into each data
node. An example of the SH-tree structure is shown in Fig. 4.
SH-tree structure consists of three types of nodes: internal
nodes, balanced nodes and data nodes.
3) Pyramid partitioning-based indexing structures

Pyramid partitioning-based structures use special pyramid
partitioning to handle indexing of high-dimensional spaces.
A pyramid technique [15] is proposed with the idea of
transforming the multi-dimensional data points into
one-dimensional values and then accesses the values using a
one-dimensional indexing structure. As Fig. 5 is showing an
example of pyramid partitioning in two-dimensional space,
Pyramid technique first divides the data space into
two-dimensional pyramids in such a way that the center point
of the space are in their top, and in second step, cuts each
pyramid into partitions parallel to the basis of it .Each
partitions forms the data nodes of the indexing structure.
Multi-dimensional data point as defined in (2), transforms by
the pyramid that it belongs to and by its height in that
pyramid [15].

PV (v) =i+h (v) (2)

where, v is a multi-dimensional data point, PV (v) is pyramid
value of a data point v, i is the index of the pyramid pi
containing v and h (v) is the height of data point v within the
pyramid Pi.

Unfortunately it has been shown in [15] that when the
database has clustered distribution, the pyramid technique
fails to provide efficient queries. To address this problem, the
P+-Tree [16] is proposed. P+-tree is the generalization of the
pyramid technique that divides the data base in different sub
spaces and pyramid partitioning is performed on each of
these sub spaces. Then at search time, query approximation
will be performed. P+-tree has better performance for
clustered database distribution.

Fig. 4. An example of SH-tree structure

.

Fig. 5. Example of pyramid partitioning in two-dimensional space. (a): data
space partitioning in to pyramids, (b): pyramid cut into partitions

4) Clustering-based indexing structures

The main idea of Clustering-based indexing structures first
use clustering algorithms in order to cluster the data points,
and then use approximation at search phase in such a way
that search will be done in the obtained clusters which
probably contain the nearest neighbors of the query point.
The general architecture of the clustering-based structures is
shown in Fig.6 Clustering-based indexing structures consist
of two phases: clustering phase and search phase.

Clindex [7] is one of the examples of these methods that
can achieve efficient approximate similarity search in
high-dimensional spaces, by taking advantage of the
clustering structures of a data set, and also sequential disk
IOs such that store each cluster in a sequential file. At
clustering phase, Clindex uses a grid-based clustering
algorithm called CF (cluster-forming) for partition the data
space. Then, obtained clusters are indexed through their
centroid and indexing structure is built to support fast access
to the clusters at search phase. Reference [17] has proposed a
density-based clustering method that relies on the estimation
of the distribution of the data points for indexing
high-dimensional data bases. At clustering phase, it builds a
statistical estimate of the density of the data to construct a
clustered index. It uses a mixture of Gaussians to model data
with estimation of the density. And at search phase, it uses a
model to scan the clusters that probably contain the nearest
neighbors of the query point. Reference [18] has proposed a
new clustering-based indexing structure. At clustering phase,
using hierarchical clustering algorithm PDDP, the data set is
divided into two sub clusters. In such a way that, it projects
all the data points on to first principal component, using (3),
and divides the data into two sub clusters by the sign of
projections [18].

F (xi) =UT (xi − w) (3)

where, F (xi) is projection function, xi is multi-dimensional
data point, U is first principal component, and W is centroid
of the data.

After the algorithm has split the initial dataset into two sub
clusters, it is going to recurse this procedure for one of the
two sub clusters. This partitioning strategy creates a binary
tree whose leaves are the final clusters of the data set. MBRs
are the bounding forms which have been used to enclose each
obtained cluster at each level of partitioning. In order to have
no overlap between two cluster’s MBR, they changed
reference mark to have MBRs directed according to the first

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

254

principal component. At search phase, they proposed to use a
k-nearest neighbors search adapted to the obtained
hierarchical of clusters.

Fig. 6. General architecture of clustering-based structures

5) Data projection-based indexing structures

Main idea of data projection-based indexing structures is
projecting dataset to several low dimensional spaces, and
then run the query processing on all of those low dimensional
spaces. Thus dimensionality cannot have negative effect to
them.

MedRank [19] has proposed to use Random line
Projection to project the database on to random lines. An
example of projection into two random lines is shown in Fig.
7 After performing the projections, MedRank uses
one-dimensional indexing structure B+-tree to index every
random line. Then efficient k-nearest neighbor queries are
performed and the data points nearest to the projected query
point are returned.

Fig. 7. An example of projection into two dimensions

Reference [20] has proposed to use locality sensitive
hashing function to project the data in to the buckets. A hash
function is locality sensitive if the probability of collision of
two points is related to their similarity. Therefore, by using
locality sensitive hash functions, similar points are hash to

the same bucket .Then it has proposed to perform an
approximate similarity search at query time in such a way that
by finding the bucket that the query point hashes to that, all
other points in that bucket will be returned as the result set.

B. Evaluation of high-dimensional indexing structures
According to our study on high-dimensional indexing

structures, we present main design requirements of
high-dimensional indexing structures as following:

Dynamicity: A desired high-dimensional indexing
structure must have a dynamic structure. It means that
structure incrementally constructed as the data points are
inserted in the database.

Simplicity of the structure: A desired high-dimensional
indexing structure must have a simple structure.

Query exactness: A desired high-dimensional indexing
structure must use reasonable Query approximation to
preserve high quality of results.

Support for clustered datasets: A desired high-dimensional
indexing structure must support the datasets with clustered
distribution. Because by increasing the dimensionality of
datasets they tend to be more clustered, it is important for
high-dimensional indexing structures to preserve their
efficiency for clustered datasets.

High Selectivity: A desired high-dimensional indexing
structure must support high selectivity.

Selectivity defines the average proportion of file pages that
are actually pruned during the search. In fact,
high-dimensional indexing structures must provide low
number of file access during the search because accessing to
file pages reduces the response time to a given query and
increase the selectivity.

Low CPU time: A desired high-dimensional indexing
structure must support low CPU time. CPU time defines the
time that an indexing system takes for processing its
operations in CPU and it is different with response time.
Therefore, low CPU time guarantee efficient time
complexity.

In this study, we analyzed high-dimensional indexing
structures, and evaluated them according to above
requirements.

Table I is showing our evaluation results.

TABLE I: EVALUATION OF HIGH-DIMENSIONAL INDEXING STRUCTURES

High-dimensional indexing structures
Design requirements

Dynamicity Simplicity Query
exactness

Support for
clustered datasets

High
Selectivity

Low CPU
time

Vector approximation-based indexing structures good medium good medium medium medium

Hybrid partitioning-based indexing structures good good good good medium medium

Pyramid partitioning-based indexing structures good poor medium medium good good

Clustering-based indexing structures poor medium medium good good poor

Data projection-based indexing structures good poor poor good good medium

Database

Clustering
phase

Data
Search
phase

Quer

ResultCluster

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

255

IV. CONCLUSION
Similarity search in image databases requires special

support at physical level. As dimensions of the data space
grow, more considerations are required. A major challenge
regarding this issue is employing some methods which
facilitate data accessing and accelerate search operations in
the database containing such high-dimensional data. So far,
many multi-dimensional indexing methods for handling
indexing of image data is developed . Considering in most
applications, data spaces with high dimensions are used, and
inefficiency of traditional multi-dimensional indexing
structures in high-dimensional spaces, Recently a bunch of
other structures, especially for high-dimensional spaces are
developed. Given the importance and variety of these
methods, in this study, a systematic framework for classify
and evaluate high-dimensional indexing structures has
suggested. According to our study on high-dimensional
indexing structures, we classified them into five classes
based on their main idea. Then we presented design
requirements of high-dimensional indexing structures, and
finally evaluated five classes of high-dimensional indexing
structures based on suggested design requirements.

REFERENCES
[1] R. DATTA, D.JOSHI, J. LI, and J. Z. WANG, “Image Retrieval: Ideas,

Influences, and Trends of the New Age,“ ACM Transactions on
Computing Surveys, volume 40,No. 2, pp. 1-60,2008.

[2] K. CHakrabarti, “Managing Large Multi-dimensional Datasets Inside a
Database System,“ P.h.D dissertation , University of Illinois at
Urbana-Champaign. Urbana, Illinois, 2001.

[3] C. Bohm, S. Berchtold, and D. A. KEIM, “Searching in
High-Dimensional Spaces-Index Structure for Improving the
performance of Multimedia Databases,“ ACM Computing surveys,
vol.33, No.3, pp. 322-373,2001.

[4] K. Markov, K. Ivanova, I.Mitov, and S. Karastanev, “Advance of the
Access Methods,“ International Journal of Information Technologies
and Knowledge, Vol.2, 2008.

[5] N. Bouteldja, V. Gouet – Brunet, and M.Scholl, “Back to the Curse of
Dimensionality with Local Image Descriptors“, CEDRIC Research
Report, 2006.

[6] V. Gaede and O. Günther, “ Multi-dimensional Access Methods,“ACM
Computing Surveys, Vol. 30, No. 2, 1998,
doi:10.1145/280277.280279.

[7] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold, “ Clustering for
Approximate Similarity Search in High-dimensional Spaces,“ IEEE
Transactions on Knowledge and Data Engineering, 2002,pp. 792 –
808, doi:10.1109/TKDE.2002.1019214.

[8] R. Weber, H.-J. Schek, and S. Blott, “ A quantitative analysis and
performance study for similarity-search methods in high- dimensional
spaces,“ in Proc. International Conference on Very Large Data Bases
(VLDB ’98), CA, USA, 1998, pp. 194–205.

[9] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. E. Abbadi,
“Vector Approximation Based Indexing for Non-uniform
High-dimensional Data sets,“ in Proc. International conference on
Information and knowledge management (CIKM ’00), pp. 202–209,
2000.

[10] S. Berchtold, C. Bohm, H. V. Jagadish, and H.-P. Kriegel, and J. Sander,
“Independent Quantization: An index Compression Technique for
High-dimensional Dataspaces,“in Proc. International Conference on
Data Engineering(ICDE ’00), USA, pp. 577 - 588 , 2000.

[11] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The A-tree:
An Index Structure for High-dimensional Spaces Using Relative
Approximation,“in Proc. International conference on Very Large
DataBase (VLDB '00), Egypt, 2000.

[12] I. Daoudi, S.E. Ouatik, A. El Kharraz, K. Idrissi, and D. Aboutajdine,
“Vector Approximation Based Indexing for Hhigh-dimensional
Multimedia Databases,“ Engineering Letters, 16:2, EL_16_2_05,
2008.

[13] K. Chakrabarti and S.Mehrotra, “The Hybrid tree: A Structure for
High- dimensional Feature Spaces “in Proc. IEEE international
conference on data engineering, pp. 440–447, 1999.

[14] D. T. Khanh, “The SH-Tree: A Novel and Flexible Super Hybrid Index
Structure for Similarity Search on Multi-dimensional
Data,“ International Journal of Computer Science & Applications , Vol.
III, No. I, pp. 1 – 25, 2006.

[15] S. Berchtold, C. Bohm,and H.-P. Kriegel, “The Pyramid-technique:
Towards Breaking the Curse of Dimensionality, “in Proc. ACM
SIGMOD International Conference on Management of data Volume 27
Issue 2, June 1998.

[16] R. Zhang, B. C. Ooi, and K.-L. Tan. “Making the pyramid technique
robust to query types and workloads,“ in Proc.International
conference on Data engineering, pp.313-324,2004.

[17] K. P. Bennett, U. Fayyad,and D. Geiger, “Density-based indexing for
approximate nearest neighbor queries,“in Proc. ACM SIGKDD
International conference On Knowledge discovery and data
mining(KDD ’99), pp. 233–243, 1999.

[18] M. Taileb, S. Lamrous,and S. Touati, “Non-overlapping Hierarchical
Index Structure for similarity search,“ International Journal of
Computer Science, Vol. 3 ,No. 1, 2007.

[19] R. Fagin, R. Kumar,and D. Sivakumar, “Efficient Similarity Search and
Classification via Rank Aggregation,“ in Proc. ACM SIGMOD
International Conference on Management of data(SIGMOD ’03), pp.
301–312, 2003.

[20] A. Gionis, P. Indyk,and R. Motwani, “Similarity search in high
dimensions via hashing ,“in Proc. International Conference on Very
Large Data Bases(VLDB ’99), pp. 518–529, 1999.

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

256

