

Abstract—Recently, the behavior of natural phenomena has

become one the most popular sources for researchers in to
design optimization algorithms. One of the recent heuristic
optimization algorithms is Magnetic Optimization Algorithm
(MOA) which has been inspired by magnetic field theory. It has
been shown that this algorithm is useful for solving complex
optimization problems. The original version of MOA has been
introduced in order to solve the problems with continuous
search space, while there are many problems owning discrete
search spaces. In this paper, the binary version of MOA named
BMOA is proposed. In order to investigate the performance of
BMOA, four benchmark functions are employed, and a
comparative study with Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) is provided. The results indicate
that BMOA is capable of finding global minima more accurate
and faster than PSO and GA.

Index Terms—Optimization algorithm, evolutionary
algorithm, genetic algorithm, particle swarm optimization,
PSO.

I. INTRODUCTION
Recently, many heuristic evolutionary optimization

algorithms have been developed in order to solve complex
computational problems. Some of them are Particle Swarm
Optimization (PSO) [1] , Genetic Algorithm (GA) [2],
Simulated Annealing (SA) [3], and Ant Colony Optimization
(ACO) [4]. It has been proven that there is no algorithm
which could perform general enough to solve all optimization
problems [5]. In other words, some of these algorithms may
possess better solutions for some specific problems better and
worse for others.

Magnetic Optimization Algorithm (MOA) is a novel
heuristic optimization algorithm, inspired from the principles
of magnetic field theory [6]. It has been proven that this
algorithm has a good performance in solving optimization
problems. In this algorithm, the search is carried out by
magnetic particles as search agents while they interact with
each other based on electromagnetic force law. The original
version of MOA has been designed in order to solve
problems with continuous real search spaces (domains)
[6],[7].

There are many optimization problems which have
discrete binary search spaces. They need binary algorithms to
be solved. In this paper, a binary version of MOA is
introduced called BMOA in order to solve these kinds of
problems. BMOA owns magnetic particles, travelling in

Manuscript received April 19, 2012, revised May 23, 2012. This work
was supported by a research grant from Ministry of Science, Technology and
Innovation (MOSTI), Malaysia through E-Science Fund Scheme project
number 01-01-06- SF0530, VOTE 79332.

Authors are with the Soft Computing Research Group, Faculty of
Computer Science and Information Systems, Universiti Teknologi Malaysia,
81310 UTM Skudai, Johor, Malaysia (e-mail: ali.mirjalili@gmail.com;
sitizaiton@utm.my).

discrete binary search spaces by changing the dimensions of
their positions from “0” to “1” and vice versa.

The rest of the paper is organized as follow. Section 2
presents a brief introduction to Magnetic Optimization
Algorithm. Section 3 discusses the basic principles of binary
version of MOA. The experimental results are demonstrated
in section 4. Finally, section 5 concludes the work and
suggests some researches for future works.

II. THE MAGNETIC OPTIMIZATION ALGORITHM
Electromagnetic force is one of the four fundamental

forces in the universe. This kind of force is available among
electromagnetic particles which is directly proportional to the
distance between them. In other words, this force is decreased
by increasing distance between two magnetic particles. The
electromagnetic force is the basic principle which MOA is
inspired from [6].

In fact, MOA can be considered as a collection of search
agents, magnetic particles, whose have magnetic fields and
masses proportional to their values of fitness function.
During generations, agents attract each other by the
electromagnetic forces between them. The intensities of these
forces are proportional to the magnetic fields and distances of
agents.

The MOA has been mathematically modeled as follows
[6]:

Suppose there is a system with N agents. The algorithm
starts with randomly placing all agents in a search space.
During all epochs, the electromagnetic force from u,v-th
agent on i,j-th agent at a specific time t is defined as follow:

(݂,),(௨,௩) (ݐ) = ೠ,ೡ(௧)ቀ௫,ೕೖ (௧),௫ೠ,ೡೖ (௧)ቁ ൫ݔ௨,௩ (ݐ) − ,ݔ ൯ (1)(ݐ)

where x୧୨୩(t) is the k-th dimension of i,j-th agent at iteration t, B୳,୴(t) is the magnetic field of agent u,v at iteration t, x୧,୨୩ (t)
and x୳,୴୩ (t) are k-th dimensions of i,j-th and u,v-th agents at
iteration t, and D is the function for calculating distance
between agents.

The D is calculated as (2):
,ݔ൫ܦ ,(ݐ) ௨,௩ݔ ൯(ݐ) = ଵ ∑ ௫,ೕೖ (௧)ି௫ೠ,ೡೖ (௧)௨ೖିೖୀଵ (2)

where u୩ and l୩ are the upper and lower bounds of the k-th
dimension of the search space, respectively, and m is the
dimension of the search space.

Note that two indices (i,j) are used to indentify
two-dimension indexing cellular topology of original MOA
as shown in Fig.1(a)[6].

BMOA: Binary Magnetic Optimization Algorithm

SeyedAli Mirjalili and Siti Zaiton Mohd Hashim

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

204

 (a) (b)

Fig. 1. Two interaction topologies: (a) cellular; (b) fully-connected

Magnetic field of i,j-th agent at the iteration t is calculated
as (3):

 B୧,୨ = Fitness୧,୨(t) (3)

where Fitness(t) might be any fitness function to solve.

In original MOA, the magnetic agents interact in a lattice
(cellular topology). The employed lattice in [6] is shown in
Fig.1(a). The topology defines which agents could affect
each other by electromagnetic force.

An alternative to cellular topology is fully-connected
topology. As it can be seen in Fig.1(b), all agents can
interrelate. Fully-connected topology is utilized in this work
due to some limitations of cellular topology like low and
limited interaction between agents.

In a problem space with dimension m, the resultant force
that acts on i,j-th agent is calculated as (4):

(ݐ),ܨ = ∑ (݂,),(௨,௩) ௨,௩ ேೕ(ݐ) (4)

where ܰ is the set of neighbors of the agent i,j.

According to the law of motion, the acceleration of an
agent is proportional to the resultant force and inverse of its
mass, so the acceleration of all agents should be calculated as
(5):

 ܽ, (ݐ) = ி,ೕೖ (௧)ெ,ೕ(௧) (5)

where ܯ,(ݐ) is the mass of i,j-th agent at iteration t.

Masses of agents are calculated as (6):
(ݐ),ܯ = ߙ + ߩ × (6) (ݐ),ܤ

where ߙ and ߩ are constant values.

The velocity and position of agents are updated as follows:
,ݒ ݐ) + 1) = ݀݊ܽݎ × ,ݒ (ݐ) + ܽ, (7) (ݐ)

,ݔ ݐ) + 1) = ,ݔ (ݐ) ,ݒ + ݐ) + 1) (8)

where ݀݊ܽݎ is a random number in the interval [0,1].
In MOA, at first all agents are initialized with random

values. Each agent is considered as a candidate solution. The
following steps continuously run until meeting an end
criterion. Magnetic fields and masses for all agents are
defined using (3) and (6). After that, agents’ total forces and
accelerations are calculated as (4) and (5), respectively. Then,
the velocities and positions are updated using (7) and (8).

To see how MOA is efficient, some remarks are noted:

• The quality of solution (fitness) is considered in the
velocity updating procedure.

• In updating the agents’ velocities, the velocity of the
previous iteration is considered. This consideration
makes agents capable of exploring new areas of a search
space.

• An agent near a good solution has a high intense magnetic
field. Higher intensity of magnetic field causes greater
electromagnetic attraction force. Therefore, agents tend
to move toward the best agent.

• Because masses of agents are a function of magnetic field,
agents near good solutions become heavy. Hence, they
move slowly and search the search space more locally.

• Original MOA uses cellular topology to define the
interrelation of agents. Hence, a trapped agent in a local
optimum could not attract the other agents to be trapped
in the same local optimum.

The above-mentioned remarks make MOA powerful

enough to solve wide range optimization problems [6].
However, the original MOA is a continuous algorithm which
is not capable of solving binary problems.

III. BINARY MAGNETIC OPTIMIZATION ALGORITHM
A binary search space could be considered as a hypercube.

The agents of a binary optimization algorithm might only
shift to nearer and farther corners of the hypercube by
flipping various numbers of bits [8]. Hence, for designing
binary version of MOA, some basic concepts such as velocity
and position updating process should be modified.

In the original MOA, agents could move around the search
space because of having position vectors with continuous real
domain. Consequently, the concept of position updating can
be easily implemented for agents adding velocities to
positions using (8). However, the meaning of position
updating is different in a discrete binary space. In binary
space, due to dealing with only two numbers (“0” and “1”),
the position updating process cannot be done using (8).
Therefore, we have to find a way to use velocities to change
agents’ positions from “0” to “1” or vice versa. In other
words, we have to find a link between velocity and position,
as well as revise (8).

Basically, in discrete binary space, the position updating
means a swithcing between “0” and “1” values. This
switching should be done based on velocities of agents. The
question here is that how the concept of velocity in real space
should be employed in order to update positions in binary
space. According to [8] and [9], the idea is to change position
of an agent with the probability of its velocity. In order to do
this, a transfer function is necessary to map the velocities
values to probability values for updating the positions.

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

205

 (a) (b)

Fig. 2. Two transfer functions: (a) sigmoid; (b) tangent hyperbolic

As mentioned above, transfer functions define the
probability of changing position vector’s elements from “0”
to “1” and vice versa. Transfer functions force agents to move
in a binary space. According to [9], some concepts should be
taken into account for selecting a transfer function in order to
map velocity values to probability values.

The transfer function should be able to provide a high
probability of changing the position for a large absolute value
of the velocity. It should also present a small probability of
changing the position for a small absolute value of the
velocity. Moreover, the range of a transfer function should be
bounded in the interval [0,1] and increased with the
increasing of velocity. The functions that have been used in
[8] and [9] are presented as (9) and (10). These functions are
also depicted in Fig.2(a) and (b).

 ܵ ቀݒ, ቁ(ݐ) = ଵଵାషೡ,ೕೖ () (9)

 ܵ ቀݒ, ቁ(ݐ) = ห݊ܽݐℎ (ݒ, ห (10)((ݐ)

We use (10) in order to map velocities of BMOA

algorithm’s agents to probabilities of flipping their position
vectors’ elements. After calculating the probabilities, the
agents update their positions based on the presented rules in
(11).

 If ݀݊ܽݎ < ܵ ቀݒ, ݐ) + 1)ቁ then ݔ, ݐ) + 1) = ݐ݈݊݁݉݁݉ܿ ቀݔ, ,ݔ ቁ (11) else(ݐ) ݐ) + 1) = ,ݔ (ݐ)

According to [8], to achieve a good convergence rate, the

velocity should be limited. So, the maximum velocity for
BMOA in this work is set to 6.

The general steps of BMOA are as follows:
a) All agents are initialized with random values
b) Repeat steps c-g until end condition is met
c) For all agents, magnetic fields and masses are defined

using (3) and (6)
d) Agents’ total forces and accelerations are calculated as (4)

and (5) based on interaction topology
e) Velocities of agents are updated using (7)
f) Probabilities for changing elements of position vectors

are calculated as (10)
g) Update the elements of position vectors based on the rules

in (11).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
 “In order to evaluate the performance of BMOA, it is

applied to 4 standard benchmark functions [10], and the
results are compared with BPSO and GA. Table I lists down
these benchmark functions and the range of their search space.
Fig.3(a), Fig.3(b), Fig.3(c), and Fig.3(d) illustrate them,
Spherical, Rastrigin, Rosenbrock, and Griewank functions,
respectively. Furthermore, function’s dimension is set to 5
(m=5). To represent each continuous variable, 15 bits are
used. It should be noticed that one bit is reserved for the sign
of each functions’ dimension. Therefore, the dimension of
agents are 75 (Dim=m×15).

To further investigate the effect of topology on BMOA,
BMOA1 is implemented based on fully-connected topology,
while BMOA2 is based on the cellular topology.

(a)

(b)

(c)

(d)

Fig. 3. The 2-D versions of benchmark functions: (a) F1; (b) F2; (c) F3; (d)
F4

-5 0 5
0

0.5

1

-5 0 5
0

0.5

1

-5
0

5

-5
0

5
0

50

-5
0

5

-5
0

5
0

5

10

x 104

-5
0

5

-5

0

5
0

50

100

-10
0

10

-10

0

10
0

2

4

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

206

TABLE I: BENCHMARK FUNCTIONS
 Function Range ܨଵ(ݔ) = ଶୀଵݔ [-100,100]m

(ݔ)ଶܨ = ሾ100(ݔାଵ − ଶ)ଶݔ + ݔ) − 1)ଶሿିଵୀଵ [-30,30]m

(ݔ)ଷܨ = ሾݔଶ − (ݔߨ2)ݏ10ܿ + 10ሿୀଵ [-5.12,5.12]m

(ݔ)ସܨ = 14000 ଶݔ − ෑ ݏܿ ൬ݔ√݅൰ + 1ୀଵୀଵ [-600,600]m

As shown in Fig.1(a), in cellular topology, an agent could

interact only with its neighbors. The number of these
neighbors is limited in cellular topology. In this work we let
agents to interact with 4 other agents. According to Fig.1(b),
the fully-connected topology does not have any limitation, so
all agents can interact together without any restriction.

In this paper, our objective is minimization. The global
minimum values for all appeared functions in Table I are 0.

BMOA, BPSO, and GA have several parameters which
should be initialized before running. Table II shows the initial
values of basic parameters for these algorithms.

TABLE II: INITIAL PARAMETERS FOR BMOA, BPSO, AND GA

Algorithm Parameter Value
BMOA

Number of gents ࣋ ࢻ
Max interations
Max velocity
Stoppig criteria

30
1
5.5
500
6
Max iteration

BPSO[11]

Number of articles
C1,C2

W
Max interations
Max velocity
Stoppig criteria

30
2,2
is decreased lineraly from 0.9 to 0.4
500
6
Max interation

GA [12]

Number of individuals
Selection
Crossover(probability)
Mutation(probability)
Max generation
Stoppig criteria

30
Roulette wheel
One-point (0.9)
Uniform (0.005)
500
Max interation

The experimental results are presented in Table III. The

results are averaged over 30 runs and the best results are
indicated in bold type.

TABLE III: MINIMIZATION RESULTS OF FOUR BENCHMARK FUNCTIONS

OVER 30 INDEPENDENT RUNS

F BMOA1 BMOA2 BPSO GA

F1

Std a
Ave b
Med c

11.6676
2.6803
0.065

66.6773
24.7982
0.8535

2.7657
5.2965
4.6684

24.9445
10.0705
2.6534

F2

Std
Ave
Med

62.2039
30.3040
12.8189

4093.7667
1314.4107
299.264

91.8494
130.7784
39.7398

26589.1496
7562.9363
170.3704

F3

Std
Ave
Med

1.0925
1.79
1.9903

1.607
2.6518
2.4597

1.4467
3.4206
3.2541

8.3294
6.9265
4.522

F4

Std
Ave
Med

0.0725
0.0958
0.0726

0.1825
0.2728
0.224

0.1302
0.3873
0.387

0.3223
0.7067
0.7336

a. Indicates standard deviation of best so far solution over 30 runs in the last
iteration
b. Indicates average best so far solution over 30 runs in the last iteration
c. Indicates median best so far solution over 30 runs in the last iteration

For the functions F1 and F2, BMOA1 reaches much
accurate results than BMOA2 and GA. The BMOA1 also
performs better than BPSO. The functions F1 and F2 belong
to family of unimodal functions which are monotonous
functions without any local solution. As shown in Fig.3(a) and
Fig3(b), there is only one global solution for these kinds of
functions. Hence, the results show BMOA2 has a good ability
to exploit the global minimum. Moreover, Fig.4(a) and
Fig.4(b) prove that BMOA1 possesses good convergence rate,
too.

In addition, BMOA2 that uses cellular topology does not
perform as good as BPSO and GA. This could due to several
reasons. In limited interaction of agents of cellular topology,
an agent near a good solution could not attract the other agents
to move toward it. Another reason is related to the
high-dimensional nature of binary optimizations problems. In
binary problems, the problem dimensions are generally higher
than the real ones (in this paper 75). So, the binary
optimization problems are more complex than the real ones.
This complexity needs different topologies. The results show
fully-connected topology is a good topology in this field.

(a)

(b)

(c)

(d)

Fig. 4. Convergence curves of the algorithms on (a) F1; (b) F2; (c) F3; (d) F4

0 100 200 300 400 500
100

102

104

Iteration

A
ve

ra
ge

 b
es

t-s
o-

fa
r

 F1

BMOA1
BMOA2
BPSO
GA

0 100 200 300 400 500
100

105

1010

Iteration

A
ve

ra
ge

 b
es

t-s
o-

fa
r

 F2

BMOA1
BMOA2
BPSO
GA

0 100 200 300 400 500
100

101

102

103

Iteration

A
ve

ra
ge

 b
es

t-s
o-

fa
r

 F3

BMOA1
BMOA2
BPSO
GA

0 100 200 300 400 500
10-1

100

101

Iteration

A
ve

ra
ge

 b
es

t-s
o-

fa
r

 F4

BMOA1
BMOA2
BPSO
GA

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

207

For functions F3 and F4, both BMOA1 and BMOA2
outperform the other algorithms. Meanwhile, BMOA1 shows
the best result. Functions F3 and F4 are multimodal functions
that have many local solutions in comparison with unimodal
functions. Hence, it can be said that both versions of BMOA
have good ability to avoid local minima. Fig.4(c) and Fig.4(d)
illustrate that BMOA1 uses good convergence speed in
multimodal functions, too.

To summarize, results prove BMOA1 and BMOA2 have
better performance than BPSO and GA. In addition, BMOA1
performs better than BMOA2. It can be concluded that the
employed fully-connected topology is more suitable than
cellular topology for the BMOA.

V. CONCLUSION
In this paper, a binary version of MOA called BMOA is

introduced utilizing the original MOA. Two versions of
BMOA with different topologies are developed. In order to
justify the performance of both versions, four benchmark
functions are employed, and the results are compared with
BPSO and GA. The results prove that BMOA with
fully-connected topology has merit among heuristic
optimization algorithms in binary search spaces.
For future studies, it is recommended to use other topologies
in the population-based algorithms such as lbest topology
PSO. It is also suggested to apply BMOA in real optimization
problems to evaluate the efficiencies of BMOA in solving
real world problems like travelling salesman problem.

REFERENCES
[1] J Kennedy and RC. Eberhart, "Particle swarm optimization," in

Proceedings of IEEE international conference on neural networks, vol.
4, 1995, pp. 1942–1948.

[2] JH. Holland, Adaptation in natural and artificial systems. Ann Arbor,
Michigan: The University of Michigan Press, 1975.

[3] S. Kirkpatrick, C. D. Gelati, and M. P. Vecchi, "Optimization by
simulated annealing," Science, vol. 220, pp. 671–680, 1983.

[4] M. Dorigo, V. Maniezzo, and A. Colorni, "The Ant system:
optimization by a colony of cooperating agents," IEEE Trans Syst Man
Cybern B, vol. 26, no. 1, pp. 29-41, 1996.

[5] D. H. Wolpert and W.G. Macready, "No free lunch theorems for
optimization," IEEE Transactions on Evolutionary Computation, vol.
1, no. 1, pp. 67 - 82, 1997.

[6] M. H. Tayarani-N and M.R. Akbarzadeh-T, "Magnetic Optimization
Algorithms a new synthesis," in IEEE Congress on Evolutionary
Computation, 2008, pp. 2659 - 2664.

[7] M. H. Tayarani-N and M.R. Akbarzadeh-T, "Magnetic Optimization
Algorithms a new synthesis," in IEEE Congress on Evolutionary
Computation, 2008, pp. 2659 - 2664.

[8] J. Kennedy and R.C. Eberhart, "A discrete binary version of the
particle swarm algorithm," in IEEE International Conference on
Computational Cybernetics and Simulation, vol. 5, 1997, pp. 4104 -
4108.

[9] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, "BGSA: binary
gravitational search algorithm," Natural Computing, vol. 9, no. 3, pp.
727-745, 2009.

[10] X. Yao, Yong Liu, and Guangming Lin, "Evolutionary programming
made faster," IEEE Transactions on Evolutionary Computation, vol. 3,
no. 2, pp. 82 - 102, 1999.

[11] R. C. Eberhart and Y. Shi, "Particle swarm optimization: developments,
applications and resources," in Proc. Congress on Evolutionary
Computation 2001, Seoul, Korea, 2001.

[12] DE Goldberg, Genetic algorithms in search, optimization, and
machine learning.: Addison-Wesley, Reading, MA, 1989.

SeyedAli Mirjalili was born in Yazd, Iran on April 21,
1986. In 2008, he received B.Sc degree in Software
Engineering from Yazd University, Yazd, Iran. He
obtained M.Sc degree in Computer Science from
Universiti Teknologi Malaysia (UTM), Johor Bahru,
Malaysia, in 2011.
He is currently a Ph.D student at School of Information
and Communication Technology, Griffith University,
Nathan, Queensland, Australia. His research interests

include Multi-objective Optimization, Robust Optimization, Evolutionary
Algorithms, and Artificial Neural Networks.

Siti Zaiton Mohd Hashim obtained her BSc in
Computer Science in 1990, MSc in Computer Science
in 1997, and PhD (Soft Computing in Control) in 2005
from University of Hartford, USA, University of
Bradford, UK, and Sheffield University, UK
consecutively. Her research interests are Soft
Computing and Intelligent Systems. She is currently
the head of Office of Postgraduate Studies, Faculty of
Computer Science and Information System, Universiti

Teknologi Malaysia. She is now actively doing research on RFID
middleware and soft computing fundamental research.

International Journal of Machine Learning and Computing, Vol. 2, No. 3, June 2012

208

