
  

  
Abstract—Recently, the behavior of natural phenomena has 

become one the most popular sources for researchers in to 
design optimization algorithms. One of the recent heuristic 
optimization algorithms is Magnetic Optimization Algorithm 
(MOA) which has been inspired by magnetic field theory. It has 
been shown that this algorithm is useful for solving complex 
optimization problems. The original version of MOA has been 
introduced in order to solve the problems with continuous 
search space, while there are many problems owning discrete 
search spaces. In this paper, the binary version of MOA named 
BMOA is proposed. In order to investigate the performance of 
BMOA, four benchmark functions are employed, and a 
comparative study with Particle Swarm Optimization (PSO) 
and Genetic Algorithm (GA) is provided. The results indicate 
that BMOA is capable of finding global minima more accurate 
and faster than PSO and GA. 
 

Index Terms—Optimization algorithm, evolutionary 
algorithm, genetic algorithm, particle swarm optimization, 
PSO. 
 

I. INTRODUCTION 
Recently, many heuristic evolutionary optimization 

algorithms have been developed in order to solve complex 
computational problems. Some of them are Particle Swarm 
Optimization (PSO) [1] , Genetic Algorithm (GA) [2], 
Simulated Annealing (SA) [3], and Ant Colony Optimization 
(ACO) [4]. It has been proven that there is no algorithm 
which could perform general enough to solve all optimization 
problems [5]. In other words, some of these algorithms may 
possess better solutions for some specific problems better and 
worse for others. 

Magnetic Optimization Algorithm (MOA) is a novel 
heuristic optimization algorithm, inspired from the principles 
of magnetic field theory [6]. It has been proven that this 
algorithm has a good performance in solving optimization 
problems. In this algorithm, the search is carried out by 
magnetic particles as search agents while they interact with 
each other based on electromagnetic force law. The original 
version of MOA has been designed in order to solve 
problems with continuous real search spaces (domains) 
[6],[7].  

There are many optimization problems which have 
discrete binary search spaces. They need binary algorithms to 
be solved. In this paper, a binary version of MOA is 
introduced called BMOA in order to solve these kinds of 
problems. BMOA owns magnetic particles, travelling in 
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discrete binary search spaces by changing the dimensions of 
their positions from “0” to “1” and vice versa. 

The rest of the paper is organized as follow. Section 2 
presents a brief introduction to Magnetic Optimization 
Algorithm. Section 3 discusses the basic principles of binary 
version of MOA. The experimental results are demonstrated 
in section 4. Finally, section 5 concludes the work and 
suggests some researches for future works. 

 

II. THE MAGNETIC OPTIMIZATION ALGORITHM 
Electromagnetic force is one of the four fundamental 

forces in the universe. This kind of force is available among 
electromagnetic particles which is directly proportional to the 
distance between them. In other words, this force is decreased 
by increasing distance between two magnetic particles. The 
electromagnetic force is the basic principle which MOA is 
inspired from [6]. 

In fact, MOA can be considered as a collection of search 
agents, magnetic particles, whose have magnetic fields and 
masses proportional to their values of fitness function. 
During generations, agents attract each other by the 
electromagnetic forces between them. The intensities of these 
forces are proportional to the magnetic fields and distances of 
agents. 

The MOA has been mathematically modeled as follows 
[6]: 

Suppose there is a system with N agents. The algorithm 
starts with randomly placing all agents in a search space. 
During all epochs, the electromagnetic force from u,v-th 
agent on  i,j-th agent at a specific time t is defined as follow: 

 

(݂௜,௝),(௨,௩)௞ (ݐ) =  ஻ೠ,ೡ(௧)஽ቀ௫೔,ೕೖ (௧),௫ೠ,ೡೖ (௧)ቁ ൫ݔ௨,௩௞ (ݐ) − ௜,௝௞ݔ  ൯             (1)(ݐ)

 
where x୧୨୩(t) is the k-th dimension of i,j-th agent at iteration t, B୳,୴(t) is the magnetic field of agent u,v at iteration t,  x୧,୨୩ (t) 
and x୳,୴୩ (t) are k-th dimensions of i,j-th and u,v-th agents at 
iteration t, and D is the function for calculating distance 
between agents. 

The D is calculated as (2):  
௜,௝௞ݔ൫ܦ  ,(ݐ) ௨,௩௞ݔ ൯(ݐ) = ଵ௠ ∑ ௫೔,ೕೖ (௧)ି௫ೠ,ೡೖ (௧)௨ೖି௟ೖ௠௞ୀଵ                      (2) 

 
where u୩ and l୩ are the upper and lower bounds of the k-th 
dimension of the search space, respectively, and m is the 
dimension of the search space. 

Note that two indices (i,j) are used to indentify 
two-dimension indexing cellular topology of original MOA 
as shown in Fig.1(a)[6].  
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                      (a)                                     (b) 

Fig. 1. Two interaction topologies: (a) cellular; (b) fully-connected 

Magnetic field of i,j-th agent at the iteration t is calculated 
as (3): 

 B୧,୨ = Fitness୧,୨(t)                           (3) 
 
where Fitness(t) might be any fitness function to solve. 

In original MOA, the magnetic agents interact in a lattice 
(cellular topology). The employed lattice in [6] is shown in 
Fig.1(a). The topology defines which agents could affect 
each other by electromagnetic force.  

An alternative to cellular topology is fully-connected 
topology. As it can be seen in Fig.1(b), all agents can 
interrelate. Fully-connected topology is utilized in this work 
due to some limitations of cellular topology like low and 
limited interaction between agents. 

In a problem space with dimension m, the resultant force 
that acts on i,j-th agent is calculated as (4):  

(ݐ)௜,௝௠ܨ  =  ∑ (݂௜,௝),(௨,௩)௠ ௨,௩ ௜௡ ே೔ೕ(ݐ)                    (4) 

 
where ௜ܰ௝ is the set of neighbors of the agent i,j. 

According to the law of motion, the acceleration of an 
agent is proportional to the resultant force and inverse of its 
mass, so the acceleration of all agents should be calculated as 
(5): 

 ܽ௜,௝௞ (ݐ) =  ி೔,ೕೖ (௧)ெ೔,ೕ(௧)                     (5) 

 
where ܯ௜,௝(ݐ) is the mass of i,j-th agent at iteration t. 

Masses of agents are calculated as (6): 
(ݐ)௜,௝ܯ  = ߙ + ߩ ×  (6)                          (ݐ)௜,௝ܤ

 
where ߙ and ߩ are constant values. 

The velocity and position of agents are updated as follows: 
௜,௝௞ݒ  ݐ) + 1) = ݀݊ܽݎ × ௜,௝௞ݒ  (ݐ) + ܽ௜,௝௞  (7)            (ݐ)

௜,௝௞ݔ  ݐ) + 1) = ௜,௝௞ݔ (ݐ) ௜,௝௞ݒ + ݐ) + 1)                (8) 

 

where  ݀݊ܽݎ is a random number in the interval [0,1]. 
In MOA, at first all agents are initialized with random 

values. Each agent is considered as a candidate solution. The 
following steps continuously run until meeting an end 
criterion. Magnetic fields and masses for all agents are 
defined using (3) and (6). After that, agents’ total forces and 
accelerations are calculated as (4) and (5), respectively. Then, 
the velocities and positions are updated using (7) and (8). 

To see how MOA is efficient, some remarks are noted: 
 

• The quality of solution (fitness) is considered in the 
velocity updating procedure. 

• In updating the agents’ velocities, the velocity of the 
previous iteration is considered. This consideration 
makes agents capable of exploring new areas of a search 
space. 

• An agent near a good solution has a high intense magnetic 
field. Higher intensity of magnetic field causes greater 
electromagnetic attraction force. Therefore, agents tend 
to move toward the best agent. 

• Because masses of agents are a function of magnetic field, 
agents near good solutions become heavy. Hence, they 
move slowly and search the search space more locally.  

• Original MOA uses cellular topology to define the 
interrelation of agents. Hence, a trapped agent in a local 
optimum could not attract the other agents to be trapped 
in the same local optimum. 

 
The above-mentioned remarks make MOA powerful 

enough to solve wide range optimization problems [6]. 
However, the original MOA is a continuous algorithm which 
is not capable of solving binary problems. 

 

III. BINARY MAGNETIC OPTIMIZATION ALGORITHM 
A binary search space could be considered as a hypercube. 

The agents of a binary optimization algorithm might only 
shift to nearer and farther corners of the hypercube by 
flipping various numbers of bits [8]. Hence, for designing 
binary version of MOA, some basic concepts such as velocity 
and position updating process should be modified. 

In the original MOA, agents could move around the search 
space because of having position vectors with continuous real 
domain. Consequently, the concept of position updating can 
be easily implemented for agents adding velocities to 
positions using (8). However, the meaning of position 
updating is different in a discrete binary space. In binary 
space, due to dealing with only two numbers (“0” and “1”), 
the position updating process cannot be done using (8). 
Therefore, we have to find a way to use velocities to change 
agents’ positions from “0” to “1” or vice versa. In other 
words, we have to find a link between velocity and position, 
as well as revise (8). 

Basically, in discrete binary space, the position updating 
means a swithcing between “0” and “1” values. This 
switching should be done based on velocities of agents. The 
question here is that how the concept of velocity in real space 
should be employed in order to update positions in binary 
space. According to [8] and [9], the idea is to change position 
of an agent with the probability of its velocity. In order to do 
this, a transfer function is necessary to map the velocities 
values to probability values for updating the positions. 
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                              (a)                                               (b) 

Fig. 2. Two transfer functions: (a) sigmoid; (b) tangent hyperbolic 

As mentioned above, transfer functions define the 
probability of changing position vector’s elements from “0” 
to “1” and vice versa. Transfer functions force agents to move 
in a binary space. According to [9], some concepts should be 
taken into account for selecting a transfer function in order to 
map velocity values to probability values. 

The transfer function should be able to provide a high 
probability of changing the position for a large absolute value 
of the velocity. It should also present a small probability of 
changing the position for a small absolute value of the 
velocity. Moreover, the range of a transfer function should be 
bounded in the interval [0,1] and increased with the 
increasing of velocity. The functions that have been used in 
[8] and [9] are presented as (9) and (10). These functions are 
also depicted in Fig.2(a) and (b). 

 ܵ ቀݒ௜,௝௞ ቁ(ݐ) = ଵଵା௘షೡ೔,ೕೖ (೟)                            (9) 

 ܵ ቀݒ௜,௝௞ ቁ(ݐ) = ห݊ܽݐℎ (ݒ௜,௝௞  ห                   (10)((ݐ)

 
We use (10) in order to map velocities of BMOA 

algorithm’s agents to probabilities of flipping their position 
vectors’ elements. After calculating the probabilities, the 
agents update their positions based on the presented rules in 
(11). 

 If ݀݊ܽݎ < ܵ ቀݒ௜,௝௞ ݐ) + 1)ቁ      then ݔ௜,௝௞ ݐ) + 1) = ݐ݈݊݁݉݁݌݉݋ܿ ቀݔ௜,௝௞ ௜,௝௞ݔ ቁ           (11) else(ݐ) ݐ) + 1) = ௜,௝௞ݔ     (ݐ)

     
According to [8], to achieve a good convergence rate, the 

velocity should be limited. So, the maximum velocity for 
BMOA in this work is set to 6. 

The general steps of BMOA are as follows: 
a) All agents are initialized with random values 
b) Repeat steps c-g until end condition is met 
c) For all agents, magnetic fields and masses are defined 

using (3) and (6) 
d) Agents’ total forces and accelerations are calculated as (4) 

and (5) based on interaction topology 
e) Velocities of agents are updated using (7) 
f) Probabilities for changing elements of position vectors 

are calculated as (10) 
g) Update the elements of position vectors based on the rules 

in (11). 
 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
 “In order to evaluate the performance of BMOA, it is 

applied to 4 standard benchmark functions [10], and the 
results are compared with BPSO and GA. Table I lists down 
these benchmark functions and the range of their search space. 
Fig.3(a), Fig.3(b), Fig.3(c), and Fig.3(d) illustrate them, 
Spherical, Rastrigin, Rosenbrock, and Griewank functions, 
respectively. Furthermore, function’s dimension is set to 5 
(m=5). To represent each continuous variable, 15 bits are 
used. It should be noticed that one bit is reserved for the sign 
of each functions’ dimension. Therefore, the dimension of 
agents are 75 (Dim=m×15).  

To further investigate the effect of topology on BMOA, 
BMOA1 is implemented based on fully-connected topology, 
while BMOA2 is based on the cellular topology. 

 
 
 
 
 
(a) 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
(d) 
 
 
 
 
 
 

Fig. 3. The 2-D versions of benchmark functions: (a) F1; (b) F2; (c) F3; (d) 
F4 
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TABLE I: BENCHMARK FUNCTIONS 
 Function Range ܨଵ(ݔ) = ෍ ௜ଶ௡௜ୀଵݔ  [-100,100]m 

(ݔ)ଶܨ = ෍ ሾ100(ݔ௜ାଵ − ௜ଶ)ଶݔ + ௜ݔ) − 1)ଶሿ௡ିଵ௜ୀଵ  [-30,30]m 

(ݔ)ଷܨ = ෍ ሾݔ௜ଶ − (௜ݔߨ2)ݏ݋10ܿ + 10ሿ௡௜ୀଵ  [-5.12,5.12]m 

(ݔ)ସܨ = 14000 ෍ ௜ଶݔ − ෑ ݏ݋ܿ ൬ݔ௜√݅൰ + 1௡௜ୀଵ௡௜ୀଵ  [-600,600]m 

 
As shown in Fig.1(a), in cellular topology, an agent could 

interact only with its neighbors. The number of these 
neighbors is limited in cellular topology. In this work we let 
agents to interact with 4 other agents. According to Fig.1(b),  
the fully-connected topology does not have any limitation, so 
all agents can interact together without any restriction. 

In this paper, our objective is minimization. The global 
minimum values for all appeared functions in Table I are 0. 

BMOA, BPSO, and GA have several parameters which 
should be initialized before running. Table II shows the initial 
values of basic parameters for these algorithms.  

 
TABLE II: INITIAL PARAMETERS FOR BMOA, BPSO, AND GA 

Algorithm Parameter Value 
BMOA 
 
 
 

Number of gents ࣋ ࢻ 
Max interations 
Max velocity 
Stoppig criteria 

30 
1 
5.5 
500 
6 
Max iteration 

BPSO[11] 
 
 
 

 

Number of articles 
C1,C2 

W 
Max interations 
Max velocity 
Stoppig criteria 

30 
2,2 
is decreased lineraly from 0.9 to 0.4
500 
6 
Max interation 

GA [12] 
 
 
 

Number of individuals 
Selection 
Crossover(probability) 
Mutation(probability) 
Max generation 
Stoppig criteria 

30 
Roulette wheel 
One-point (0.9) 
Uniform (0.005) 
500 
Max interation 

 
The experimental results are presented in Table III. The 

results are averaged over 30 runs and the best results are 
indicated in bold type.  

 
TABLE III: MINIMIZATION RESULTS OF FOUR BENCHMARK FUNCTIONS 

OVER 30 INDEPENDENT RUNS 

F  BMOA1 BMOA2 BPSO GA 

F1 
 
 

Std a 
Ave b 
Med c 

11.6676 
2.6803 
0.065 

66.6773 
24.7982 
0.8535 

2.7657 
5.2965 
4.6684 

24.9445 
10.0705 
2.6534 

F2 
 
 

Std 
Ave 
Med 

62.2039 
30.3040 
12.8189 

4093.7667 
1314.4107 
299.264 

91.8494 
130.7784 
39.7398 

26589.1496
7562.9363 
170.3704 

F3 
 
 

Std 
Ave 
Med 

1.0925 
1.79 
1.9903 

1.607 
2.6518 
2.4597 

1.4467 
3.4206 
3.2541 

8.3294 
6.9265 
4.522 

F4 
 
 

Std 
Ave 
Med 

0.0725 
0.0958 
0.0726 

0.1825 
0.2728 
0.224 

0.1302 
0.3873 
0.387 

0.3223 
0.7067 
0.7336 

a. Indicates standard deviation of best so far solution over 30 runs in the last 
iteration 
b. Indicates average best so far solution over 30 runs in the last iteration 
c. Indicates median best so far solution over 30 runs in the last iteration 

For the functions F1 and F2, BMOA1 reaches much 
accurate results than BMOA2 and GA. The BMOA1 also 
performs better than BPSO. The functions F1 and F2 belong 
to family of unimodal functions which are monotonous 
functions without any local solution. As shown in Fig.3(a) and 
Fig3(b), there is only one global solution for these kinds of 
functions. Hence, the results show BMOA2 has a good ability 
to exploit the global minimum. Moreover, Fig.4(a) and 
Fig.4(b) prove that BMOA1 possesses good convergence rate, 
too. 

In addition, BMOA2 that uses cellular topology does not 
perform as good as BPSO and GA. This could due to several 
reasons. In limited interaction of agents of cellular topology, 
an agent near a good solution could not attract the other agents 
to move toward it. Another reason is related to the 
high-dimensional nature of binary optimizations problems. In 
binary problems, the problem dimensions are generally higher 
than the real ones (in this paper 75). So, the binary 
optimization problems are more complex than the real ones. 
This complexity needs different topologies. The results show 
fully-connected topology is a good topology in this field. 
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Fig. 4. Convergence curves of the algorithms on (a) F1; (b) F2; (c) F3; (d) F4 
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For functions F3 and F4, both BMOA1 and BMOA2 
outperform the other algorithms. Meanwhile, BMOA1 shows 
the best result. Functions F3 and F4 are multimodal functions 
that have many local solutions in comparison with unimodal 
functions. Hence, it can be said that both versions of BMOA 
have good ability to avoid local minima. Fig.4(c) and Fig.4(d)  
illustrate that BMOA1 uses good convergence speed in 
multimodal functions, too. 

To summarize, results prove BMOA1 and BMOA2 have 
better performance than BPSO and GA. In addition, BMOA1 
performs better than BMOA2. It can be concluded that the 
employed fully-connected topology is more suitable than 
cellular topology for the BMOA. 

 

V. CONCLUSION 
In this paper, a binary version of MOA called BMOA is 

introduced utilizing the original MOA. Two versions of 
BMOA with different topologies are developed. In order to 
justify the performance of both versions, four benchmark 
functions are employed, and the results are compared with 
BPSO and GA. The results prove that BMOA with 
fully-connected topology has merit among heuristic 
optimization algorithms in binary search spaces. 
For future studies, it is recommended to use other topologies 
in the population-based algorithms such as lbest topology 
PSO. It is also suggested to apply BMOA in real optimization 
problems to evaluate the efficiencies of BMOA in solving 
real world problems like travelling salesman problem. 
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