

Abstract—In order to build multi-domain collaborative

simulation systems, the method of making MATLAB programs
join into HLA/RTI based distributed interaction simulation
system is need to be studied. Aiming at giving full play to the
advantages of MATLAB in engineering computing and
visualization, improving the efficiency of collaborative
simulation systems, this paper proposed a method making
MATLAB programs and SIMULINK modules seamlessly join
into HLA/RTI based simulation system. The principles and
designs of the main modules are elaborated, and the codes
automatic generation orienting the method is also introduced.
The demonstrations and testing results show that the method
could fully exert the simulation functions of MATLAB, and has
advantage in simulation efficiency over existing methods.

Index Terms—Software integration, HLA, Collaborative
simulation, MATLAB.

I. INTRODUCTION
As one of the most popularized commercial simulation

software in market, MATLAB has been widely used both
abroad and at home. Besides its integrated feature of
engineering computing, numerical analysis, modeling and
visualization, MATLAB has a number of toolboxes serving
for different fields as well as SIMULINK system simulation
tools, which have all contributed to its significance in
conducting simulation. However, in most cases, MATLAB is
applied in single host model environment instead of
distributed environment. As criterion of distributed
interactive simulation system, HLA (High Level Architecture
[1]) aims to solve the interoperation and reusing among
different simulation applications. By integrating the
functions of different simulation systems based on RIT
(Run-Time Infrastructure), HLA can develop larger
simulation systems with more sophisticated structure and
broader functions.

Therefore, it would be of great significance for MATLAB
joining into HLA/RTI based distributed interactive
simulation system, taking its advantage in modeling and
simulation field and making full use of its existing simulation
codes [2-3].

A. Related Works
In view of the absence of a plug on MATLAB for

Manuscript received March 12, 2012; revised March 28, 2012.
Wei Xiong and Pengshan Fanare with the Academy of Equipment,

Huairou, Beijing, China (e-mail: 13331094335@189.com;
fpspengshan@163.com).

Hengyuan Zhang is with School of Computer Science and Engineering,
Beihang University, Haidian, Beijing, China (e-mail:
zhanghy@vrlab.buaa.edu.cn).

HLA/RTI, many approaches have been looked into to make
MATLAB join into HLA based simulation, forming the
multi-domain collaborative simulation system, which are
cited as below.

According to [4], [5], MATLAB is linked to RTI by a
middleware (see Fig.1), which joins HLA as a federation
member, calling MATLAB program, reading and writing
MATLAB workspace, supported by MATLAB engine
running on the backstage. Besides, the middleware is in
charge of the data exchange between MATLAB and HLA
federation, and time synchronization.

Fig. 1. MATLAB-RTI integration based on MATLAB engine

As illustrated in [6], by employing the TCP/IP plug on

MATLAB instrument control toolbox, a SOCKET is built
between HLA and MATLAB modules, which realizes the
communication between MATLAB program and RTI, and
hence makes the MATLAB program join into HLA
simulation (see Fig.2).

[7], [8] propose an idea to link MATLAB with RTI
through MEX, but no detailed approaches are presented. In
addition, MAK has introduced HLA/DIS toolbox and
provided API in M language to carry out HLA functions
(hereafter cited as HLA-MAPI). With these functions,
MATLAB program itself can develop into a full HLA
federate without any C++ code.

The existing approaches for connecting MATLAB
program and RTI, and relevant commercial software may
have some deficiencies and restrictions as following:

1) The approach cited by [4], [5] needs to read and write
MATLAB working space, while in paper [6], extra SOCKET
communication is required, which will deduce the efficiency
of simulation.

2) In [4]–[6], the approach is supported by data mapping;
nevertheless, the user would have difficulty to figure out the
direct relationship between SOM (Simulation Object Model)
and the input/output of MATLAB simulation model.

3) [4], [5] present a method calling MATLAB program on
the backstage, which has no obvious linkage to the
MATLAB environment, thus fails to make full use of the
visualization function of MATLAB, and causes

HLA Based Collaborative Simulation with MATLAB
Seamlessly Embedded

Wei Xiong, Pengshan Fan and Hengyuan Zhang

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

123

inconvenience in the debugging of M program as well.
4) The HLA/DIS toolbox introduced by MAK only

supports its built-in FOM (Federation Object Model), and no
interfaces for further development according to the specific
needs are presented.

Fig. 2. MATLAB-RTI integration based on SOCKET

B. The Summary of Our Method
Oriented at enhancing the operating efficiency of

collaborative simulation, building direct linkage between
MATLAB module input/output and SOM data, and giving
full play to advantages of MATLAB, the paper proposes an
approach for MATLAB program to join into HLA/RTI

simulation system without any middleware or
communication module. As illustrated in Fig.3, just as the
other federates, MATLAB federate communicates with RTI
through LRC (Local RTI Component). Its structure from
downside to upside are presented as following: 1) HLA
foundation codes packs numerous complicated HLA services
and callbacks into C++ classes; 2) According to the interface
specification of MEX, create MEX functions that calls HLA
foundation codes and performs MATLAB/C++ data
translation, and compile it into MEX-DLL (hereafter cited as
HLA-MEX) that can be invoked directly by MATLAB; 3)
HLA-MAPI wraps up the whole process of HLA-MEX
invocation by M language; 4) As a simulation-flow
framework program written in M language, M federate
framework calls HLA-MAPI and MATLAB simulation
model. Based on the above structure, a MATLAB federate
with M programs as its top layer, seamlessly linked to RTI
through access layer, is created in its real sense.

HLA-MAPI

HLA-MEX

HLA Foundation Codes

LRC

RTI
Server

Codes
Automatic
Generation

Tool

inputs & outputs of
MATLAB models

objects & interactions

HLA services & callbacks

Another
Federate

OMT

MATLAB
Model Codes

M codes reusing

MATLAB
federate

codes
generation

workflow control

LRC

Another
Federate

LRC

SOM

MATLAB Federate
Framework

top layer
Access layer

data translation

Fig. 3. System design of our method

The approach is highlighted by its top efficiency for the

data exchange is conducted between MATLAB federate and
its counterparts without any middleware, the operating
efficiency increases greatly. Besides, with M program
located as the top layer of MATLAB federate the inputs and
outputs of MATLAB model associate with SOM directly. In
addition, when MATLAB federate operates in MATLAB
environment, it will make full use of MATLAB functions,
and serve for the debug of M codes.

To facilitate FOM extension, the author regulates the
structure and procedure of MATLAB federate framework,
and reaches the automatic generation of codes. HLA
foundation codes, HLA-MEX interface codes, HLA-MAPI
codes and MATLAB federate framework codes are
generated based on OMT (Object Model Template) and SOM.
Work out the matchup between the inputs/outputs of
MATLAB models and SOM, wrap up MATLAB models into
M functions or scripts and call them by MATLAB federate
framework, so that the FOM extension for MATLAB
federate development is substantially simplified. As cited in

[9], considerable amendment needs to be made on the
original program when wrapping up RTI services into MEX
function for MATLAB invocation, which makes RTI service
opaque to the developers. While when using the approach
stated above, only a small amount of work is required for
code amendments.

II. FUNDAMENTAL AND DESIGN
In this section, the fundamental and design of HLA-MEX,

HLA-MAPI and federate M-framework in Fig.3 will be
elaborated. But HLA foundation codes generation will be
omit, because it is the basic work in the development of most
HLA federations.

A. HLA-MEX
MEX is the interface by which MATLAB can invoke

programs written in other languages. MEX-DLL is the
C/C++ based DLL (Dynamic Link Library) which can be
loaded and executed by the MATLAB interpreter in the same
way of calling its built-in functions [10], [11]. HLA-MEX is

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

124

the MEX-DLL that performs HLA simulation related tasks,
including: 1) establishing the direct relationship between
M-program and RTI in the layer of HLA services; 2)
translating the data from MATLAB program to C/C++
program, and vice versa.

When invoked by MATLAB, the input and output of
MEX-DLL must be the MATLAB data type, and the C/C++
variables and objects created in stack by MEX-DLL
procedure will be destroyed after the invocation. Therefore,
in the process of multi-times MEX-DLL invocation, the HLA
federate needed RTIambassador object and
FederateAmbassador object cannot consistently exist in the
MATLAB process memory. MATLAB program cannot call
HLA services through the same RTIambassador object and

obtain HLA callbacks through the same
FederateAmbassador object, result in the discontinuous life
period of MATLAB federate.

Take the process illustrated in Fig.4 as an example. First,
the MATLAB program invokes MEX-DLL A, whose
interface function creates RTIambassador object rtiAmb and
FederateAmbassador object fedAmb, and makes the
MATLAB program join the federation through calling HLA
service joinFederationExecution; then the MATLAB
program invokes MEX-DLL B, trying to turn on the
asynchronous delivery mode of the MATLAB federate
through calling HLA service enableAsynchronousDelivery.
Obviously, B cannot fulfill its task, because rtiAmb has been
destroyed after the invocation of A.

Fig. 4. The case of discontinuous life period of MATLAB federate

Fig. 5. The method of the life period of MATLAB federate can last

According to the memory management mechanism of
Windows operating system, objects created in stack within a
function procedure will be destroyed after the function
returns, but objects created in heap can continuously exist in
memory until the objects be deleted explicitly. We observed
through experiments that, MATLAB will not release the
memory image of MEX-DLL after invocation, unless
removing the MEX-DLL module using ‘clear’ command.
Therefore, by creating RTIambassador object and
FederateAmbassador object in the heap of MATLAB
process through MEX-DLL, combined with exporting and
addressing of DLL variables, the life period of MATLAB
federate can last for multi-times MEX-DLL invocation.
HLA-MEXs possess these features.

Take the process illustrated in Fig.5 as an example. First,

the MATLAB program invokes HLA-MEX A’, whose
interface function creates RTIambassador object and
FederateAmbassador object in the heap of MATLAB
process using ‘new’ operator, and exports their addresses as
DLL variables. Since the RTIambassador object and
FederateAmbassador object are created in heap, they will not
be destroyed after the invocation of A’. Then when the
MATLAB program invokes HLA-MEX B’, because the
memory image of A’ remains in MATLAB process, the
handle of A’ can be obtained in the interface function of B’,
and the RTIambassador object and FederateAmbassador
object can be addressed using the handle. Finally, through the
valid pointer of the RTIambassador object, the asynchronous
delivery mode of the MATLAB federate can be turned on
through calling HLA service enableAsynchronousDelivery.

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

125

In this way, the life period of MATLAB federate can last.
Besides making the MATLAB program possess the ability

of directly calling HLA services, HLA-MEXs are also in
charge of the data mapping and translating between
MATLAB program and C/C++ program, aiming to associate
the inputs and outputs of the MATLAB simulation model
with the SOM. Data mapping and translating mainly deal

with class attributes and interaction parameters in FOM,
whose data are carried by the C++ class members in HLA
foundation codes, and the structure fields in MATLAB codes
using our method. Therefore, the essential of data mapping
and translating is using HLA-MEX to assign the C++ class
members the value of MATLAB structure fields, and vice
versa, which is shown in Fig.6.

Fig. 6. Data mapping and translating using HLA-MEX

B. HLA-MAPI and MATLAB Federate Framework
Because of the great number and complex procedure of

HLA services, in order to facilitate the development of
MATLAB federate using M language, the processes of
HLA-MEX invocations by M language is wrapped to
canonical HLA-MAPI functions with clear interfaces. The
effects of HLA-MAPI are in four aspects: 1) inputs/outputs
conversion according to the design of simulation system; 2)
parameter checking, exception handling and fault-tolerant
processing of HLA-MEX invocations; 3) concealing the
tedious underlying processes and details to provide
transparent interfaces to MATLAB federate framework; 4)
releasing the HLA-MEX modules no longer needed. Fig.7
illuminates the functional configuration and logical flow of
HLA-MAPI.

Fig. 7 The functional configuration and logical flow of HLA-MAPI

MATLAB federate framework is the M program in charge
of simulation process control, federate life period
management, maintenance and update of simulation model
states, and interaction with other federates, by calling
HLA-MAPI and encapsulated model functions or scripts. For
HLA based distributed interaction simulation, the general
behaviors and basic processes of federates in their life
periods are roughly the same, no matter how simulation
models, objects and interactions varies.

Fig.8 illustrates the general behaviors of MATLAB
federate in its life period, involving four of six categories of
HLA services, including federation management, declaration
management, object management and time management. Our
method formulates and designs MATLAB federate
framework based on Fig.8, in which the development
interfaces denoted by the darkest block are reserved for users
to add or edit corresponding codes for federate initiation,
simulation model utilization, interaction procession and etc.,
to meet the demand of diversified simulation applications.
The workload of MATLAB federate development is
minimized by the changelessness of the architecture and most
codes of MATLAB federate framework. It is necessary to
explain that due to the incapability to carry out multithreaded
callback of MATLAB, MATLAB federate cannot respond
interactions immediately, even though its asynchronous
delivery mode is turned on by calling HLA service
enableAsynchronousDelivery. For this reason, it is
appropriate to deal with all the interactions after
timeAdvanceGrant when designing MATLAB federate
framework.

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

126

Fig. 8. The general behaviors of MATLAB federate

III. CODES AUTOMATIC GENERATION
In order to reduce the workload of FOM extension and

conquer the limitation pointed out by [9], the technique of
codes automatic generation catered to our MATLAB-RTI
integration method is necessary. With the automatic
generation of most codes our method needed, the federate
developer could focus on the simulation content. Consulting
the hierarchy in Fig.3, the technique of codes automatic
generation is designed as follow.

1) Take the federation OMT as input, read in the names of
object classes and interaction classes, the names and data
types of object class attributes and interaction class
parameters, output the files of HLA foundation codes,
containing user extended classes, whose functions are
illustrated in Table I. These user extended classes is the
reification of FOM and OMT, according to the program
language supported by specific HLA software.

TABLE I: USER EXTENDED CLASSES (HLA FOUNDATION CODES)

Class Name Function Class Name Function

XXStateRepository Store and manage object attributes XXObjectDecoder Decode object attributes from network
transmission

XXPublisher
Publish object class, Register and
delete object instance, update object
attributes

XXInteraction Store and manage interaction parameters

XXReflected Reflect object attributes XXInteractionEncoder Encode interaction parameters for network
transmission

XXReflectedList Discover and remove object instances XXInteractionDecoder Decode interaction parameters from
network transmission

XXObjectEncoder Encode object attributes for network
transmission

TABLE II: HLA-MAPIS

HLA-MAPI name
(HLA-MEX name)

HLA-MAPI function
(HLA-MEX function)

HLA-MAPI name
(HLA-MEX name)

HLA-MAPI function
(HLA-MEX function)

JoinFederation
(mtCreateExConn.dll)

Join federation
(Create and export global
variants of exercise connection
manager, etc. and relevant
functions)

PublishObject
(mtPublishObject.dll)

Publish object class, and register object
instance
(Create XXPublisher instance of the object
class)

ResignFederation
(mtDeleteExConn.dll)

Resign federation
(Destroy global variants, remove

or delete object instances)

SubscribeObject
(mtSubscribeObject.dll)

Subscribe object class
(Create XXReflectedList instance of the
object class)

SetSendFedTime
(mtSetSendFedTime.dll)

Set the transfer order of messages
to be RO/TSO

UpdateObjectAttributes
(mtUpdateObjectAttributes.dll)

Update object attributes
(Translate MATLAB data to C++ data, then
update object attributes)

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

127

EnableAsynchronousDelivery
(mtEnableAsynchronousDelivery.dll)

Turn on the asynchronous
delivery mode of federate

SendInteraction
(mtSendInteraction.dll)

Publish interaction class, then send
interaction instance
(Publish interaction class, and Translate
MATLAB data to C++ data, then send
interaction instance)

EnableTimeConstrained
(mtEnableTimeConstrained.dll)

Set federate to be time
constrained, and wait for granted

SubscribeInteraction
(mtSubscribeInteraction.dll)

Subscribe interaction class
(Subscribe interaction class, and register
callback function)

EnableTimeRegulation
(mtEnableTimeRegulation.dll)

Set federate to be time regulation,
and wait for granted

DrainInput
(mtDrainInput.dll)

Discover object instances, reflect object
attributes and receive interactions
(Discover object instances, reflect object
attributes, update the queue of received
interactions, and translate C++ data to
MATLAB data)

TimeAdvanceRequest
(mtTimeAdvanceRequest.dll)

Request time advance, and wait
for granted

2) Take the federation OMT and SOM of MATLAB
federate as inputs, output the HLA foundation codes based
source code files of MEX interface functions, which can be
compiled to HLA-MEXs. Some of these interface functions
calling necessary HLA services, others translate the data of
object attributes and interaction parameters between
MATLAB program and C++ program.

3) Take the federation OMT and SOM of MATLAB
federate as inputs, output the HLA-MEX based HLA-MAPI
code files. HLA-MAPI invokes HLA-MEX, provide
MATLAB federate framework with transparent interface by
concealing the tedious underlying processes and details.
Table II is the list of HLA-MAPIs and the description of the
invoked HLA-MEXs.

4) Take the federation OMT and SOM of MATLAB
federate as inputs, output HLA-MAPI based MATLAB
federate framework, which is the MATLAB program
conducting the processes in Fig.8, assisting and guiding the
development of MATLAB federate. Due to space limitation,
details of MATLAB federate framework are omitted in this
paper.

IV. TEST RESULTS AND ANALYSIS
In order to demonstrate the advantages of our method in

visualized simulation, we developed demonstration
federation I consisting of MATLAB federate and MFC
federate, whose running condition is shown in Fig.9. It is thus
evident that the MATLAB federate based on GUI can be
developed using our method, by which the visualization
function of MATLAB can be fully utilized.

In order to demonstrate the ability of our method to make
SIMULINK models join into HLA/RTI simulation system,
we developed demonstration federation II consisting of
SIMULINK federate and MFC federate, whose running
condition is shown in Fig.10. It is thus evident that, by using
our method, the collaborative simulation based on HLA can
fully utilize the functions of SIMULINK.

The average actual time consuming of simulation time
advance is the uppermost indicator to evaluate the running
efficiency of HLA federations. In order to compare the
performance of existing methods and ours, we developed
three testing federations A, B and C, based on MATLAB
engine, SOCKET and our method respectively. We made A,
B and C conducts the same simulation calculation under the

same software and hardware conditions, and compared their
average actual time consuming of simulation time advance.

Fig. 9. Running condition of demonstration federation I

Federation A, B and C consist of federate A1 and A2, B1
and B2, C1 and C2 respectively. A1 is a C++ program which
calls the MATLAB model and reads/writes MATLAB
workspace through MATLAB engine; B1 is composed of
C++ based HLA module and M based MATLAB module in
charge of calling the MATLAB model, and the modules
communicate through SOCKET; C1 is a MATLAB program
directly calls the MATLAB model and carries out HLA
operations through HLA-MAPI. A2, B2 and C2 are C++
programs only record the time of receiving
timeAdvanceGrant callback, and the recorded data can be
processed to the actual time consuming of every simulation
time advance. We set Ai, Bi and Ci to be time regulation and
constrained (RC), and their lookahead to be zero, to make Ai,
Bi and Ci strictly synchronized respectively, so that the actual
time consuming of simulation time advance of A2, B2 and C2
are exactly that of the federations they belong to.

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

128

Fig. 10. Running condition of demonstration federation II

Fig. 11. Running condition of demonstration federation II

In the test, the simulation model called by A1, B1 and C1 is

the same simple function in MATLAB. According to the
technical characteristics of the methods, the authors defined
MATLAB cell operation for each type of MATLAB
federates: 1) for A1, calling the simulation model once,
reading and writing (4 bytes) MATLAB workspace once; 2)
for B1, calling the simulation model once, MATLAB module
and HLA module communicating (4 bytes) once; 3) for C1,
calling the simulation model once. The number of MATLAB
cell operations conducted in one single simulation step
reflects the simulation content complexity of the federate. In
order to obtain the average actual time consuming of
simulation time advance of the federations under different
simulation content complexities, the authors made tests in the
case of conducting 1, 10, 50, 100, 200, 400, 800 MATLAB
cell operations in one single simulation step respectively.

The testing results are shown in Fig.11. It is evident that
when the complexity of simulation content is low, the
average actual time consuming of simulation time advance of

the testing federations are similar; when the complexity is
high, the average actual time consuming of simulation time
advance of federation A and B are far greater than that of C.
Furthermore, along with the increasing of the number of
MATLAB cell operations, the average actual time
consuming of simulation time advance of federation A and B
rise markedly and linearly, but that of C rises slightly. Hence
we can see that the costs of the additional operations,
including calling MATLAB engine, reading and writing
MATLAB workspace, communicating through SOCKET,
which are necessary to the MATLAB-RTI integration
methods based on MATLLAB engine and SOCKET, usually
exceed the cost of MATLAB model calculation. Whereas,
the additional cost of the MATLAB-RTI integration method
of this paper is far less than that of MATLAB model
calculation.

So it is clear that the method of MATLAB-RTI integration
proposed in this paper is markedly prior to existing ones in
simulation efficiency. Furthermore, our method is helpful to

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

129

real-time simulation, for the little additional cost making the
time consuming in simulation steps easy to forecast [12].

V. CONCLUSION
In order to build multi-domain collaborative simulation

systems, the method of making MATLAB programs join into
HLA/RTI based distributed interaction simulation system is
need to be studied. Based on the analysis of the deficiencies
and limitations of existing MATLAB-RTI integration
methods, this paper puts forward a method making
MATLAB programs seamlessly join into HLA/RTI
simulation system, elaborates the principles and designs of
HLA-MEX, HLA-MAPI and MATLAB federate framework,
and introduces the codes automatic generation orienting the
method. Finally, the demonstrations and testing results show
that our method could fully exert the visualized simulation
functions of MATLAB, and has advantage in simulation
efficiency over existing methods. In addition, our method not
only applies to embedding MATLAB programs into
simulation systems based on various HLA platforms, but
provides important suggestions on embedding other
simulation software (e.g. LabView, Scilab) into HLA/RTI
simulation system.

REFERENCES
[1] Modeling and Simulation (M&S) High Level Architecture (HLA) -

Framework and Rules, IEEE Standard 1516-2000.
[2] Straßburger, S., “Distributed Simulation Based on the High Level

Architecture in Civilian Application Domains,” PhD Dissertation,
University of Magdeburg, Germany, April, 2001..

[3] X. Tong, J. Huang, D. Zhang, “HLA Based Multidisciplinary Joint
Simulation Technology for Servo Mechanism Analysis,” Proceedings
of the 2009 IEEE International Conference on Mechatronics and
Automation, 2009, pp. 4517-4522.

[4] B. Guo, G. Xiong, X. Chen, “Researching and Development of the
General Adaptor of MATLAB and HLA/RTI,” Journal of System
Simulation, vol. 16(6), pp. 1275-1279, 2004.

[5] H. Wang, J. Tang, W. Mao, “Research on Implementation and
Application of MATLAB_RTI Middleware,” Computer Engineering
and Design, vol. 27(20), pp. 3827-3830, 2006.

[6] C. Sung, J. Hong, T. Kim, “Interoperation of DEVS Models and
Differential Equation Models using HLA/RTI: Hybrid Simulation of
Engineering and Engagement Level Models,” Proceedings of the 2009
Spring Simulation Multiconference, 2009, pp. 387-392.

[7] S. Pawletta, W. Drewelow, T. Pawletta. “HLA-based Simulation within
an Interactive Engineering Environment,” Fourth IEEE International

Workshop on Distributed Simulation and Real-Time Applications,
2000, pp. 97-102.

[8] C. Stenzel, S. Pawletta, R. Ems, P. Bünning, “HLA Applied to Military
Ship Design Process,” Simulation News Europe, vol. 16(2), pp. 51-56,
2006.

[9] H. Qiao, X. Tian, K. Huang, “Using Simulink Model in HLA
Simulation,” Journal of System Simulation, vol. 18(2), pp. 335-340,
2006.

[10] D. Pan, B. Wang, Z. Zhou, “Research on Mixed Programming
Technology of MATLAB and C/C++,” Computer Engineering and
Design, vol. 30(2), pp. 465-468, 2009.

[11] L. Hong, J. Cai, “The Application guide of mixed programming
between MATLAB and other programming languages”, Computer and
Automation Engineering, 2010, pp. 185-189.

[12] Z. Li, H. Zhang, “Research of HLA Real-time Simulation Method
Based on Alterable Time Advance Step,” Journal of the Academy of
Equipment Command & Technology, vol. 20(2), pp. 106-110, 2009.

Wei Xiong received the B.S. degrees in Electronic
Engineering from the National University of Defense
Technology, Changsha, China, and the M.S. degrees
and the Ph.D. in Military Communication and
Information System from the Academy of Equipment
Command & Technology, Beijing, China, in 1992,
1998 and 2005 respectively. He is presently the
Research Fellow in the Academy of Equipment,
Beijing, China. His current research interests are
system analysis and integration.

Pengshan Fan received the B.S. and M.S. degrees in
Flight Vehicle Design from the Academy of
Equipment Command & Technology, Beijing, China,
in 2005 and 2008 respectively. His current research
interests are System analysis and integration.

Hengyuan Zhang has received both B.Eng and
M.Eng degrees from The Academy of Equipment. He
is presently a Ph.D candidate in the School of
Computer Science and Engineering under Beihang
University. His research areas cover information
visualization, computer simulation and information
security.

International Journal of Machine Learning and Computing, Vol. 2, No. 2, April 2012

130

