
  

  
Abstract—Phase transitions and critical phenomena are the 

most universal phenomena in nature. To understand the phase 
transitions and critical phenomena of a given system as a 
continuous function of temperature and to obtain the partition 
function zeros in the complex temperature plane indicating 
most effectively phase transitions and critical phenomena, we 
need to calculate the density of states. Currently, Wang-Landau 
Monte Carlo algorithm is one of the most efficient Monte Carlo 
methods to calculate the approximate density of states. Using 
Wang-Landau Monte Carlo algorithm, the density of states for 
the Ising model on L x L square lattices (L = 4 ~ 32) with periodic 
boundary conditions is obtained, and the partition function 
zeros of the Ising model are evaluated in the complex 
temperature plane. By examining the behavior of the first 
partition function zero (partition function zero closest to the 
positive real axis), phase transitions and critical phenomena can 
be much more accurately analyzed. The approximate first zeros 
of the Ising ferromagnet, obtained from Wang-Landau 
algorithm, are quite close to the exact ones, indicating that it is a 
reliable method for calculating the density of states and the first 
partition function zeros. 
 

Index Terms—Phase transition, density of states, Ising model, 
partition function zeros.  
 

I. INTRODUCTION 
Phase transitions and critical phenomena are the most 

universal phenomena in nature. The two-dimensional Ising 
model is the simplest system showing phase transitions and 
critical phenomena at finite temperatures. Since the Onsager 
(Nobel prize winner in 1968) solution [1] of the square-lattice 
Ising model with periodic boundary conditions in the absence 
an external magnetic field, the two-dimensional Ising model 
has played a central role in our understanding of phase 
transitions and critical phenomena [2]. 

To understand phase transitions and critical phenomena, 
various theoretical methods (such as mean-field theory, 
power-series expansion and analysis, renormalization group, 
and transfer matrix) have been developed. Recently, 
computer simulations, in particular, Monte Carlo computer 
simulations have been the most popular method in studying 
phase transitions and critical phenomena. To understand the 
phase transition and critical phenomena of a given system as 
a continuous function of temperature, to obtain the partition 
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function zeros indicating most effectively phase transitions 
and critical phenomena, and to perform microcanonical 
analysis of phase transitions and critical phenomena, we need 
to calculate the density of states. Currently, Wang-Landau 
Monte Carlo algorithm [3] is one of the most efficient Monte 
Carlo methods to calculate the approximate density of states. 
In Wang-Landau Monte Carlo algorithm, the inverse of the 
density of states is employed as the sampling probability 
function, and the real values for the density of states can be 
obtained quickly due to its modification factor. 

Phase transitions and critical phenomena can also be 
understood based on the concept of partition function zeros. 
Fisher introduced the partition function zeros in the complex 
temperature plane utilizing the Onsager solution of the 
square-lattice Ising model in the absence of an external 
magnetic field [4]. Fisher also showed that the partition 
function zeros in the complex temperature plane of the 
square-lattice Ising model determine its ferromagnetic and 
antiferromagnetic critical temperatures at the same time in 
the absence an external magnetic field. By calculating the 
partition function zeros and examining the behavior of the 
first partition function zero (partition function zero closest to 
the positive real axis) in the thermodynamic limit, phase 
transitions and critical phenomena can be much more 
accurately analyzed than examining the behavior of the 
specific heat per volume for real values of the temperature, 
which is plagued by the noise due to the subleading terms 
containing zeros other than the first ones [5−20]. 

In the next section, the density of states and the partition 
function of the square-lattice Ising model are defined. In 
Section III, Wang-Landau Monte Carlo algorithm to 
calculate the approximate density of states is briefly 
explained. In Section IV, the concept of the partition function 
zeros in the complex temperature plane is introduced, the 
partition function zeros of the square-lattice Ising model are 
evaluated in the complex temperature plane using the exact 
density of states and the approximate density of states, and 
both results are compared.   

 

II. EXACT DENSITY OF STATES 
The Ising model [1, 2] on a lattice with Ns sites and Nb 

bonds is defined by the Hamiltonian  
 

,
,i j

i j
H J σ σ

< >

= − ∑                                      (1) 

 
where J is the coupling constant between two neighboring 
magnetic spins (positive value of J for a ferromagnetic 
interaction and negative value of J for an antiferromagnetic 
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interaction), ,i j< >  indicates a sum over all 
nearest-neighbor pairs (i and j) of lattice sites, and 1iσ = ±  

(positive value for the upward magnetic spin on a lattice site i 
and negative value for the downward magnetic spin). For the 
Ising model on L L×  square lattice with periodic boundary 
conditions, the number of spins is 2

sN L=  and the number 

of bonds is 22bN L= . If we define the density of states, 

( )EΩ , with a given energy 
     

,

1 (1 ),
2 i j

i j
E σ σ

< >

= −∑                                                   (2) 

 
where E is a positive integer ( 0 bE N≤ ≤ ), the Hamiltonian 
can be written as  
 

22 ( )H J E L= −                                                          (3) 
 
for the square-lattice Ising model.  

Finally, the partition function of the square-lattice Ising 

model (a sum 
2

2 L  over possible spin configurations)  
 

{ }
exp( ),

n

Z H
σ

β= −∑                                                    (4) 

 
where 1 / Bk Tβ = , kB is the Boltzmann constant, and T is 
temperature, is expressed as 
 

22
2

0
( ) exp(2 ) ( ) ,

L
E

E
Z y JL E yβ

=

= Ω∑                                   (5) 

 
where exp( 2 )y Jβ= − . For a ferromagnetic interaction, the 
physical interval is 0 1y≤ ≤  ( 0 T≤ ≤ ∞ ). That is, y is a 
convenient temperature variable, confined to a short interval 
[0, 1]. Given the density of states ( )EΩ , the partition 
function is a polynomial in y. Naturally, we obtain the 
entropy as a function of energy according to the Boltzmann 
formula 
 

( ) ln ( )BS E k E= Ω                                                  (6) 
 
from the density of states. Therefore, the partition function of 
the square-lattice Ising model can be written as 
 

22
2

0
( ) exp(2 ) exp[ ( ) / ] .

L
E

B
E

Z y JL S E k yβ
=

= ∑                (7) 

 
The states with 0E =  are the ferromagnetic ground states 

(where all spins align in the same direction), whereas the 
states with 22E L=  correspond to the antiferromagnetic 
ground states (where all nearest-neighbor spins of any spin 
on the lattice are oppositely oriented to it). Also, the density 
of states satisfies the following relation 
 

2( ) (2 )E L EΩ = Ω −                                                     (8) 
 
due to the symmetry of the square-lattice Ising model. Table I 
shows the exact integer values for the density of states of the 
Ising model on the 8 8×  square lattice with periodic 
boundary conditions, obtained from the Onsager solution [1]. 
 
TABLE I: EXACT INTEGER VALUES FOR THE DENSITY OF STATES ( )EΩ  

OF THE ISING MODEL ON THE 8 X 8 SQUARE LATTICE WITH PERIODIC 
BOUNDARY CONDITIONS, AS A FUNCTION OF ENERGY E (= 0 ~ 64) 

E ( )EΩ  

0 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 

2 
128 
256 
4672 
17920 
145408 
712960 
4274576 
22128384 
118551552 
610683392 
3150447680 
16043381504 
80748258688 
396915938304 
1887270677624 
8582140066816 
36967268348032 
149536933509376 
564033837424064 
1971511029384704 
6350698012553216 
18752030727310592 
50483110303426544 
123229776338119424 
271209458049836032 
535138987032308224 
941564975390477248 
1469940812209435392 
2027486077172296064 
2462494093546483712 
2627978003957146636 

 
 
The values of the density of states for 66 128E≤ ≤  are 
easily obtained using the relation 2( ) (2 )E L EΩ = Ω − . As 
shown in the table, we notice that  
 

( ) 0EΩ =                                                     (9) 
 
for E = odd numbers. It is a general result for periodic 
boundary conditions, independent of the system size L. For 
other kinds of boundary conditions, we obtain non-zero 
values for the density of states even in the case of E = odd 
numbers. Also, we have  

 
2

2
2

0
( ) 2 18446744073709551616

L
L

E
E

=

Ω = =∑                (10) 

 
for L = 8. 
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TABLE II: APPROXIMATE VALUES FOR THE DENSITY OF STATES ( )EΩ  OF 

THE ISING MODEL ON THE 8 X 8 SQUARE LATTICE WITH PERIODIC 
BOUNDARY CONDITIONS, AS A FUNCTION OF ENERGY E, OBTAINED FROM 

WANG-LANDAU MONTE CARLO ALGORITHM 

E ( )EΩ  

0 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 
100 
102 
104 
106 
108 
110 
112 
114 
116 
118 
120 
122 
124 
128 

2.0 
127.4 
255.1 
4656.6 
17893.1 
144522.0 
711580.2 
4246933.2 
21930324.7 
117959662.0 
607864844.6 
3141196764.1 
16031280614.1 
80763014316.9 
397547867401.4 
1896126034244.0 
8616391282913.0 
37010388229450.7 
149497396152612.3 
564138451122736.3 
1974546436062731.0 
6361612074395794.0 
18848286897649970.0 
50748192131679070.0 
124052697782181100.0 
272702357160341300.0 
538833615118266100.0 
950195978440535000.0 
1482917293139119000.0 
2044706519336103000.0 
2480176354118822000.0 
2647205100816658000.0 
2481685597611912000.0 
2045217128048957000.0 
1482774804531565000.0 
950073686197236000.0 
539916556625655100.0 
273497776072990000.0 
124382702728906700.0 
50914788916632710.0 
18903473835185660.0 
6425496048611473.0 
1997172631232223.0 
570664400401192.8 
151012039783018.9 
37342836397764.3 
8650942216058.1 
1896807076900.0 
398414563513.1 
81043609427.3 
16130155148.4 
3167278999.3 
613397094.4 
118983233.4 
22149806.8 
4274929.4 
714107.5 
145441.5 
17815.8 
4648.6 
253.1 
127.1 
2.0 

 

III. APPROXIMATE DENSITY OF STATES 
One of the most important methods in studying phase 

transitions and critical phenomena is computer simulation, in 
particular, Monte Carlo computer simulation. The 
importance sampling Monte Carlo method, Metropolis Mote 
Carlo algorithm [21], has been used extensively in science 
and engineering. In Metropolis Mote Carlo algorithm, the 
natural canonical distribution function,  
 
exp( ),Hβ−                                                                           (11) 
 
where H is the Hamiltonian of a given system, is employed as 
the sampling probability function at a given temperature T. 
The canonical distribution function can be written as 
 

( ) exp( ),E EβΩ −                                                                 (12) 
 
as a function of energy E, where ( )EΩ  is the density of 
states and exp( )Eβ−  is the Boltzmann-Gibbs factor. As 
energy E increases, the density of states increases sharply and 
the Boltzmann-Gibbs factor decreases sharply. Therefore, the 
canonical distribution function is a needle-shaped function 
around ET, which becomes the delta function in the 
thermodynamic limit. 

Metropolis Mote Carlo algorithm is the most efficient 
method for understanding the properties of a given system at 
a fixed temperature. However, if we want to understand the 
phase transitions and critical phenomena of a given system as 
a continuous function of temperature, to obtain the partition 
function zeros in the complex temperature plane indicating 
most effectively phase transitions and critical phenomena, 
and to perform microcanonical analysis of phase transitions 
and critical phenomena, Metropolis Mote Carlo algorithm is 
not useful. To understand the transition properties of a given 
system as a continuous function of temperature, to obtain the 
partition function zeros, and to perform microcanonical 
analysis, we need to calculate the density of states. Currently, 
Wang-Landau Monte Carlo algorithm is one of the most 
efficient Monte Carlo methods to calculate the approximate 
density of states [3].  

In Wang-Landau Monte Carlo algorithm, the reciprocal of 
the density of states, 1 / ( )EΩ , is also employed as the 
sampling probability function. That is, the transition 
probability from a state with energy E1 to another state with 
energy E2 is defined by 

 
1 2 1 2( ) min[ ( ) / ( ),1],p E E E E→ = Ω Ω                       (13) 

 
where E1 and E2 are energies before and after a random spin 
flip. Because this definition means a random walk in energy 
space with a probability proportional to the reciprocal of the 
density of states, 1 / ( )EΩ , a truly flat histogram for the 
energy distribution can be obtained after an infinite number 
of random Monte Carlo moves.  

The density of states is a priori unknown. Therefore, at the 
first time, we generate a crude version of the density of states,  

0 ( )EΩ , by accepting all 2 610L ×  Monte Carlo steps. Now, 
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the initial density of states 0 ( )EΩ  is employed as the 
sampling probability function, and then the density of states 
is changed after a Monte Carlo step. Each Monte Carlo step, 
the density of states is updated according to the following 
rule 
 

( ) ( ),E f EΩ → Ω                                                    (14) 
 
where f ( > 1) is the modification factor [3]. Owing to this 
factor, an improved version of the density of states can be 
obtained quickly. At the first time, the modification factor is 
conveniently chosen as  
 

1 .f e=                                                         (15) 
 
During a finite number of Monte Carlo steps with f1, the 
initial density of states 0 ( )EΩ  evolves into the new density 

of states 1 ( )EΩ . Next, the modification factor is reduced 

according to the following rule 
 

 
1 .i if f −=                                                      (16) 

 
Therefore, during a finite number of Monte Carlo steps with 
 

2 exp(1 / 2),f =                                              (17) 
 
the density of states 1 ( )EΩ  evolves into 2 ( )EΩ . If we 

repeat these processes thirty times, we have the final 
modification factor 
  

29
30 exp(2 ) 1.00000000186,f −= =                          (18) 

 
and reach an accurate version of density of states 30 ( )EΩ , 

quite close to the true density of states, for example, the exact 
integer values in Table I. 

Every 2 610L ×  Monte Carlo steps, we check the flatness 
of the energy histogram distribution ( )ih E . If the maximum 

histogram value is less than 1.2 times the average value of 
histogram ( )ih E< >  and the minimum histogram value is 

larger than 0.8 ( )ih E< >  (the so-called 20% flatness 

criterion), we reduce the modification factor from fi to fi+1, 
and reset the histogram to zero. If not, we repeat 2 610L ×  
Monte Carlo steps again and again until the 20% flatness 
criterion is satisfied without changing the value of the 
modification factor. 

 Table II shows the approximate values for the density of 
states of the Ising model on the 8 8×  square lattice with 
periodic boundary conditions, obtained from Wang-Landau 
Monte Carlo algorithm. As shown in the table, the 
approximate values are quite close to the exact integer ones in 
Table I.  

IV. PARTITION FUNCTION ZEROS 
In the thermodynamic limit, the specific heat (per volume) 

of the square-lattice Ising ferromagnet becomes infinite at the 
critical temperature where the transition between the 
paramagnetic phase and the ferromagnetic phase emerges. In 
finite systems, the specific heat per volume shows a sharp 
peak but is not infinite. At the same time, the location (the 
so-called effective critical temperature) of the sharp peak of 
the specific heat in a finite system is different from the critical 
temperature at the inifinite system. As the system size 
increases, the effective critical temperature approaches the 
critical temperature. 

Given the density of states ( )EΩ , the free energy (per 
volume) of the square-lattice Ising model is given by 
 

2

2

2
2 2

0

( ) ( ) ln ( )

( )[2 ln ( ) ].

B

L
E

B
E

f y k TL Z y

k TL JL E yβ

−

−

=

= −

= − + Ω∑
               (19) 

 
Therefore, the specific heat (per volume) is expressed as 
 

2
2 2 1

2

2 2 2 2

( ) ( ) ln ( )

( )(ln ) ( ).

B

B

C y k T L Z y

k L y E E
β

−

−

∂=
∂

= < > − < >

                   (20) 

 
In the thermodynamic limit, the specific heat (per volume) of 
the square-lattice Ising ferromagnet diverges at the critical 
temperature   
 

exp( 2 / ) 2 1
0.4142135623730950.

c B cy J k T= − = −
=

                                (21) 

 
The ordered ferromagnetic phase appears below yc, whereas 
the disordered paramagnetic phase appears above yc. The 
properties of the phase transition of the Ising model are 
completely equivalent to those of the gas-liquid phase 
transition for a simple system [22, 23]. 

Phase transitions and critical phenomena can also be 
understood based on the concept of partition function zeros. 
Yang and Lee (Nobel prize winners in 1957) proposed a 
rigorous mechanism for the occurrence of phase transitions in 
the thermodynamic limit and yielded an insight into the 
unsolved problem of the ferromagnetic Ising model at 
arbitrary temperature (T) in an external magnetic field (B) by 
introducing the concept of the zeros of the partition function 
Z(T,B) in the complex magnetic-field plane [22]. They also 
formulated the celebrated circle theorem, which states that 
the partition function zeros of the Ising ferromagnet lie on the 
unit circle in the complex fugacity plane [23]. 

Following Yang and Lee's idea, Fisher introduced the 
partition function zeros in the complex temperature plane 
utilizing the Onsager solution of the square-lattice Ising 
model in the absence of an external magnetic field [4]. Fisher 
also showed that the partition function zeros in the complex 
temperature plane of the square-lattice Ising model determine 
its ferromagnetic and antiferromagnetic critical temperatures 
at the same time for B = 0. In finite systems no zero cut the 
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positive real axis in the complex temperature plane, but some 
zeros for a system showing a phase transition approach the 
positive real axis as the system size increases, determining 
the critical temperature and the related critical exponents in 
the thermodynamic limit. 

Since the properties of the partition function zeros of a 
given system provided the valuable information on its exact 
solution, the earlier studies on partition function zeros were 
mainly performed in the fields of mathematics and 
mathematical physics. Nowadays, the concept of partition 
function zeros is applied to all fields of science from 
elementary particle physics to protein folding, and they are 
used as one of the most effective methods to determine the 
critical temperatures and exponents [5−20]. 

The partition function ( )Z y  of the square-lattice Ising 
model can be expressed as its zeros {yi}  in the complex 
temperature (y) plane:  
 

22 22
2

0 1

( ) exp(2 ) ( ) ( ),
LL

E
i

E i

Z y JL E y A y yβ
= =

= Ω = −∑ ∏           (22) 

 
where A is constant. In terms of the partition function zeros, 
the free energy is given by 
 

22
2

1
( ) ( )[ln ln( )],

L

B i
i

f y k TL A y y−

=

= − + −∑                      (23) 

 
and the specific heat by 
 

2 22
2 2

1
( ) ( )(ln )

L

B
i i i

y yC y k L y
y y y y

−

=

⎡ ⎤⎛ ⎞
⎢ ⎥= −  .⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

∑         (24) 

 
For a system with the phase transition at the critical 

temperature yc, the loci of the partition function zeros close in 
toward the real axis to intersect it in the thermodynamic limit, 
and the singularity of the specific heat (per volume) C(y) 
appears in this limit. It is clear from C(y) that the leading 
behavior of such a singularity is due to the pair of partition 
function zeros closest to the positive real axis, called the first 
zeros (y1). Therefore, by calculating the partition function 
zeros and examining the behavior of the first zero in the 
thermodynamic limit, the critical behavior can be much more 
accurately analyzed than examining the behavior of the 
specific heat per volume for real values of the temperature, 
which is plagued by the noise due to the subleading terms 
containing zeros other than the first ones. 

 
TABLE III: EXACT FIRST ZERO 1 ( )y L  OF THE ISING FERROMAGNET ON L 

X L SQUARE LATTICE (L = 4 ~ 32) WITH PERIODIC BOUNDARY CONDITIONS 

L y1(L)  
4 
8 
12 
16 
20 
24 
28 
32 

0.4444395319800772  +  0.1872942080259974 i 
0.4313561367685625  +  0.0893746869542861 i 
0.4261054598770712  +  0.0589791409518722 i 
0.4233155229514006  +  0.0440487351863922 i 
0.4215858813328893  +  0.0351597456080490 i 
0.4204086628321746  +  0.0292591011649791 i 
0.4195556551626489  +  0.0250556995741284 i 
0.4189091317852369  +  0.0219089496918388 i 

 

Using the Onsager solution of the square-lattice Ising 
ferromagnet with periodic boundary conditions, we can 
obtain the exact partition function zeros of the square-lattice 
Ising model in the complex y plane. Among the partition 
function zeros, the first zero (y1) is most important because it 
determines the critical temperature and the critical exponents. 
Table III shows the exact first zeros y1(L) of the Ising 
ferromagnet on L x L square lattices (L = 4 ~ 32) with periodic 
boundary conditions. As shown in the table, as the system 
size L increases, the real part of the first zero Re[y1(L)] 
approaches the exact critical temperature yc = −1 + √2 
following the finite-size scaling law 

 
1

1 1Re[ ( )] Re[ ( )] ~ .cy L y L y L−Δ = −                       (25) 
 
Also, the imaginary part of the first zero Im[y1(L)] decreases 
quickly following the similar finite-size scaling law  
 

1
1Im[ ( )] ~ .y L L−                                        (26) 

 
However, it is impossible to calculate the partition 

function zeros by using popular Metropolis Monte Carlo 
computer simulations. That is why the concept of the 
partition function zeros has not been used popularly and 
extensively in science and engineering. Now, with new 
Wang-Landau Monte Carlo computer simulations, it is 
possible to calculate the partition function zeros. We have 
calculated the partition function zeros of the square-lattice 
Ising ferromagnet with periodic boundary conditions from 
the density of states ( )EΩ , generated by Wang-Landau 
Monte Carlo computer simulations with the 20 % flatness 
criterion for histograms. We have used one core of a Linux 
PC with one Intel i7-2600K CPU for Wang-Landau Monte 
Carlo computer simulations. The CPU time for the Ising 
model on 10 x 10 square lattice is just 3 minutes and 19 
seconds. Also, the  CPU time is 14 minutes and 8 seconds on 
20 x 20 square lattice, and 48 minutes and 26 seconds on 32 x 
32 square lattice. Therefore, Wang-Landau Monte Carlo 
algorithm is quite fast with a modern computer. 

 
TABLE IV: APPROXIMATE FIRST ZERO 1 ( )y L  OF THE ISING 

FERROMAGNET ON L X L SQUARE LATTICE (L = 4 ~ 32) WITH PERIODIC 
BOUNDARY CONDITIONS, OBTAINED FROM WANG-LANDAU MONTE CARLO 

ALGORITHM 

L y1(L)  
4 
8 
12 
16 
20 
24 
28 
32 

0.4443746227827420  +  0.1875279524143367 i  
0.4311015629498683  +  0.0891428713930486 i  
0.4261963705955438  +  0.0589390738277786 i  
0.4234407520086122  +  0.0442294013769738 i  
0.4213463155523976  +  0.0351986300295024 i  
0.4205150208576107  +  0.0294455914640483 i 
0.4195652085874216  +  0.0250443689758780 i 
0.4190968920648668  +  0.0220230300146012 i 

 
Table IV shows the approximate first zeros y1(L) of the 

Ising ferromagnet on L x L square lattices (L = 4 ~ 32) with 
periodic boundary conditions, obtained from Wang-Landau 
Monte Carlo computer simulations. As shown in the table, 
the approximate first zeros are quite close to the exact ones in 
Table III.  
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TABLE V: ERRORS OF THE APPROXIMATE FIRST ZEROS FROM THE EXACT 
ONES FOR THE ISING FERROMAGNET ON L X L SQUARE LATTICE 

L Error (%) for 
Re[y1(L)] 

Error (%) for 
ΔRe[y1(L)] 

Error (%) for 
Im[y1(L)] 

4 
8 
12 
16 
20 
24 
28 
32 

0.015 
0.059 
0.021 
0.030 
0.057 
0.025 
0.002 
0.045 

0.215 
1.485 
0.764 
1.376 
3.250 
1.717 
0.179 
3.999 

0.125 
0.259 
0.068 
0.410 
0.111 
0.637 
0.045 
0.521 

 
 

Table V shows the errors (%) of the approximate first 
zeros from the exact ones. The second column of the table 
shows the error of the real part of the approximate first zero 
from the exact one, and the errors are less than 0.06%. The 
third column shows the error for the difference, as in (25), 
between the real part and the critical temperature, and the 
errors are less than 4.0%. The fourth column of Table V 
shows the error of the imaginary part of the approximate first 
zero from the exact one, and the errors are less than 0.64%. 
Overally, the errors are quite small, indicating that 
Wang-Landau Monte Carlo algorithm is a reliable method for 
calculating the density of states and the first partition 
function zeros. 
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