
  

  
Abstract—In the recent years, lots of research on image 

databases has led to proposition of different kinds of 
multi-dimensional indexing structures to support similarity 
search in image database systems. Most of current commercial 
multi-dimensional image indexing structures cannot manage 
image data points in high dimensional spaces. Such that 
sequential scanning of these high-dimensional data points can 
be faster than using a multi-dimensional indexing structure. 
Therefore, another class of multi-dimensional indexing 
structures especially has developed for high-dimensional spaces. 
Due to importance and variety of high-dimensional indexing 
structures, we first classified them based on their main idea and 
then we evaluated them according to suggested design 
requirements of desired high-dimensional indexing structures. 
We hope this proposed framework will lead to development of 
more efficient structures to support similarity search in 
high-dimensional spaces. 
 

Index Terms—High-dimensional space, multi-dimensional 
indexing structure, image database. 
 

I. INTRODUCTION 
Due to the advances in hardware technology and increase 

in the production of digital images in various applications, it 
is necessary to develop efficient techniques for storing and 
retrieval of such images. Content-based image retrieval is 
introduced to use the content of the image directly in the 
retrieval process. In this retrieval approach, visual features 
like color, shape and texture are extracted from each image 
object and mapped to multi-dimensional feature vectors. 
Therefore, images are represented as a vector of extracted 
visual features [1, 2]. A content-based image retrieval system 
performs image retrieval by computing similarities between 
images in image database and the image query, and returns 
the results, which are most similar to the image query. The 
similarity of two features is a function of their distance in the 
multi-dimensional space, and efficient similarity search is 
supported by a multi-dimensional indexing structure [1, 3]. 

Several multi-dimensional indexing structures have been 
proposed in the past decades. Increasing of the 
dimensionality strongly aggravates the quality of the 
multi-dimensional indexing structures. Usually these 
structures exhaust their possibilities until dimensions around 
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15[4]. However, it is shown that in high-dimensional data 
spaces, multi-dimensional indexing structures tend to 
perform worse than the sequential scanning of the data base. 
This fact is due to the curse of dimensionality phenomena [4], 
[5]. Hence new approaches have been recently proposed for 
indexing of multi-dimensional objects especially for 
high-dimensional spaces. Due to importance and variety of 
high-dimensional indexing structures, we classified and 
evaluated them in this study.  

The rest of the paper is organized as follows: We describe 
multi-dimensional indexing structures in section 2. Then in 
section 3, the proposed framework for classification and 
evaluation of high-dimensional indexing structures is 
presented. And, Section 4 includes the conclusion. 

 

II. MULTI-DIMENSIONAL INDEXING STRUCTURES  
Many multi-dimensional indexing structures have been 

proposed to improve the multi-dimensional image databases 
performance. Most of the multi-dimensional indexing 
structures are based on the principle of hierarchical 
partitioning of the data space, so that they have a tree-like 
structure [4]. In these structures, as shown in Fig. 1, data 
points are stored in data nodes and each directory node points 
to a set of sub trees. There is a single directory node, which is 
called the root. The index structures are height-balanced; it 
means the lengths of the paths between the root and all data 
nodes are identical [3], [6]. 

Based on how the data are partitioned in the space, 
multi-dimensional indexing structures can be classified into 
two categories: space partitioning-based indexing structures, 
and data partitioning-based indexing structures [7]. 

Space-partitioning-based indexing structures either 
partition the data space through assigning a hash code to each 
point (like what is done in Grid- Files), or hierarchically 
partition the data space in to sub regions by an iso-oriented 
hyper-plane, passing through a data point (like what is done 
in k-D-B-tree [3], [5], [6]. 

Data-partitioning-based indexing structures hierarchically 
partition the database into overlapping regions that enclosed 
either by a MBR (Minimum Bounding Rectangle) (like what 
is done in R-tree and R*-tree) or by a hyper-sphere (like what 
is done in SS-tree) [3], [6]. 

Unfortunately, overlap between regions degrades 
efficiency of data-partitioning-based indexing structures [3]. 
Some improvements are also proposed to reduce the overlap 
between regions; for example SR-tree uses intersection of 
hyper-rectangle and hyper-sphere instead of hyper rectangles 
to reduce overlaps between regions, and x-tree introduced 
super nodes to prevent overlaps between regions [3], [4]. 

Classification and Evaluation of High-dimensional Image 
Indexing Structures 

Mohammadreza Keyvanpour, Najva Izadpanah, and Haleh Karbasforoushan 

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

252



  

 
Fig. 1. Multi-dimensional indexing structure 

 
Experience has shown that neither of these approaches is 

suitable for high-dimensional data space and sequential scan 
performs better than them in spaces with dimensions beyond 
15[4]. 

 

III. PROPOSED FRAMEWORK FOR CLASSIFICATION AND 
EVALUATION OF HIGH-DIMENSIONAL INDEXING 

STRUCTURES 
This section includes the proposed framework for 

classification and evaluation of high-dimensional indexing 
structures. Components of this framework include both 
classification of high-dimensional indexing structures based 
on their main idea, and evaluation of these methods 
according to design requirements of desired 
high-dimensional indexing structures. 

A. Classification of High-Dimensional Indexing Structures 
According to our study on high-dimensional indexing 

structures, here, we have classified high-dimensional 
indexing structures based on their main idea. Our 
classification of high-dimensional indexing structures is 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Classification of high-dimensional indexing structures 
 

1) Vector-approximation-based indexing structures 
Due to the inefficiency of traditional multi-dimensional 

indexing structures in high-dimensional spaces, vector 
approximation is used to limit the size of the data. Vector 
approximation-based indexing structures use compression 
techniques like vector quantization in indexing of data points. 
The most common vector-approximation-based indexing 
structure is VA-File [8]. VA-File uses vector quantization to 
reduce the size of database and thus reduce the number of 
data nodes access during the search. An example of the 
VA-File structure with two dimensions is illustrated in Fig. 3. 
The data space is quantized into the cells and The VA-File 
stores the approximating value of every data point. Motivated 
by the inefficiency of VA-file for clustered databases, 
VA+-File [9] is proposed to use PCA transformation of data 
space that is more adapted to the clustered distribution of data 
points. In IQ-Tree [10], the idea of vector quantization was 

adopted to a hierarchical indexing structure. IQ-tree has a 
structure like R*-Tree, and in this structure data nodes are 
approximated using vector quantization. A-tree [11] is one of 
the most efficient vector approximation-based indexing 
structures. It also has a structure like R*-Tree, and in this 
structure MBRs of data nodes and data point are 
Approximated through proposed relative approximation. In 
relative approximation each MBR or data point is 
approximated by their relative positions in terms of parent’s 
MBR. Representation of relative approximation of an MBR 
or a data point in the A-tree defines with the concept of VBR 
(Virtual Bounding Rectangle). In A-tree, the virtual 
bounding rectangle has been defined as in (1) [11]. 
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where, v is the vector quantization of the start point of the 
MBRi relative to its parent’s MBR, v' is the quantization of 
the start point of the MBRi relatively to its parents MBR, Q 
and Q' are the quantization functions for start point and end 
point. bj and b'j (j=1,…, n) are start point and end point of the 
MBRi in n-dimensional space. 

RA+-Blocks [12] is another improvement of VA-file on 
both uniform and clustered data sets. It divides data space 
into compact and disjoint regions and then uses RA-Blocks 
technique to approximate each region to improve VA-file on 
both uniform and clustered datasets. 

 

 
Fig. 3. An example of VA-File structure. (a): data space, (b): approximation 

points 
 

2) Hybrid partitioning-based indexing structures 
Hybrid partitioning-based indexing structures take 

advantages of both space-partitioning-based and data- 
partitioning-based indexing structures, as combines positive 
aspects of them in a single structure to face the problem of 
curse of dimensionality. 

Hybrid tree [13] is proposed to use hybrid partitioning in 
order to achieve a scalable indexing structure in 
high-dimensional spaces. Hybrid tree recursively partitions 
data space into two overlapping sub spaces, using a single 
dimension. Hybrid tree performs insertion and deletion 
operations in the similar way to data-partitioning-based 
structures. Reference [14] has claimed that data points reside 
in the same node in Hybrid tree structure might not be 
spatially adjacent points in the real data space, thus it leads to 
increase in the number of disk access during search. 

 High-dimensional indexing structures 
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Hybrid partitioning based indexing structures 
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Motivated by this limitation, SH-tree [14] is proposed to 
include balanced nodes in hybrid tree structure to keep nearly 
spatially adjacent data points in the data space into each data 
node. An example of the SH-tree structure is shown in Fig. 4. 
SH-tree structure consists of three types of nodes: internal 
nodes, balanced nodes and data nodes. 
3) Pyramid partitioning-based indexing structures 

Pyramid partitioning-based structures use special pyramid 
partitioning to handle indexing of high-dimensional spaces. 
A pyramid technique [15] is proposed with the idea of 
transforming the multi-dimensional data points into 
one-dimensional values and then accesses the values using a 
one-dimensional indexing structure. As Fig. 5 is showing an 
example of pyramid partitioning in two-dimensional space, 
Pyramid technique first divides the data space into 
two-dimensional pyramids in such a way that the center point 
of the space are in their top, and in second step, cuts each 
pyramid into partitions parallel to the basis of it .Each 
partitions forms the data nodes of the indexing structure. 
Multi-dimensional data point as defined in (2), transforms by 
the pyramid that it belongs to and by its height in that 
pyramid [15]. 

PV (v) =i+h (v)                                     (2) 

where, v is a multi-dimensional data point, PV (v) is pyramid 
value of a data point v, i is the index of the pyramid pi 
containing v and h (v) is the height of data point v within the 
pyramid Pi. 

Unfortunately it has been shown in [15] that when the 
database has clustered distribution, the pyramid technique 
fails to provide efficient queries. To address this problem, the 
P+-Tree [16] is proposed. P+-tree is the generalization of the 
pyramid technique that divides the data base in different sub 
spaces and pyramid partitioning is performed on each of 
these sub spaces. Then at search time, query approximation 
will be performed. P+-tree has better performance for 
clustered database distribution. 

 

 
 

Fig. 4. An example of SH-tree structure 
 

 
. 

Fig. 5. Example of pyramid partitioning in two-dimensional space. (a): data 
space partitioning in to pyramids, (b): pyramid cut into partitions 

 
4) Clustering-based indexing structures 

The main idea of Clustering-based indexing structures first 
use clustering algorithms in order to cluster the data points, 
and  then use approximation at search phase in such a way 
that search  will be done in the obtained clusters which 
probably contain the nearest neighbors of the query point. 
The general architecture of the clustering-based structures is 
shown in Fig.6 Clustering-based indexing structures consist 
of two phases: clustering phase and search phase. 

Clindex [7] is one of the examples of these methods that 
can achieve efficient approximate similarity search in 
high-dimensional spaces, by taking advantage of the 
clustering structures of a data set, and also sequential disk 
IOs such that store each cluster in a sequential file. At 
clustering phase, Clindex uses a grid-based clustering 
algorithm called CF (cluster-forming) for partition the data 
space. Then, obtained clusters are indexed through their 
centroid and indexing structure is built to support fast access 
to the clusters at search phase. Reference [17] has proposed a 
density-based clustering method that relies on the estimation 
of the distribution of the data points for indexing 
high-dimensional data bases. At clustering phase, it builds a 
statistical estimate of the density of the data to construct a 
clustered index. It uses a mixture of Gaussians to model data 
with estimation of the density. And at search phase, it uses a 
model to scan the clusters that probably contain the nearest 
neighbors of the query point. Reference [18] has proposed a 
new clustering-based indexing structure. At clustering phase, 
using hierarchical clustering algorithm PDDP, the data set is 
divided into two sub clusters. In such a way that, it projects 
all the data points on to first principal component, using (3), 
and divides the data into two sub clusters by the sign of 
projections [18]. 

F (xi) =UT (xi − w)                                     (3) 

where, F (xi) is projection function, xi is multi-dimensional 
data point, U is first principal component, and W is centroid 
of the data. 

After the algorithm has split the initial dataset into two sub 
clusters, it is going to recurse this procedure for one of the 
two sub clusters. This partitioning strategy creates a binary 
tree whose leaves are the final clusters of the data set. MBRs 
are the bounding forms which have been used to enclose each 
obtained cluster at each level of partitioning. In order to have 
no overlap between two cluster’s MBR, they changed 
reference mark to have MBRs directed according to the first 
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principal component. At search phase, they proposed to use a 
k-nearest neighbors search adapted to the obtained 
hierarchical of clusters. 
 

 
Fig. 6. General architecture of clustering-based structures 

 
5) Data projection-based indexing structures 

Main idea of data projection-based indexing structures is 
projecting dataset to several low dimensional spaces, and 
then run the query processing on all of those low dimensional 
spaces. Thus dimensionality cannot have negative effect to 
them. 

MedRank [19] has proposed to use Random line 
Projection to project the database on to random lines. An 
example of projection into two random lines is shown in Fig. 
7 After performing the projections, MedRank uses 
one-dimensional indexing structure B+-tree to index every 
random line. Then efficient k-nearest neighbor queries are 
performed and the data points nearest to the projected query 
point are returned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. An example of projection into two dimensions 
 

Reference [20] has proposed to use locality sensitive 
hashing function to project the data in to the buckets. A hash 
function is locality sensitive if the probability of collision of 
two points is related to their similarity. Therefore, by using 
locality sensitive hash functions, similar points are hash to 

the same bucket .Then it has proposed to perform an 
approximate similarity search at query time in such a way that 
by finding the bucket that the query point hashes to that, all 
other points in that bucket will be returned as the result set. 

B. Evaluation of high-dimensional indexing structures 
According to our study on high-dimensional indexing 

structures, we present main design requirements of 
high-dimensional indexing structures as following: 

Dynamicity: A desired high-dimensional indexing 
structure must have a dynamic structure. It means that 
structure incrementally constructed as the data points are 
inserted in the database. 

Simplicity of the structure: A desired high-dimensional 
indexing structure must have a simple structure. 

Query exactness: A desired high-dimensional indexing 
structure must use reasonable Query approximation to 
preserve high quality of results. 

Support for clustered datasets: A desired high-dimensional 
indexing structure must support the datasets with clustered 
distribution. Because by increasing the dimensionality of 
datasets they tend to be more clustered, it is important for 
high-dimensional indexing structures to preserve their 
efficiency for clustered datasets. 

High Selectivity: A desired high-dimensional indexing 
structure must support high selectivity.  

Selectivity defines the average proportion of file pages that 
are actually pruned during the search. In fact, 
high-dimensional indexing structures must provide low 
number of file access during the search because accessing to 
file pages reduces the response time to a given query and 
increase the selectivity. 

Low CPU time: A desired high-dimensional indexing 
structure must support low CPU time. CPU time defines the 
time that an indexing system takes for processing its 
operations in CPU and it is different with response time. 
Therefore, low CPU time guarantee efficient time 
complexity. 

In this study, we analyzed high-dimensional indexing 
structures, and evaluated them according to above 
requirements.  

Table I is showing our evaluation results. 

 
 

TABLE I: EVALUATION OF HIGH-DIMENSIONAL INDEXING STRUCTURES 

High-dimensional indexing structures 
Design requirements 

Dynamicity Simplicity Query 
exactness

Support for 
clustered datasets 

High 
Selectivity

Low CPU 
time 

Vector approximation-based  indexing structures good medium good medium medium medium 

Hybrid partitioning-based indexing structures good good good good medium medium 

Pyramid partitioning-based indexing structures good poor medium medium good good 

Clustering-based indexing structures poor medium medium good good poor 

Data projection-based indexing structures good poor poor good good medium 
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IV. CONCLUSION 
Similarity search in image databases requires special 

support at physical level. As dimensions of the data space 
grow, more considerations are required. A major challenge 
regarding this issue is employing some methods which 
facilitate data accessing and accelerate search operations in 
the database containing such high-dimensional data.  So far, 
many multi-dimensional indexing methods for handling 
indexing of image data is developed  . Considering  in most  
applications, data spaces with high dimensions are used, and  
inefficiency of traditional multi-dimensional indexing 
structures in  high-dimensional spaces, Recently a bunch of 
other structures, especially for high-dimensional spaces are 
developed. Given the importance and variety of these 
methods, in this study, a systematic framework for classify 
and evaluate high-dimensional indexing structures has 
suggested. According to our study on high-dimensional 
indexing structures, we classified them into five classes 
based on their main idea. Then we presented design 
requirements of high-dimensional indexing structures, and 
finally evaluated five classes of high-dimensional indexing 
structures based on suggested design requirements. 
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