
  

  
Abstract—A new algorithm is presented to automatic 

generate conforming Delaunay triangulation of non-manifold 
geometric domains with acute angle features. The algorithm is 
based on Delaunay refinement technique, which often failed to 
terminate when there are small angles in input geometry. By 
assigning proper weights to vertices on sharp-angled elements 
and take place Delaunay triangulation with weighted Delaunay 
triangulation, the algorithm can accept any inputs without any 
bound on angle and without setting any protected area and 
adding any new vertices near the sharp-angled elements. The 
algorithm also guarantees bounded circumradius to shortest 
edge length for all elements except the ones near small input 
angles. The proof of terminator and some computation results 
are also presented. 
 

Index Terms—Algorithm, computational geometry, 
triangulation, conforming delaunay triangulation, weighted 
vertex, acute angles. 
 

I. INTRODUCTION 
Conforming Delaunay triangulation (CDT) is an important 

topic both in theoretically computational geometry and in 
practical applications of finite element method, scientific 
visualization, geometric modeling etc. Now most CDT 
algorithms are based on local transformations like 
edges/faces swapping (or flipping) [1-3] or Delaunay 
refinement technique [4-5]. For the several advantages, such 
as easy to state and implement, can offer good mathematical 
guarantee on mesh quality, and convenient for being 
extended to high dimensions, the Delaunay refinement 
technique become more and more popular both in theory and 
in practice.  

Chew[4] and Ruppert[5] first present the Delaunay 
refinement technique in 2D in early of 1990’s, which is used 
to mesh an input PSLG (Planar Straight Line Graph)[6] in 
2D with Delaunay triangles, and Shewchuk[7] extended it to 
input PLC (Piecewise Linear Complex) [7] in 3D. But, there 
are still some shortcomings for Delaunay refinement. First, 
above Delaunay algorithms works only with input domain 
where no angle is smaller than a bounded value. Second, in 
3-dimension, a kind of poor quality tetrahedron called 
“Sliver” couldn’t be eliminated by bounded radius-ratio, 
which is the ratio of element’s circumradius to its smallest 
edge length and can be guaranteed in Delaunay refinement. 
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Especially, the first problem limited the applicability of the 
Delaunay refinement technique.  

So, for this reason, some remarkable efforts have been 
done to handle the input small angle for Delaunay refinement. 
In the planar case, Ruppert[5] provided two heuristic 
methods, one is a preprocessing step called “corner-lopping” 
to isolate small angle, and another is called “concentric 
circular shells” which split segment at its vertex’s concentric 
circular shells whose radius are power of two. Based on 
above concentric circular shells, Shewchuk[9] presented an 
alternation called “Terminator”, which produces the output 

mesh has most angles are greater than ( )1 / 2 2arcsin , has 

poor quality triangle only in the vicinity of small input angles 
and also offers guaranteed termination. Then, Miller et al[10] 
showed an “adaptive” version of Ruppert’s algorithm with 
concentric shell splitting, the algorithm outputs meshes 
where all output angles are greater than 26.45°, except those 
whose shortest edge subtends an small input angle, and also 
has termination and grading guarantees. In those algorithms, 
all the segments incident to the endpoints that bear the small 
input angle need to be split to power of two lengths and when 
a new inserted point encroached those segment, some rules 
on splitting encroached segment are applied due to the 
relative position of point to the endpoint. Furthermore, Yang 
Qin[11] also presented an alternative method based on setting 
control circle around the small input angles, which gives a 
bounded angle about 20.7º except for the small input angles .  

In 3D case, Shewchuk[8] first proposed the directional 
object for solving this problem and presented a method for 
non-manifold input without guarantees on mesh quality. 
Murphy[12] also presented a algorithm claimed for any PLC 
input, but it produces too many additional points around the 
small input angles, then Cohen-Steiner et al [13] improved it 
but without any quality guarantee. Finally in 2004, Steven 
Pav et al[14] keep on improving that algorithm and presented 
an good Delaunay refinement for non-manifold inputs. In 
addition, S.W.Cheng[15] has ever presented a significant 
theoretical improved algorithm for small angles, but it is hard 
to implement, so, a simplified version of this algorithm[16] is 
given with constant bounded radius-edge ratio and some 
implemented examples, but it handles only 2-manifold 
boundaries. Yang Qin [11] also proposed a improvement 
method on 3D case for any input angles with good guarantee 
for termination.  

In all above algorithm in 3D, A similarly method can be 
found. They all need to construct a protecting region around 
the vertices and the edges where exist the small input angle, 
such as Cohen-Steiner’s protected area, S.W.Cheng’s buffer 
zone and Yang Qin’s control column etc., and when a new 
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point is added inside those protecting regions, some new 
splitting rules which is different from traditional Delaunay 
refinement are applied to insure conformality of the mesh to 
the input. Those new splitting rules for protecting region 
around small input angle not only complicate the implement 
of those algorithms and take more time consume, also import 
instability to algorithms especially when they are used for 
complex non-manifold PLC inputs. The later problem is also 
the reason of why there is only one effective example for 
their algorithms. So, now, how to mesh 3D domain with 
small angles, especially with complex non-manifold 
geometry, and with guaranteed quality and without adding 
many additional points is still an open question.  

In this paper, we present a new algorithm for non-manifold 
domains with small angles. The algorithm is also based on the 
Delaunay refinement technique. But, it just simply assign 
some weight value to vertices that located on the 
sharp-angled input, and replace the origin Delaunay 
refinement algorithm with weighted Delaunay refinement. 
And we also give a proof of termination and shape quality, 
and some implemented complex examples. In our algorithms 
we bound only the orthoradius -to-shortest-edge ratio of the 
output mesh that will leave behind poor quality “sliver” but 
there are still have some methods proffered to deal with 
slivers[17-18].  

 

II. PRELIMINARIES 
There are some definitions which will be used later in 

content, and they have been introduced in earlier other’s 
works. 

A.  Local Feature Size & Minimum Distance  
This concept is first introduced by Ruppert[5], and it is 

used to formalize the idea of sparest possible spacing and is a 
basis definition in this area. Given a PSLG or PLC P, the 
local feature size at a point p, lfs (p), is the radius of the 
smallest disk or sphere centered at p that intersect two 
non-incident elements of P. Also, we define the minimum 
distance at a point p, md(p), is the radius of the smallest disk 
or sphere center at p that intersect two elements of P, but at 
least one of the two elements is non-incident with p. Here if 
the intersection of two elements is non-empty, we call the two 
elements is incident. Shown in Fig.1a 
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Fig.1.  (a) Local feature size and minimum size,  (b) Weighted Delaunay 
triangulation 

 

B.  Weighted Points & Weight Delaunay Triangulation  
A weighted point p̂ =(p,P2) is the disk or sphere with 

center p and radius P. The weighted or power distance 
between two weighted points p̂  and m̂  is 

( ) 2 2 2ˆ ˆ,p m p m P Mπ = − − − . We call p̂  and m̂  

orthogonal if ( )ˆ ˆ, 0p mπ = . That mean the two spheres meet 

in a circle and the two tangent planes at every point of this 
circle form a right angle. 

 If π ( p̂ , m̂ )>0, we call p̂  and m̂  further than 
orthogonal. Let τ be a simplex of dimension one or more, 
the smallest orthoshpere of τ is the smallest sphere of all 
spheres that are orthogonal to each vertex of τ . If all vertices 
of τ are unweighted, its smallest orthosphere is equal to its 
diametral sphere. And for a triangle in 2D or a tetrahedron in 
3D, its orthosphere is unique. We also call the center and 
radius of the smallest orthosphere of any simplex as its 
orthocenter and orthoradius respectively. 

C.  Quality Measures 
For a triangle or tetrahedron, we know one of its quality 

factor is radius-edge ratio, which is the ration of it 
circumradius to its shortest edge length. In our paper, for the 
triangle or tetrahedron whose vertices may be a weighted 
point, we define the orthoradius-edge ratio ( ) min/t OR Lρ = as 

its new quality factor, where OR and Lmin are the orthoradius 
and the shortest edge length of t.  

III. SMALL ANGLES PROBLEM 
According to the theory of Voronoi diagram and its dual 

Delaunay triangulation, it can be found that the fundamental 
idea of Delaunay refinement for conformity is from next two 
lemmas:  
LEMMA 3.1 For an edge e of a PSLG or PLC P with vertex 
set V, if there exists a diametral circle/sphere of e containing 
no points of V in its interior, and then e must be an edge of 
Delaunay triangulation of V.  
LEMMA 3.2 For a triangular face f of a PLC P with vertex 
set V, if there exist a equatorial sphere of f containing no 
points of V in its interior, and then f must be a face of 
Delaunay triangulation of V.  

So, in the process of Delaunay refinement, each edge is 
initially represented by one sub-segment, and if one 
sub-segment doesn’t have empty diametral circle/sphere, 
which is called as encroached, it need to be split at its 
midpoint to two sub-segments, this process will stop until all 
sub-segments have empty diametral circle/sphere. Similarly, 
each input facet is first subdivided into triangular faces called 
sub-facets, if one sub-facet doesn’t have empty equatorial 
sphere, it also need to be subdivided by inserted its 
circumcenter until no such sub-facet exist. As a result, when 
there are some small angles in input PSLG or PLC, an endless 
cycle of mutual encroachment may produce ever-shorter 
sub-segments incident to the apex of the small angle, as 
shown in Fig.2.  

 
Fig. 2. Endless mutual encroachments 

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

157



  

That problem has been found for three types of input 
angles, edge-edge angle, edge-facet angle and facet-facet 
angle. The edge-edge angle is defined as the minimum angle 
in 2D or 3D between two incident edges. The edge-facet 
angle is the angle between an edge e and a facet f which 
sharing a common point o in 3D, and it is the minimum angle 
of all possible angle ∠mon, where m∈e, n∈f, n≠o, as 
shown in Fig.3. For the facet-facet angle, if the two facets f1 
and f2 shared an common edge e, the facet-facet angle is the 
minimum dihedral angle between two facets, and if f1 and f2 
just shared a common point p, the facet-facet angle actually is 
the minimum angle of all possible angles among the two 
facet’s boundaries and the two facets, as shown in Fig.4.  
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Fig. 3. The definition of edge-facet angle 
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Fig. 4. The definition of facet-facet angle 

 
In some previous works, Ruppert has presented the 

minimum input angle accepted by origin Delaunay 
refinement method is / 2π , and Shewchuk extend it to 

/ 3π  for 2D case, and / 2π  for 3D case. Yang Qin[11] has 
carefully analyzed this threshold, and presented a sufficient 
condition for termination of Ruppert’s Delaunay refinement 
method:  
LEMMA 3.3 In input PSLG or PLC, if all edge-edge angles 
are greater than and equal to / 3π , all edge-facet angles 
are greater than and equal to ( )arccos 2 / 4 , and all 

facet-facet angles are greater than and equal to / 2π , then 
the Delaunay refinement must terminate.  

Because lemma 3.3 has been proved as a sufficient 
condition for Delaunay refinement, so in paper, for any input 
point, if there are some input edge and facet incident to this 
point having edge-edge angles less than / 3π , or having 
edge-facet angles less than ( )arccos 2 / 4 , we call this input 

point as sharp vertex. For any input edge, if there are some 
incident facets have facet-facet angles less than / 2π , we 
call it as sharp edge, and the endpoint of sharp edge is also 
set as sharp vertex.  

 

IV. WEIGHT FOR SMALL INPUT ANGLE 
In previous works, different but similar methods have been 

developed to deal with small angle problem, in such method, 
they all set some protected area around the sharp element, 
such as Rupper and Shewchuk’s concentric circular shells, 
David Cohen-Steiner’s protecting balls, S.W.Cheng’s buffer 
zone and apply new split rule when new added located in 

protected area, such as Shewchuk’s splitting sub-segment 
cluster into same length, Cohen-Steiner’s “split-on-a-sphere” 
strategy and S.W.Cheng’s splitting shield sub-segments or 
sub-facets. All of above techniques have only one purpose, 
and that is to avoid the endless cycle by prevented the new 
point from being added too near the sharp elements.  

In our research work, we have found there are some good 
properties of weighted point and its weight circle, and those 
properties is similar with the above improvements and can be 
used to solve simply the small angle problem. We first 
introduce those properties below:  
LEMMA 4.1 For an edge e, if the intersection of two weight 
circles/spheres of its two endpoints a and b is empty, then the 
orthocenter o of e must be located on e and never be 
contained by any weight circle/sphere of a and b.  
LEMMA 4.2 For a triangle t, if there is one vertex of t whose 
weight sphere don’t intersect with weight spheres of other 
two vertices of t, then the orthocenter of t must be on the same 
plane with t and not be contained by weight sphere of any 
vertex of t.  

According to related definition in section 2, above two 
lemmas is easy to be proved.  

The case of mutual encroachment often occurs for the 
input elements which incident to a sharp angle, so how to 
stop this process and avoid an endless cycle is must. With the 
above two properties of weighted simplex, we can found that 
if we assign a weight to the point in the sharp element, and 
when the refinement on that element began, the new add 
point never will be more and more close to the sharp element, 
so the endless cycle will never happen.  

According above thought, we get a weight assignment rule 
for sharp element in input PSLG or PLC:  
1. For the sharp input point a, we assign its weight wa 

as:wa=(w·lfs(a))2，where lfs(a) is the local feature of a in 
input PSLG or PLC and w is an constant factor and 
should less than 0.5. 

2. For the sharp input edge e, when it or its sub-segment need 
to divided by its orthocenter, we set the current divided 
sub-segment as s, its orthoradius is rs, its orthocenter 
point is o, so we assign o’s weight wo as: wo = 
min(rs

2,(w·md(o))2), where md(o) is minimum distance 
of o, and w should be less than 0.5. 
 

V. ALGORITHM 
Typically, we give the description of our weighted 

Delaunay refinement method for small input angle in 3D case 
below:  

Firstly, we get an input PLC X and compute all sharp 
vertices and sharp edges, for sharp vertices, we set the 
corresponding weighted to them as above mentioned, and for 
sharp edges, we just assign a sharp flag to them.  

Because there are some weighted vertices in input after 
above setting, we need to use weighted Delaunay 
triangulation in later algorithm instead origin Delaunay 
triangulation under Euclidean distance. In weighted 
algorithm, a sub-segment or a triangular sub-facet is 
encroached if a vertex other than its endpoints or its vertices 
has weighted or power distance less than or equal to the 
power distance between its orthocenter and its vertex.  
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After initialized weighted setting, another important thing 
is to subdivide the facets in input PLC into triangular faces in 
advance. That subdivision actually is a 2D process of our 
algorithm in the plane the facet located. In that process, the 
facet and other coplanar vertices and edges in PLC are treat 
as an input PSLG for 2D algorithm, and It is worth to notice 
that when splitting the boundary of facet and this boundary 
edge is a sharp edge, its orthocenter edge must be set proper 
weight before inserting it to mesh.  

Then, our algorithm can begin with the weighted Delaunay 
tetrahedralization WDT(X) of the vertices of X which include 
input vertices, endpoints of input edges and mesh vertices of 
facet’s triangular mesh. Some segments and facets of X may 
be missing from the tetrahedralization, in which case their 
recovery is aided by the insertion of additional vertices 
(while maintaining the weighted Delaunay property). Vertex 
insertion is governed by two rules:  
1. If a sub-segment is encroached and is missing in the 
WDT(X), as it should be split immediately by inserting its 
orthorcenter, and if the sub-segment is a belong to a sharp 
edge, its orthocenter should have weight as mentioned in 
section 4. 
2. If a triangular sub-facet is encroached and is missing in 
the WDT(X), its orthocenter also needs to be inserted into 
WDT(X). However, if the new vertex would encroach upon 
any sub-segment, it is not inserted, and instead all the 
sub-segment it would encroach upon is split as step 1. 

For quality, our algorithm iteratively inserts orthocenter of 
poor quality tetrahedron that have orthoradius-edge ratio 
above a threshold. However, if the new vertex would 
encroach upon any sub-segment or sub-facet, then it is 
rejected and instead all the encroached elements need to be 
subdivided. As sequence above, all encroached sub-segments 
are given priority over encroached sub-facets, which have 
priority over poor quality tetrahedron.  

Once every missing segment is represented by a 
contiguous linear sequence of edges of tetrahedralization, the 
missing facets can be recovered by ensuring conformality for 
all segments, and just after all missing segments and facets 
have been recovered, the poor quality tetrahedron can be 
eliminated by inserting its orthocenter with operating in 
conjunction with above two ensue. The weighted Delaunay 
property of the tetrahedralization is maintained throughout 
all the remaining vertex insertions.  

 

VI. ALGORITHM ANALYSIS 
According to above illustration about weighted method, 

because the sharp vertices or sharp edges will be covered by 
weight circle/sphere of vertices on its at the extreme case, 
there aren’t points too near to the sharp element and the 
endless cycle of mutual encroachment will never happen. So, 
the processing of recovery for input edges or facets will 
terminate.  

In this part, we focus on the termination of mesh quality 
improvement, and gives quality bounded orthoradius-edge 
ratio for termination. 
THEROEM 6.1 For 2D or 3D case of our algorithms, if the 
threshold B for orthoradius-edge ratio of triangles 
/tetrahedrons is larger than 2 ，then during the quality 

improvement, our algorithm will terminate with no 
triangulation edge shorter than the shortest edge.  
Proof. For 2D algorithm, we have two cases when inserting 
the orthocenter of poor quality triangle t: 
1) If the orthocenter doesn’t encroach any segment, it will 
insert into the triangulation. Now, let C be the smallest t, o is 
its orthocenter and r is its orthoradius, lmin is the smallest edge 
length of t. So we have r/lmin > B. When point o is inserted 
into the triangulation, according to the property of weighted 
Delaunay triangulation and definition of weighted distance, 
the smallest length of all new edges is larger than orthoradius 
r, so we get all new edges with their length are larger than lmin 
when B is larger than 2 . As illustration in Fig.5a. 
2) If the orthocenter encroach some segments, it will be 
rejected and the encroached segment’s orthocenter will be 
inserted. Let e be the encroached segment, a and b is its tow 
end-points, and C be its smallest orthosphere, c is its 
orthocenter and R is its orthoradius. lmin is also the smallest 
edge length of t. Because the power distance between o and a 
is equal to the power distance between o and b, and C 
contains point o, for general, we can let ∠oca≤ π/2, and we 
get ||o-a||2 ≤ ||o-c||2+||c-a||2 and ||o-c|| ≤ R, meanwhile, 
weighted point a and c is orthogonal, so we get ||c-a||2-wa

2=R2. 
Integrating above equations with the power distance equation 
between o and a ploa=||o-a||2-wa

2, we get / 2oaR pl≥ . 
According to above analysis, we have ploa≥ Blmin, so we get 

min / 2R B l≥ ⋅ . So we get all new edges with their length are 

larger than lmin when B is larger than 2  after inserting the 
orthocenter c into the triangulation, as illustration in Fig.5b. 
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Fig. 5. Inserted new point in 2D algorithm 
 

For 3D algorithm, we have three cases when inserting the 
orthocenter of poor quality tetrahedron t: 
1) If the orthocenter doesn’t encroach any segment or facet, 
it will insert into the tetrahedralization. This case is same as 
the above first case, as illustration in Fig.6a. 
2) If the orthocenter encroached some segments, that is 
similar with above second case, as illustration in Fig.6b. 
3) If the orthocenter encroached some triangles of facets, it 
will be rejected and the orthocenter v of encroached triangle t 
will be inserted into tetrahedralization. Let a, b and c is the 
vertices of t, and C is its smallest orthoshpere, c and R is its 
orthocenter and orthoradius. Now, let H is a plane containing 
point a and o and is perpendicular to t. The intersection of H 
and C is a circle called C′ whose center is c′ . So, for 
generation, we can let / 2oc a π′∠ ≤ , and we get 

2 2 22 2 2
oa a apl o a w c o c a w′ ′= − − ≤ − + − − . Because c′ is the 

projection of c on H, we have c o c o′ − ≤ −  and 

c a c a′ − ≤ − . Also, we Integrate above equations with 
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the power distance equation between o and a ploa=||o-a||2-wa
2

≥ Blmin. we get 
min / 2R Bl≥ , so we get all new edges with 

their length are larger than lmin when B is larger than 2  after 
inserting the orthocenter c into the tetrahedralizaion, as 
illustration in Fig.6c. 
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Fig. 6. Inserted new point in 3D algorithm 

 

From above analysis, we get a bounded orthoradius-edge 
ration for the output mesh of our algorithms, as we known, 
for mostly triangles or tetrahedrons which don’t contain 
weighted points as vertices, their orthoradius-edge ration are 
the same as their circumradius-edge ratio. So we conclude 
our algorithm can guarantees bounded circumradius-edge for 
all elements except the ones near small input angles.  

 

VII. EXAMPLES AND CONCLUSION 
We have implemented above weighted Delaunay 

refinement algorithm both in 2D & 3D with C++ language, 
and we use the weighted version Boyer/Watson algorithm to 
implement weighted Delaunay triangulation of vertices. All 
of those cases have the setting with quality threshold of 

orthoradius-edge ratio is 2  and the constant factor for 
sharp elements is 1/3. Fig.7 shows a result mesh produced by 
our 2D algorithm for a PSLG with nine small angles and this 
case is similar to the example presented by Shewchuk[9], and 
the bold line in left figure is the segment of input PSLG, and 
the circles show is the weight circle of sharp vertices. The 
right figure gives the column plot of angle of mesh. In the 
final mesh, no angle is less than the smallest input angle 2.49
º. Fig.8 is an input PLC of pyramid with many faces and the 
result of tetrahedralization. It’s all segment are sharp edges 
and the circles on the edges are the weighted circles of 
vertices.Fig.9-10shows the result of the experiment on a 
typical non-manifold geometry, which is a box with ten oddly 
shaped facets that have a common segment. The origin input 
PLC is present in the left of Fig.9, and the right part is the 
final result triangular mesh on all facets. Fig.10 is the final 
Delaunay tetrahedral mesh. And their weight sphere on the 
sharp edge.  

Although above results of our algorithm still have some 
uncompleted work on the quality of final mesh, but our 
algorithm is easy to implement and will have good stability 
and reliability. It is not only an algorithm in theory but also an 
algorithm for engineering application. In the future work, we 
will continue to research for the improvement on the quality 
of mesh, including the method to avoid subdividing the input 
small angle to smaller angle and also including the method to 
eliminate “sliver” tetrahedron. 

  

 
Fig. 7.  Result meshes and plot of angle 

 
 

      
Fig. 8.  Pyramid with many face 

 
 

        

 
Fig. 9. No-manifold input PLC and resulting triangular mesh on the input 

facets 
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Fig. 10.  Final tetrahedral mesh and a section view 
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