
  

  
Abstract—In 1981 Longuet-Higgins represented the world 

point by two vectors in the two camera reference frames and 
developed the essential matrix. Such a matrix is a relation 
between the corresponding image points on the two images of a 
world point on a rigid scene.  

The essential matrix is independent of the position and 
orientation of the cameras used to capture the two views.  

The calculation of the essential matrix requires the 
knowledge of at least five accurate pairs of corresponding 
points. The unavailability of a procedure that fulfills such a 
requirement led researchers to focus their attention on 
developing estimation methods of the essential matrix without 
questioning the mathematical correctness of its derivation. 

In this paper, we identify and expose flaws in 
Longuet-Higgins’ derivation of the essential matrix. These flaws 
are the result of mixing up between the scalar product of 
vectors in a single reference frame and the transformation of 
vectors from one reference frame to another. 
 

Index Terms—Dot product, essential matrix, epipolar 
geometry, Stereo vision.  
 

I. INTRODUCTION 
Extracting a 3D shape from two images (views) captured 

of a rigid scene from two different standpoints is a basic 
component of the recovery of structure and motion from a 
sequence of camera images.  Establishing a relation between 
the tokens of the two images was a challenge before the 
computer vision community.  

Longuet-Higgins [3] was the pioneer in establishing a 
mathematical relation between the pairs of points on the two 
images; that is the essential matrix. Since then the extraction 
of 3D structure from two views became prominent in the 
computer vision literature. The main feature of the essential 
matrix is its independence of the scene structure, i.e. 
independent of the extrinsic camera parameters. The extrinsic 
camera parameters are the position and orientation of the 
camera with respect to the world coordinate system. Such a 
matrix encapsulates the relationships between pairs of 
corresponding points on the two views. Corresponding points 
are the projection of a world point on the two views.  

Trucco and Verri [5] presented Higgins’ derivation of the 
essential matrix in a slightly different manner. They 
formulated the two-view problem as the product of tree 
planar vectors, and then they extracted the fundamental 
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matrix formula.  
The work of Longuet-Higgins was supplemented by the 

work of Faugeras [2], who developed the essential matrix 
into the fundamental matrix which is independent of both 
extrinsic and intrinsic camera parameters. Intrinsic camera 
parameters include coordinates of the principal points, pixel 
aspect ratio, and focal lengths.  

Since then a large number of publications appeared in the 
computer vision discipline to estimate the essential and 
fundamental matrices.  

The contribution of this paper is to thoroughly reexamine 
the theory of Higgins’ algorithm to disclose mathematical 
flaws in deriving the essential matrix.  

The rest of the paper is as follows: Section 2 is a basic 
presentation of the epipolar geometry and the essential matrix. 
Section 3 introduces Longuet-Higgins’ algorithm followed 
by identifying its flaw. In Section 4 presents 
Longuet-Higgins’ derivation approach as presented by 
Trucco and Verri followed by clarifying the misconception 
that occurred in such a presentation. Finally, the current work 
concludes in Section 5.  

 

II. ESSENTIAL MATRIX DERIVATION  
From the standpoint of image analysis, the images of a 

scene are represented by sets of points with coordinates in the 
left and right camera coordinate frames. The epipolar 
geometry that represents the two-view extraction problem 
can be depicted as follows: a world point ( )ZYXM ,,= is 
defined in a world coordinate system. Two pinhole cameras 
are placed at two different positions lC  and rC . The points 

lC  and rC  are the origin of the two coordinate frames of the 
two cameras. The right camera coordinate frame is obtained 
by a translation t   and a rotation R  of the left one.  

The vectors ( )llll ZYX ,,=M and represent the point M  
in the left and right camera coordinate frames, respectively. 

The point ),( lll yxm =  is the retinal image of the point M  
captured by the left camera; it belongs to the left camera 

plane lπ  and it is defined in the left camera coordinate 

system. The point ),( rrr yxm =  is the retinal image of the 
point M  captured by the right camera; it belongs to the right 

camera plane rπ  and it is defined in the right camera 
coordinate system (see Fig. 1).  
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Fig. 1. The epipolar geometry. 

 
The formula of the essential matrix is  
 

0=l
T
r EMM            (1) 

The points lm  and rm , the projections of the vectors lM  
and rM  on the left and right camera frames, are obtained by 
dividing ( )llll ZYX ,,=M by lZ  and ( )rrrr ZYX ,,=M  by 

rZ ,  respectively. The relationship between a pair of 
corresponding points is then given by  

0=lr Emm            (2) 
The calculation of the essential matrix requires the 

knowledge of eight pairs of corresponding points [3]. The 
unavailability of a procedure that generates eight accurate 
pairs of corresponding points led researchers to focus their 
attention on developing new estimation methods and 
improving existing ones. Usually shortcomings of such 
methods are attributed to image noise, outliers (i.e. 
mismatches in correspondences), rounding errors, and the 
like. The theory of the essential matrix remains 
unquestionable.  

 

III. FLAWS IN LONGUET-HIGGINS’ DERIVATION APPROACH 
The right camera reference frame is obtained by a 

translation t  to the right of the left camera position followed 
by a rotation R  to direct the right camera towards the scene.  
Longuet-Higgins [3] created a matrix RSE =  and built the 
expression l

T
r EMM  and after some arithmetic 

manipulations he established a relation between the vectors 
representing the point M  in the two camera reference 
frames 0=l

T
r EMM . He then divided by rl ZZ  to arrive at a 

relationship between lm  and rm  given by 0=lr Emm .  
In the next points we analyze Longuet-Higgins’ findings.  
The entity E  may be a transformation from the left 

reference frame to the right one or it may be any matrix.  
1) The entity E  is a transformation matrix. The value of the 

expression l
T
r EMM  is independent of which operation 

ET
rM  or lEM  is performed first. We will consider the 

term lEM  first.   
a) “A vector is defined as an oriented segment with a 

certain magnitude and direction independent of any 
coordinate system. Vector transformation changes the 

coordinates without altering the magnitude and 
direction [1], [4]”. The vector lEMV =  is the 
transformation of the vector lM  from the left 
reference frame to the right reference frame. V  is the 
vector lM  itself expressed in the right reference 
frame.  

b) The expression VMMM ⋅= T
rl

T
r E  is the dot product of 

the two vectors rM  and V  which are defined in the 
same reference frame (i.e. the right frame). The dot 
product can be defined for two vectors rM  and V  by 

θcosVMVM =⋅T
r , where θ is the angle between 

the vectors and X  is the norm. It follows 

immediately that 0=⋅VM T
r  if only V  is 

perpendicular to rM [6]. Remember that the vector 
V  is nothing but lM  expressed in the right reference 
frame. As Fig. 1 illustrates, in the general case the 
vectors lM  and rM  are not perpendicular, in other 

words 0≠⋅VM T
r . Thus, considering E  as a 

transformation matrix contradicts Higgins’ findings 
which is 0=⋅= VMMM T

rl
T
r E .  

2) The entity E  is not a transformation matrix. The other 
possibility is that E  is not a transformation matrix from 
the left reference frame to the right one. The vector lM  
is defined with respect to the left reference frame; the 
vector lEMV =  is defined in the left frame as well. The 
vector lEMV =  has a magnitude and a direction 
different from the magnitude and/or the direction of lM  
unless E  is the identity matrix. V  is not defined in the 
right frame. The vector rM  is defined in the right frame 
and not defined in the left frame. The expression 

VM ⋅T
r  is not defined unless the two vectors are 

expressed in the same reference frame; consequently the 
expression l

T
r

T
r EMMVM =⋅  is undefined.  

 

IV. FLAWS IN TRUCCO AND VERRI DERIVATION  
Trucco and Verri [5] expressed Loguet-Higgins’ approach 

by formulating the two-view problem as the product of three 
planar vectors in the world reference frame. They calculated 
the projections of the point M  in the left and right reference 
frames as  

l
l

l Z
fm M=             (3) 

and  

r
r

r Z
fm M=             (4) 

Let lr CCt −=  be the translation vector of the right 
camera with respect to the left frame. The relation between 
the vectors lM  and rM  is therefore  

)( tMM −= lr R            (5) 
The three vectors lM , t  and tM −l  are coplanar, so they 
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satisfy the coplanarity condition:  
0)( =×− l

T
l MttM           (6) 

Using (5), equation (6) can be written as  
0)( =× l

T
r

TR MtM           (7) 
After some algebraic manipulations, the authors arrived at  

0=l
T
r EMM             (8) 

Then they divided (8) by rl ZZ  and used (3) and (4) to 
establish the relationship between the image points as  

0=lr Emm              (9) 
In the next points we analyze Trucco and Verri findings.  

1) Let us go back to equation (5) and examine the equality  
)( tMM −= lr R :  

The matrices R  and t  are the rotation and translation of the 
right reference frame with respect to the left reference frame. 
The vectors lM  and t  are defined in the left camera frame 
which coincides with the world coordinate system. Therefore, 
the vector tM −l  is also defined in the left camera frame.  
The production of a scalar by a 3D vector is another vector 
defined in the same coordinate system, and the production of 
a 3×3 scalar matrix by a 3D vector is another 3D vector 
defined in the same coordinate system. Thus, the vector 

)( tM −lR  is a vector defined in the left camera frame.  

rM is defined in the right camera frame.  
The coordinates of the point M in a coordinate system is 
equal to the components of its position vector in that 
coordinate system.   
Equation (5) uses the coordinates of the point M  in the left 
coordinate system to calculate its coordinates in the right 
coordinate system. Therefore, the components of the vector 

rM  in the right camera frame are equal to the components 
of )( tM −lR  in the left camera frame. However, the 
equality in (5) does not mean that rM  and )( tM −lR  are 
the same vector.  
The following example illustrates this idea.  
Let us have left and right coordinate systems, and let 

[ ]1,2,2=u  and [ ]0,0,1=t  be two vectors defined in the left 

coordinate system, and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

−

=
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2
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2
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R  is a rotation 

matrix.  

The vector ⎥⎦
⎤

⎢⎣
⎡ +−+=− 2

31,32
1,1)( tuR is a 3D vector 

in the left coordinate system. At the same time, 

⎥⎦
⎤

⎢⎣
⎡ +−+ 2

31,32
1,1  are the components of the vector 

)( tuv −= R  in the right coordinate system.   

By definition we have 1=RRT where 
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TR  the transpose of R . Multiplying 

)( tuv −= R  from the left by TR  produces the vectors: 

[ ]1,2,1=vTR  defined in the right coordinate system, and 
[ ]1,2,1=− tu  defined in the left coordinate system.  

The vectors vTR  and tu −  have the same components but 
they are different as they are defined in two different 
coordinate systems (see Fig. 2).  
In the current derivation method, the authors [5] obtained (6) 
by substituting in (5) the vector r

TR M   for the vector 
tM −l . These two vectors have the same components but 

they are different from each other as they are defined in two 
different coordinate systems.  
 

 
Fig. 2. Two vector in two references with same components  

 
2) We can also approach the analysis of equation (5) in the 
following way:  

The equality )( tMM −= lr R  implies that the vector rM  
is the transformation of lM  from the left to the right frame. 
The transformation of a vector from one frame to another 
changes its coordinates and does not alter neither its 
magnitude nor its direction [1], [4]. Thus, lM  and rM  
which satisfies the equality )( tMM −= lr R , are the same 
vector expressed in two different reference frames. This 
vector rM  is different of that of Fig. 1. However, as Fig. 1 
illustrates the assumption of Trucco and Verri [5], lM  and 

rM  are two different vectors representing the same point 
M  in two different reference frames.  

 

V. CONCLUSION 
Longuet-Higgins’ approach to extract 3D structure from a 

two views of a rigid scene is considered a landmark in the 
history of computer vision discipline. The calculation of the 
essential matrix requires the determination of eight 
corresponding points. The unavailability of a procedure that 
provides eight pairs of accurate corresponding points led 
researchers to focus their attention on estimating the essential 
matrix. 

Mixing up vector operations and vector transformation 
from a reference frame to another is the reason behind the 
flaw in Longuet-Higgins’ derivation method. Such confusion 
became clearer in Trucco and Verri presentation of 
Longuet-Higgins’ method when they explicitly specify that 
the relation between the vectors lM  and rM  as 

)( tMM −= lr R .  
The equality  )( tMM −= lr R  can be seen as the 

transformation of the point M from the left camera frame to 

u-t 
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X

Y
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the right camera frame. In such a case, it does mean that the 
components of the vector rM  in the right camera frame (i.e. 
the coordinates of the point M  in the right camera frame) are 
equal to the components of the vector )( tM −lR  in the left 
camera frame, where lM  is the position vector of the point 
M  in the left camera frame. However, it does not mean that 

rM  and )( tM −lR  are the same vector, as each of them is 
defined in a different coordinate system.  

Equation )( tMM −= lr R may also be considered a 
transformation of the vector lM  from the left camera frame 
to the right camera frame. In this case, the vector rM  is the 
same vector lM  expressed in the right frame; as the 
transformation of a vector from one frame to another changes 
its coordinates and does not alter neither its magnitude nor its 
direction. This option indicates that lM and rM  is the same 
vector expressed in two different coordinate systems. Thus, 
the projections lm  and rm of the vector lM (i.e. rM ) in the 
left and right coordinate systems are different of the points 

lm  and rm  the projections of the two different vectors 

lM and rM illustrated in Fig. 1. Thus, the equation 
0=lr Emm  is not a relation between the projection of the 

point M  on the left frame and the projection of M  on the 
right frame.   
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