
  

  
Abstract—In order to build multi-domain collaborative 

simulation systems, the method of making MATLAB programs 
join into HLA/RTI based distributed interaction simulation 
system is need to be studied. Aiming at giving full play to the 
advantages of MATLAB in engineering computing and 
visualization, improving the efficiency of collaborative 
simulation systems, this paper proposed a method making 
MATLAB programs and SIMULINK modules seamlessly join 
into HLA/RTI based simulation system. The principles and 
designs of the main modules are elaborated, and the codes 
automatic generation orienting the method is also introduced. 
The demonstrations and testing results show that the method 
could fully exert the simulation functions of MATLAB, and has 
advantage in simulation efficiency over existing methods. 
 

Index Terms—Software integration, HLA, Collaborative 
simulation, MATLAB. 
 

I. INTRODUCTION 
As one of the most popularized commercial simulation 

software in market, MATLAB has been widely used both 
abroad and at home. Besides its integrated feature of 
engineering computing, numerical analysis, modeling and 
visualization, MATLAB has a number of toolboxes serving 
for different fields as well as SIMULINK system simulation 
tools, which have all contributed to its significance in 
conducting simulation. However, in most cases, MATLAB is 
applied in single host model environment instead of 
distributed environment. As criterion of distributed 
interactive simulation system, HLA (High Level Architecture 
[1]) aims to solve the interoperation and reusing among 
different simulation applications. By integrating the 
functions of different simulation systems based on RIT 
(Run-Time Infrastructure), HLA can develop larger 
simulation systems with more sophisticated structure and 
broader functions. 

Therefore, it would be of great significance for MATLAB 
joining into HLA/RTI based distributed interactive 
simulation system, taking its advantage in modeling and 
simulation field and making full use of its existing simulation 
codes [2-3]. 

A. Related Works 
In view of the absence of a plug on MATLAB for 
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HLA/RTI, many approaches have been looked into to make 
MATLAB join into HLA based simulation, forming the 
multi-domain collaborative simulation system, which are 
cited as below. 

According to [4], [5], MATLAB is linked to RTI by a 
middleware (see Fig.1), which joins HLA as a federation 
member, calling MATLAB program, reading and writing 
MATLAB workspace, supported by MATLAB engine 
running on the backstage. Besides, the middleware is in 
charge of the data exchange between MATLAB and HLA 
federation, and time synchronization. 

 

 
Fig. 1. MATLAB-RTI integration based on MATLAB engine 

 
As illustrated in [6], by employing the TCP/IP plug on 

MATLAB instrument control toolbox, a SOCKET is built 
between HLA and MATLAB modules, which realizes the 
communication between MATLAB program and RTI, and 
hence makes the MATLAB program join into HLA 
simulation (see Fig.2). 

[7], [8] propose an idea to link MATLAB with RTI 
through MEX, but no detailed approaches are presented. In 
addition, MAK has introduced HLA/DIS toolbox and 
provided API in M language to carry out HLA functions 
(hereafter cited as HLA-MAPI). With these functions, 
MATLAB program itself can develop into a full HLA 
federate without any C++ code. 

The existing approaches for connecting MATLAB 
program and RTI, and relevant commercial software may 
have some deficiencies and restrictions as following: 

1) The approach cited by [4], [5] needs to read and write 
MATLAB working space, while in paper [6], extra SOCKET 
communication is required, which will deduce the efficiency 
of simulation. 

2) In [4]–[6], the approach is supported by data mapping; 
nevertheless, the user would have difficulty to figure out the 
direct relationship between SOM (Simulation Object Model) 
and the input/output of MATLAB simulation model. 

3) [4], [5] present a method calling MATLAB program on 
the backstage, which has no obvious linkage to the 
MATLAB environment, thus fails to make full use of the 
visualization function of MATLAB, and causes 
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inconvenience in the debugging of M program as well. 
4) The HLA/DIS toolbox introduced by MAK only 

supports its built-in FOM (Federation Object Model), and no 
interfaces for further development according to the specific 
needs are presented. 

 

 
Fig. 2. MATLAB-RTI integration based on SOCKET 

 

B. The Summary of Our Method 
Oriented at enhancing the operating efficiency of 

collaborative simulation, building direct linkage between 
MATLAB module input/output and SOM data, and giving 
full play to advantages of MATLAB, the paper proposes an 
approach for MATLAB program to join into HLA/RTI 

simulation system without any middleware or 
communication module. As illustrated in Fig.3, just as the 
other federates, MATLAB federate communicates with RTI 
through LRC (Local RTI Component). Its structure from 
downside to upside are presented as following: 1) HLA 
foundation codes packs numerous complicated HLA services 
and callbacks into C++ classes; 2) According to the interface 
specification of MEX, create MEX functions that calls HLA 
foundation codes and performs MATLAB/C++ data 
translation, and compile it into MEX-DLL (hereafter cited as 
HLA-MEX) that can be invoked directly by MATLAB; 3) 
HLA-MAPI wraps up the whole process of HLA-MEX 
invocation by M language; 4) As a simulation-flow 
framework program written in M language, M federate 
framework calls HLA-MAPI and MATLAB simulation 
model. Based on the above structure, a MATLAB federate 
with M programs as its top layer, seamlessly linked to RTI 
through access layer, is created in its real sense. 
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Fig. 3. System design of our method 

 
The approach is highlighted by its top efficiency for the 

data exchange is conducted between MATLAB federate and 
its counterparts without any middleware, the operating 
efficiency increases greatly. Besides, with M program 
located as the top layer of MATLAB federate the inputs and 
outputs of MATLAB model associate with SOM directly. In 
addition, when MATLAB federate operates in MATLAB 
environment, it will make full use of MATLAB functions, 
and serve for the debug of M codes. 

To facilitate FOM extension, the author regulates the 
structure and procedure of MATLAB federate framework, 
and reaches the automatic generation of codes. HLA 
foundation codes, HLA-MEX interface codes, HLA-MAPI 
codes and MATLAB federate framework codes are 
generated based on OMT (Object Model Template) and SOM. 
Work out the matchup between the inputs/outputs of 
MATLAB models and SOM, wrap up MATLAB models into 
M functions or scripts and call them by MATLAB federate 
framework, so that the FOM extension for MATLAB 
federate development is substantially simplified. As cited in 

[9], considerable amendment needs to be made on the 
original program when wrapping up RTI services into MEX 
function for MATLAB invocation, which makes RTI service 
opaque to the developers. While when using the approach 
stated above, only a small amount of work is required for 
code amendments. 

II.   FUNDAMENTAL AND DESIGN 
In this section, the fundamental and design of HLA-MEX, 

HLA-MAPI and federate M-framework in Fig.3 will be 
elaborated. But HLA foundation codes generation will be 
omit, because it is the basic work in the development of most 
HLA federations. 

A. HLA-MEX 
MEX is the interface by which MATLAB can invoke 

programs written in other languages. MEX-DLL is the 
C/C++ based DLL (Dynamic Link Library) which can be 
loaded and executed by the MATLAB interpreter in the same 
way of calling its built-in functions [10], [11]. HLA-MEX is 
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the MEX-DLL that performs HLA simulation related tasks, 
including: 1) establishing the direct relationship between 
M-program and RTI in the layer of HLA services; 2) 
translating the data from MATLAB program to C/C++ 
program, and vice versa. 

When invoked by MATLAB, the input and output of 
MEX-DLL must be the MATLAB data type, and the C/C++ 
variables and objects created in stack by MEX-DLL 
procedure will be destroyed after the invocation. Therefore, 
in the process of multi-times MEX-DLL invocation, the HLA 
federate needed RTIambassador object and 
FederateAmbassador object cannot consistently exist in the 
MATLAB process memory. MATLAB program cannot call 
HLA services through the same RTIambassador object and 

obtain HLA callbacks through the same 
FederateAmbassador object, result in the discontinuous life 
period of MATLAB federate. 

Take the process illustrated in Fig.4 as an example. First, 
the MATLAB program invokes MEX-DLL A, whose 
interface function creates RTIambassador object rtiAmb and 
FederateAmbassador object fedAmb, and makes the 
MATLAB program join the federation through calling HLA 
service joinFederationExecution; then the MATLAB 
program invokes MEX-DLL B, trying to turn on the 
asynchronous delivery mode of the MATLAB federate 
through calling HLA service enableAsynchronousDelivery. 
Obviously, B cannot fulfill its task, because rtiAmb has been 
destroyed after the invocation of A. 

 
 

 
Fig. 4.  The case of discontinuous life period of MATLAB federate 

 

 
Fig. 5. The method of the life period of MATLAB federate can last 

 

According to the memory management mechanism of 
Windows operating system, objects created in stack within a 
function procedure will be destroyed after the function 
returns, but objects created in heap can continuously exist in 
memory until the objects be deleted explicitly. We observed 
through experiments that, MATLAB will not release the 
memory image of MEX-DLL after invocation, unless 
removing the MEX-DLL module using ‘clear’ command. 
Therefore, by creating RTIambassador object and 
FederateAmbassador object in the heap of MATLAB 
process through MEX-DLL, combined with exporting and 
addressing of DLL variables, the life period of MATLAB 
federate can last for multi-times MEX-DLL invocation. 
HLA-MEXs possess these features. 

Take the process illustrated in Fig.5 as an example. First, 

the MATLAB program invokes HLA-MEX A’, whose 
interface function creates RTIambassador object and 
FederateAmbassador object in the heap of MATLAB 
process using ‘new’ operator, and exports their addresses as 
DLL variables. Since the RTIambassador object and 
FederateAmbassador object are created in heap, they will not 
be destroyed after the invocation of A’. Then when the 
MATLAB program invokes HLA-MEX B’, because the 
memory image of A’ remains in MATLAB process, the 
handle of A’ can be obtained in the interface function of B’, 
and the RTIambassador object and FederateAmbassador 
object can be addressed using the handle. Finally, through the 
valid pointer of the RTIambassador object, the asynchronous 
delivery mode of the MATLAB federate can be turned on 
through calling HLA service enableAsynchronousDelivery. 
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In this way, the life period of MATLAB federate can last. 
Besides making the MATLAB program possess the ability 

of directly calling HLA services, HLA-MEXs are also in 
charge of the data mapping and translating between 
MATLAB program and C/C++ program, aiming to associate 
the inputs and outputs of the MATLAB simulation model 
with the SOM. Data mapping and translating mainly deal 

with class attributes and interaction parameters in FOM, 
whose data are carried by the C++ class members in HLA 
foundation codes, and the structure fields in MATLAB codes 
using our method. Therefore, the essential of data mapping 
and translating is using HLA-MEX to assign the C++ class 
members the value of MATLAB structure fields, and vice 
versa, which is shown in Fig.6. 

 
 

 
Fig. 6. Data mapping and translating using HLA-MEX 

 
 

B. HLA-MAPI and MATLAB Federate Framework 
Because of the great number and complex procedure of 

HLA services, in order to facilitate the development of 
MATLAB federate using M language, the processes of 
HLA-MEX invocations by M language is wrapped to 
canonical HLA-MAPI functions with clear interfaces. The 
effects of HLA-MAPI are in four aspects: 1) inputs/outputs 
conversion according to the design of simulation system; 2) 
parameter checking, exception handling and fault-tolerant 
processing of HLA-MEX invocations; 3) concealing the 
tedious underlying processes and details to provide 
transparent interfaces to MATLAB federate framework; 4) 
releasing the HLA-MEX modules no longer needed. Fig.7 
illuminates the functional configuration and logical flow of 
HLA-MAPI. 
 
 

Fig. 7 The functional configuration and logical flow of HLA-MAPI 
 
 
 
 

MATLAB federate framework is the M program in charge 
of simulation process control, federate life period 
management, maintenance and update of simulation model 
states, and interaction with other federates, by calling 
HLA-MAPI and encapsulated model functions or scripts. For 
HLA based distributed interaction simulation, the general 
behaviors and basic processes of federates in their life 
periods are roughly the same, no matter how simulation 
models, objects and interactions varies. 

Fig.8 illustrates the general behaviors of MATLAB 
federate in its life period, involving four of six categories of 
HLA services, including federation management, declaration 
management, object management and time management. Our 
method formulates and designs MATLAB federate 
framework based on Fig.8, in which the development 
interfaces denoted by the darkest block are reserved for users 
to add or edit corresponding codes for federate initiation, 
simulation model utilization, interaction procession and etc., 
to meet the demand of diversified simulation applications. 
The workload of MATLAB federate development is 
minimized by the changelessness of the architecture and most 
codes of MATLAB federate framework. It is necessary to 
explain that due to the incapability to carry out multithreaded 
callback of MATLAB, MATLAB federate cannot respond 
interactions immediately, even though its asynchronous 
delivery mode is turned on by calling HLA service 
enableAsynchronousDelivery. For this reason, it is 
appropriate to deal with all the interactions after 
timeAdvanceGrant when designing MATLAB federate 
framework. 
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Fig. 8. The general behaviors of MATLAB federate 

 

III. CODES AUTOMATIC GENERATION 
In order to reduce the workload of FOM extension and 

conquer the limitation pointed out by [9], the technique of 
codes automatic generation catered to our MATLAB-RTI 
integration method is necessary. With the automatic 
generation of most codes our method needed, the federate 
developer could focus on the simulation content. Consulting 
the hierarchy in Fig.3, the technique of codes automatic 
generation is designed as follow. 

1) Take the federation OMT as input, read in the names of 
object classes and interaction classes, the names and data 
types of object class attributes and interaction class 
parameters, output the files of HLA foundation codes, 
containing user extended classes, whose functions are 
illustrated in Table I. These user extended classes is the 
reification of FOM and OMT, according to the program 
language supported by specific HLA software. 

 
TABLE I: USER EXTENDED CLASSES (HLA FOUNDATION CODES) 

Class Name Function Class Name Function 

XXStateRepository Store and manage object attributes XXObjectDecoder Decode object attributes from network 
transmission 

XXPublisher 
Publish object class, Register and 
delete object instance, update object 
attributes 

XXInteraction Store and manage interaction parameters 

XXReflected Reflect object attributes XXInteractionEncoder Encode interaction parameters for network 
transmission 

XXReflectedList Discover and remove object instances XXInteractionDecoder Decode interaction parameters from 
network transmission 

XXObjectEncoder Encode object attributes for network 
transmission   

 
TABLE II: HLA-MAPIS 

HLA-MAPI name 
(HLA-MEX name) 

HLA-MAPI function 
(HLA-MEX function) 

HLA-MAPI name 
(HLA-MEX name) 

HLA-MAPI function 
(HLA-MEX function) 

JoinFederation 
(mtCreateExConn.dll) 

Join federation 
(Create and export global 
variants of exercise connection 
manager, etc. and relevant 
functions) 

PublishObject 
(mtPublishObject.dll) 

Publish object class, and register object 
instance 
(Create XXPublisher instance of the object 
class) 

ResignFederation 
(mtDeleteExConn.dll) 

Resign federation 
(Destroy global variants, remove 

or delete object instances)  

SubscribeObject 
(mtSubscribeObject.dll) 

Subscribe object class 
(Create XXReflectedList instance of the 
object class) 

SetSendFedTime 
(mtSetSendFedTime.dll) 

Set the transfer order of messages 
to be RO/TSO 

UpdateObjectAttributes 
(mtUpdateObjectAttributes.dll)

Update object attributes 
(Translate MATLAB data to C++ data, then 
update object attributes) 
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EnableAsynchronousDelivery 
(mtEnableAsynchronousDelivery.dll) 

Turn on the asynchronous 
delivery mode of federate 

SendInteraction 
(mtSendInteraction.dll) 

Publish interaction class, then send 
interaction instance 
(Publish interaction class, and Translate 
MATLAB data to C++ data, then send 
interaction instance) 

EnableTimeConstrained 
(mtEnableTimeConstrained.dll) 

Set federate to be time 
constrained, and wait for granted

SubscribeInteraction 
(mtSubscribeInteraction.dll) 

Subscribe interaction class 
(Subscribe interaction class, and register 
callback function) 

EnableTimeRegulation 
(mtEnableTimeRegulation.dll) 

Set federate to be time regulation, 
and wait for granted 

DrainInput 
(mtDrainInput.dll) 

Discover object instances, reflect object 
attributes and receive interactions 
(Discover object instances, reflect object 
attributes, update the queue of received 
interactions, and translate C++ data to 
MATLAB data) 

TimeAdvanceRequest 
(mtTimeAdvanceRequest.dll) 

Request time advance, and wait 
for granted 

 
 

2) Take the federation OMT and SOM of MATLAB 
federate as inputs, output the HLA foundation codes based 
source code files of MEX interface functions, which can be 
compiled to HLA-MEXs. Some of these interface functions 
calling necessary HLA services, others translate the data of 
object attributes and interaction parameters between 
MATLAB program and C++ program. 

3) Take the federation OMT and SOM of MATLAB 
federate as inputs, output the HLA-MEX based HLA-MAPI 
code files. HLA-MAPI invokes HLA-MEX, provide 
MATLAB federate framework with transparent interface by 
concealing the tedious underlying processes and details. 
Table II is the list of HLA-MAPIs and the description of the 
invoked HLA-MEXs. 

4) Take the federation OMT and SOM of MATLAB 
federate as inputs, output HLA-MAPI based MATLAB 
federate framework, which is the MATLAB program 
conducting the processes in Fig.8, assisting and guiding the 
development of MATLAB federate. Due to space limitation, 
details of MATLAB federate framework are omitted in this 
paper. 

IV. TEST RESULTS AND ANALYSIS 
In order to demonstrate the advantages of our method in 

visualized simulation, we developed demonstration 
federation I consisting of MATLAB federate and MFC 
federate, whose running condition is shown in Fig.9. It is thus 
evident that the MATLAB federate based on GUI can be 
developed using our method, by which the visualization 
function of MATLAB can be fully utilized. 

In order to demonstrate the ability of our method to make 
SIMULINK models join into HLA/RTI simulation system, 
we developed demonstration federation II consisting of 
SIMULINK federate and MFC federate, whose running 
condition is shown in Fig.10. It is thus evident that, by using 
our method, the collaborative simulation based on HLA can 
fully utilize the functions of SIMULINK. 

The average actual time consuming of simulation time 
advance is the uppermost indicator to evaluate the running 
efficiency of HLA federations. In order to compare the 
performance of existing methods and ours, we developed 
three testing federations A, B and C, based on MATLAB 
engine, SOCKET and our method respectively. We made A, 
B and C conducts the same simulation calculation under the 

same software and hardware conditions, and compared their 
average actual time consuming of simulation time advance. 

 

 
Fig. 9. Running condition of demonstration federation I 

 

Federation A, B and C consist of federate A1 and A2, B1 
and B2, C1 and C2 respectively. A1 is a C++ program which 
calls the MATLAB model and reads/writes MATLAB 
workspace through MATLAB engine; B1 is composed of 
C++ based HLA module and M based MATLAB module in 
charge of calling the MATLAB model, and the modules 
communicate through SOCKET; C1 is a MATLAB program 
directly calls the MATLAB model and carries out HLA 
operations through HLA-MAPI. A2, B2 and C2 are C++ 
programs only record the time of receiving 
timeAdvanceGrant callback, and the recorded data can be 
processed to the actual time consuming of every simulation 
time advance. We set Ai, Bi and Ci to be time regulation and 
constrained (RC), and their lookahead to be zero, to make Ai, 
Bi and Ci strictly synchronized respectively, so that the actual 
time consuming of simulation time advance of A2, B2 and C2 
are exactly that of the federations they belong to. 
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Fig. 10.  Running condition of demonstration federation II 

 

 
Fig. 11.  Running condition of demonstration federation II 

 
In the test, the simulation model called by A1, B1 and C1 is 

the same simple function in MATLAB. According to the 
technical characteristics of the methods, the authors defined 
MATLAB cell operation for each type of MATLAB 
federates: 1) for A1, calling the simulation model once, 
reading and writing (4 bytes) MATLAB workspace once; 2) 
for B1, calling the simulation model once, MATLAB module 
and HLA module communicating (4 bytes) once; 3) for C1, 
calling the simulation model once. The number of MATLAB 
cell operations conducted in one single simulation step 
reflects the simulation content complexity of the federate. In 
order to obtain the average actual time consuming of 
simulation time advance of the federations under different 
simulation content complexities, the authors made tests in the 
case of conducting 1, 10, 50, 100, 200, 400, 800 MATLAB 
cell operations in one single simulation step respectively. 

The testing results are shown in Fig.11. It is evident that 
when the complexity of simulation content is low, the 
average actual time consuming of simulation time advance of 

the testing federations are similar; when the complexity is 
high, the average actual time consuming of simulation time 
advance of federation A and B are far greater than that of C. 
Furthermore, along with the increasing of the number of 
MATLAB cell operations, the average actual time 
consuming of simulation time advance of federation A and B 
rise markedly and linearly, but that of C rises slightly. Hence 
we can see that the costs of the additional operations, 
including calling MATLAB engine, reading and writing 
MATLAB workspace, communicating through SOCKET, 
which are necessary to the MATLAB-RTI integration 
methods based on MATLLAB engine and SOCKET, usually 
exceed the cost of MATLAB model calculation. Whereas, 
the additional cost of the MATLAB-RTI integration method 
of this paper is far less than that of MATLAB model 
calculation. 

So it is clear that the method of MATLAB-RTI integration 
proposed in this paper is markedly prior to existing ones in 
simulation efficiency. Furthermore, our method is helpful to 
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real-time simulation, for the little additional cost making the 
time consuming in simulation steps easy to forecast [12]. 

V. CONCLUSION 
In order to build multi-domain collaborative simulation 

systems, the method of making MATLAB programs join into 
HLA/RTI based distributed interaction simulation system is 
need to be studied. Based on the analysis of the deficiencies 
and limitations of existing MATLAB-RTI integration 
methods, this paper puts forward a method making 
MATLAB programs seamlessly join into HLA/RTI 
simulation system, elaborates the principles and designs of 
HLA-MEX, HLA-MAPI and MATLAB federate framework, 
and introduces the codes automatic generation orienting the 
method. Finally, the demonstrations and testing results show 
that our method could fully exert the visualized simulation 
functions of MATLAB, and has advantage in simulation 
efficiency over existing methods. In addition, our method not 
only applies to embedding MATLAB programs into 
simulation systems based on various HLA platforms, but 
provides important suggestions on embedding other 
simulation software (e.g. LabView, Scilab) into HLA/RTI 
simulation system. 
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