
 
 

 

  
Abstract— The objective of this work is to make use of 

conventional response surface methodologies and basic 
elements from metaheuristic algorithms in the design of 
influential variables for engineering systems. A method of 
steepest ascent and its integrated approaches with simulated 
annealing, firefly and ant colony optimisation algorithms, are 
compared on a simulated continuous stirred tank reactor or 
CSTR with various levels of signal noise. These metaheuristics 
contain the complicatedness in terms of their parameters.  An 
additional series of computational experiments were conducted 
and analysed in terms of the minimax and mean squared error 
performance measures including Taguchi’s signal to noise ratio. 
Proper levels of these parameters are analysed to recommend 
the best parameter choices. On the experimental results of all 
the algorithms with the preferable levels of parameters, the 
method of steepest ascent seems to be the most efficient on the 
CSTR surface at the lower levels of noise. However, the 
integrated approaches with all simulated annealing, firefly and 
ant colony optimisation elements work well when the standard 
deviation of the noise is at higher levels. Although the average, 
the standard deviation of the greatest actual concentration of 
the product and percentage of sequences ended at the optimum 
from the integrated algorithms with simulated annealing and 
ant colony optimisation seem to be better, they need more 
average design points, especially with ant colony optimisation 
element, to converge to the optimum when compared. 
 

Index Terms—Simulated annealing, firefly, ant colony 
optimisation; steepest ascent; continuous stirred tank reactor.  
 

I. INTRODUCTION 
  The objective of response surface methodology is to 

describe how the response of a process varies with changes in 
k predictor variables. Estimation of such surfaces, and hence 
identification of near optimal settings for process variables is 
an important practical issue with interesting theoretical 
aspects. The predictor variables determined will depend on 
the specific field of the application. Most industrial processes 
have some predictor variables. These predictor variables can 
be adjusted by plant operators or by automatic control 
mechanisms to enhance the efficiency of the machine. One 
among those processes of chemical reactor is the most 

 
Manuscript received March 21, 2011; This work was supported by the 

National Research University Project of Thailand, Office of Higher 
Education Commission. The author wishes to thank the Faculty of 
Engineering, Thammasat University, THAILAND for the financial support.  

P. Luangpaiboon is an Associate Professor, the Industrial Statistics and 
Operational Research Unit (ISO-RU), Department of Industrial Engineering, 
Faculty of Engineering, Thammasat University, 12120, THAILAND. 
[Phone: (662)564-3002-9; Fax: (662)564-3017; e-mail: 
lpongch@engr.tu.ac.th]. 

influential and therefore important unit to be encountered by 
a chemical engineer.  

Non-linear and linear system descriptions are derived. A 
type of reactor widely used in various industries is a 
well-stirred tank into which there is a continuous flow of 
reacting material and from which the reacted or partially 
reacted material passes continuously. To ensure the 
successful operation of a continuous stirred tank reactor or 
CSTR it is necessary to understand its dynamic 
characteristics. The aim of this paper is to introduce some 
basic concepts of chemical reaction system modelling and 
develop computer simulation models for the CSTR. A good 
understanding will ultimately enable effective control 
systems design via its predictor variables. 

There is much current interest in optimisation methods 
with the stochastic element. Natural intelligence-inspired 
approximation optimisation techniques called metaheuristics 
are then introduced. Moreover, metaheuristics have been 
used to avoid being trapped in local optima with a poor value 
[1]. The common factor in metaheuristics is that they 
combine rules and randomness to imitate natural phenomena. 
They widely grow and apply to solve many types of problems. 
The major reason is that metaheuristic approaches can guide 
the stochastic search process to iteratively seek near optimal 
solutions in practical and desirable computational time. Their 
properties expose useful information and overcome the large 
and noisy systems.  

These algorithms are then received more attention in the 
last few decades. They can be categorised into three groups: 
biologically-based inspiration, e.g. genetic algorithm or GA 
[2], memetics algorithm or MAs [2], shuffled frog leaping 
algorithm or SFLA [2], firefly algorithm or FFA [3], bees 
algorithm or BEES [4], harmony search algorithm or HSA 
[5], neural network or NN [6], ant colony optimisation or 
ACO [7], evolutionary programming or EP [8], differential 
evolution or DE [9] and particle swarm optimisation or PSO 
[10]. Moreover, there are some with the socially-based 
inspiration, e.g. tabu search or TS [11] and the 
physically-based inspiration such as simulated annealing or 
SA [12]. 

The objective of this study is to compare the efficiency of 
sequential algorithms for on-line optimisation of a chemical 
process in the presence of noises. The method of steepest 
ascent and the integrated approach between the method of 
steepest ascent and three classes of metaheuristics, simulated 
annealing, firefly and ant colony optimisation algorithms, are 
selected and implemented on the CSTR. The context is 
maximising the concentration of a desired product of a 
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chemical reactor with respect to feed rate, concentration and 
temperature. The paper is organised as follows. Section II is 
concerned with the related methods. Section III briefly 
discusses the main features of chemical reactors and, in 
particular, focuses on the dynamic model of CSTR. Sections 
IV and V are concerned with parameter settings for all three 
metaheuristics and the details of proposed methods, 
respectively.  Section VI shows experimental results and 
analyses for comparing the performance of the proposed 
methods. Discussions and recommendations are also 
included and it is followed by acknowledgment and 
references. 

II. RELATED METHODS 

A.  Steepest Ascent Method (SAM) 
The procedure of SAM is that a hyperplane is fitted to the 

results from the initial 2k factorial designs. The data from 
these design points are analysed. If there is an evidence of 
main effect(s), at some chosen level of statistical significance 
and no evidence of curvature, at the same level of 
significance, the direction of steepest ascent on the 
hyperplane is then determined by using principles of least 
squares and experimental designs. The next run is carried out 
at a point, which has some fixed distance in this direction, 
and further runs are carried out by continuing in this direction 
until no further increase in yield is noted [1].  

When the response first decreases and no improvement of 
two more verified yields, another 2k factorial design will be 
carried out, centered on the preceding design point. A new 
direction of steepest ascent is estimated from this latest 
experiment. Provided at least one of the coefficients of the 
hyperplane is statistically significantly different from zero, 
the search continues in this new direction (Figure 1). Once 
the first order model is determined to be inadequate, the area 
of optimum is identified via a second order model or a 
finishing strategy. 
 
Procedure of the SAM () 
While (termination criterion not satisfied) – (line 1) 

Initialise algorithm parameters; 
    Schedule activities (when Regression verification criteria not satisfy) 

Determine significant first order model from the factorial design 
points; 
Schedule activities 

Move along the steepest ascent’s path with a step length (∆); 
Compute response functions; 

          If new response function is greater than the preceding then 
           move ahead with another ∆; 

Else calculate two more response function to verify the 
descending trend; 

If one of which response function turn out to be 
greater than preceding coordinate’s response 
function; 
Then use the biggest response function to continually 
move along  the same path; 

       Else 
use closest preceding point as a centre for new 23 
design; 

       End if; 
              End if; 
          End schedule activities; 
     End schedule activities; 
End while; 
End procedure; 
 

Figure 1.  Pseudo Code of the SAM. 

B. Simulated Annealing (SA) 
Simulated Annealing has been derived from an interesting 

analogy between problems in statistical mechanics and 
multivariate or combinatorial optimisation [13]. This 
algorithm is a set of rules for searching large solution spaces 
in a manner that mimics the annealing process of metals. The 
algorithm simulates the behavior of an ensemble of atoms in 
equilibrium at a given finite temperature and its original 
framework can be traced to Metropolis [14]. This algorithm 
has been regularly used in global function optimisation and 
statistical applications. 

In case of maximisation the procedures of this algorithm 
start at a corresponding initial value of the objective function, 
y0. The new objective value, y1, will be then determined. The 
new solution will be unconditionally accepted if its objective 
value is improved and the process regularly continues. 
Otherwise the difference or size of increment in objective 
values, Δy, is calculated and with an auxiliary experiment the 
new solution would be accepted with probability P(Δy) given 
by: 

P(Δy)  = 1      if Δy = y1-y0 ≥ 0 
      = EXP(cy0

gΔy)  if Δy < 0, 
where c and g are an arbitrary positive number and a negative 
number respectively. A random number, x, is generated from 
the uniform distribution on (0, 1) and is compared to 
EXP(cy0

gΔy). If x < EXP(cy0
gΔy), then the new solution is 

accepted. Otherwise it is rejected. This stochastic element is 
from Monte Carlo sampling. It occasionally allows the 
algorithm to accept the new solution to the problems, which 
deteriorate rather than improve the objective function value. 
However, Simulated Annealing includes a number of 
parameters including g and c they have been claimed that 
affect the efficiency of the algorithm. The pseudo code is 
used to briefly explain to all the procedures of the SA shown 
in Figure 2. 
 
Procedure of the SA Metaheuristic() 

Initialise algorithm parameters;  
Find a starting temperature; 
Find a random starting solution (s); 
While not the freezing temperature; 

Do while not an equilibrium; 
Do to get the neighbourhood solution (sn); 

Evaluate Δy of eval(sn) – eval(s);  
If Δy  ≥  0 then s  sn  
Else  If random(0,1)  ≤  Boltzman() then s  sn; 

End if;  
End if;  

T  cool(T);  
Report (s);  
Loop; 

Loop; 
End while;  

End procedure; 
 

Figure 2.  Pseudo Code of the SA Metaheuristic. 

C. Firefly Algorithm (FFA) 
The firefly algorithm (FFA) is a metaheuristic algorithm, 

inspired by the flashing behaviour of fireflies. The primary 
purpose for a firefly's flash is to act as a signal system to 
attract other fireflies. Now this can idealise some of the 
flashing characteristics of fireflies so as to consequently 
develop firefly-inspired algorithms. For simplicity in 
describing our new Firefly Algorithm, there are the following 
three idealised rules.  
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On the first rule, each firefly attracts all the other fireflies 
with weaker flashes. All fireflies are unisex so that one firefly 
will be attracted to other fireflies regardless of their sex. 
Secondly, attractiveness is proportional to their brightness 
which is reverse proportional to their distances. For any two 
flashing fireflies, the less bright one will move towards the 
brighter one. The attractiveness is proportional to the 
brightness and they both decrease as their distance increases. 
If there is no brighter one than a particular firefly, it will move 
randomly. Finally, no firefly can attract the brightest firefly 
and it moves randomly.  

The brightness of a firefly is affected or determined by the 
landscape of the objective function. For a maximisation 
problem, the brightness can simply be proportional to the 
value of the objective function. Other forms of brightness can 
be defined in a similar way to the fitness function in genetic 
algorithms. Based on these three rules, the basic steps of the 
firefly algorithm (FFA) can be summarised as the pseudo 
code shown in Figure 3. 

 
Procedure of the FFA Metaheuristic() 
Begin; 

Initialise algorithm parameters;  
Define the objective function of f(x), where x=(x1,........,xd)T 
Generate the initial population of fireflies or xi (i=1, 2 ,..., n) 
Determine the light intensity of Ii at xi via f(xi) 

     While (t<MaxGen) 
         For i = 1 to n (all n fireflies); 
               For j=1 to n (n fireflies) 
 if (Ij > Ii), move firefly i towards j; end if 
 Attractiveness varies with distance r via Exp[-γr2]; 
 Evaluate new solutions and update light intensity; 
               End for j; 
         End for i; 
      Rank the fireflies and find the current best; 
     End while; 
     Postprocess results and visualisation; 
End procedure; 
 

Figure 3.  Pseudo code of the FFA Metaheuristic. 

D. Ant Colony Optimisation (ACO) 
Ant algorithm was first proposed by Dorigo and his 

colleagues as a multi-agent approach to optimisation 
problems, such as a travelling salesman problem (TSP) and a 
quadratic assignment problem (QAP). There is currently a lot 
of ongoing activity in the scientific community to extend or 
apply ant-based algorithms to many different discrete 
optimisation problems. Recent applications cover problems 
like a vehicle routing, a plant layout and so on. Ant algorithm 
is inspired by observations of real ant colonies. Ants are 
social insects and they live in colonies. Behaviour is direct 
more to the survival of the colony as a whole than to that of a 
single individual component of the colony. Social insects 
have captured the attention from many scientists because of a 
structure of their colonies, especially when compared with a 
relative simplicity of the colony’s individual. An important 
and interesting behaviour of ant colonies is their foraging 
behaviour and in particular how ants can find shortest paths 
between food sources and their nest.  

While walking from food sources to the nest and vice versa, 
ants deposit on the ground a substance called pheromone, 
forming a pheromone trail. With ants ability to smell 
pheromone they tend to choose a path marked by strong 
pheromone concentrations with the higher probability. The 

pheromone trail allows the ants to find their way back to the 
food source and vice versa. It can be also used by other ants to 
find the location of the food sources found by their nest mates. 
The pseudo code is used to briefly explain to all the 
procedures of the ACO shown in Figure 4. 

 
Procedure of the ACO Metaheuristic() 
While (termination criterion not satisfied) – (line 1) 

    Initialise algorithm parameters; 
   Schedule activities 
      Ants generation and starting point; 
      Makes path or step for each ant 
      Compare response function; 
      If no improvement of response function then 
          Communication with best ant response function; 
          Make path or step from local trap to best ant; 
        Else 
            If ant found the better response function then 
               go to line 5; 
            Else 
                Wait for best ant communication; 
            End if; 
       End if; 
  End schedule activities; 

End while; 
End procedure; 
 

Figure 4.  Pseudo code of the ACO Metaheuristic. 

III. CONTINUOUS STIRRED TANK REACTOR (CSTR) 
A diagrammatic representation of a single continuous 

stirred tank reactor (CSTR) is shown in Figure 5. For the 
CSTR a stream rich in chemical A of feed concentration CA(in) 
is flowing into a reactor at a feed flow rate of F(in), and a feed 
temperature of T(in). The reaction in the CSTR is an 
irreversible, first order exothermic reaction. The proportion 
of chemical A is converted to a desired product B, which, in 
turn, at high temperature undergoes further reaction and is 
decomposed to form an undesired by-product C. The stated 
objective is to explore the operating conditions 
corresponding to higher concentration of product. 

It is also assumed that level is perfectly controlled, so the 
volume of material in the tank is constant. This implies that 
the flow out equals the flow in. The temperature in the reactor 
may be regulated by manipulating the flow rate of the cooling 
water (FC) in the heat exchanger by the following control 
algorithm. 

 
FC = TBIAS - Kc (Tr -T) 
 
A mechanistic model adequately accounting for the system 

under study is suggest purely by physical consideration and 
the dynamics of the system can then be described by the 
following set of ordinary, non-linear differential equations.  
 

( / )
( ) ( )( )AE RTA

OA A in A in A
dCV K e C V F C C
dt

−= − + −         (1) 

( / ) ( / )
( ) ( )A BE RT E RTB

OA A OB B in B
dCV K e C V K e C V F C
dt

− −= − + −   (2) 

( / ) ( / )( ) ( )A BE RT E RT
p RA OA A RB OB B

dTc V H K e C V H K e C V
dt

ρ − −= −Δ + −Δ  

( ) ( )( ) ( )p in in p R Rc F T T c F T Tρ ρ+ − + −              
(3) 

( ) ( )R
p R p R R C R

dTc V c F T T UA T T
dt

ρ ρ= − + −                       (4) 

( )( ) ( )C
p C p C c in C R C

dTc V c F T T UA T T
dt

ρ ρ= − + −            (5) 
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The five state variables, which depend on time t, are the 
concentration of reactant CA, the concentration of product CB, 
the reactor temperature of T, the temperature of the recycled 
flow of TR and the temperature of the coolant leaving the heat 
exchanger (TC). Initial conditions, values of the parameters of 
the process and parameters of the feedback controller, which 
determines the flow of coolant, are given in Appendix. The 
time constant of the system is such that equilibrium is 
attained after approximately ten minutes. 

There are three predictor variables, which can be set to any 
chosen values within safe limits. These predictor variables 
relate to the feed flow are shown in Table I. The response 
variable of the process is defined to be the concentration of 
the desired product B, CB. 
 

 
Figure 5.  The Continuous Stirred Tank Reactor. 

TABLE I.  PREDICTOR VARIABLES OF FEED FLOW AND THEIR SAFE 
LIMITS  

Predictor 
Variable Description Unit Feasible 

Region 

T(in) 
Feed temperature of 

reactant A Celsius 60-100 

F(in) Feed flow rate of reactant A Liter/min 1-10 
CA(in) Concentration of reactant A Mole/liter 1-15 

IV. PARAMETER SETTINGS FOR THE PROPOSED 
METAHEURISTICS 

The parameters of the proposed methods, SA, FFA and 
ACO are varied in a factorial design. For the SA, the levels of 
g and c were selected to cover the range of values commonly 
found in the literature: [-0.5, -1, -1.5] and [4.5, 6.5] for g and 
c, respectively. Two replicates were performed for each of 
the 6 sets of parameter values. Each trial used the random 
initial design points, evenly distributed about edges, furthest 
from the optimum, of the safe region of operation. The 
comparisons were made for four different levels of 
measurement noise added to the response: independent and 
normally distributed with mean of zero and standard 
deviations of 0.5, 1.0, 2.0 and 3.0, respectively. The 
following performance measures on the yield at the end of 
each trial were considered. 

A. Taguchi’s Measure of Performance (Y1) 
Taguchi [15] proposed ‘the larger the better’ measure: 

Y1 = -10 log (∑
=

n

i 1

(1/yi
2)/n), 

in which yi represents the highest yield at the end of trial i, 
and n is the number of trials. 

B. Minimax Performance Measure (Y2) 
Another measure of the performance of the approaches is 

the minimum of the highest yields at the end of the trials. In 
the case of ten trials, for example, 

Y2 = Min (y1, y2, …, y10). 
We wish to maximise Y2. 

C. Mean Squared Error Performance Measure (Y3) 
It is natural to consider combing bias and variance through 

the mean squared error (MSE) criterion [16]. In this case, for 
example, 

Y3  = [(ωμ - T)2 + ωσ
2] 

in which ωμ represents the average of actual responses, T 
represents the target value of response and ωσ is the standard 
deviation of actual responses. We wish to minimise Y3. 

A typical table of results of the analysis of variance from 
the SA is given in Table II and the main effect plot with the 
error standard deviation of 1.0 for Y1 is shown in Table III and 
Figure 6. 

TABLE II.   ANOVA FOR Y1  OF THE SA  

Source of 
Variation

Sum of 
Square 

Degree of 
Freedom 

Mean 
Square 

F P-Value

g 0.0579 2 0.0289 0.44 0.665 
c 0.7161 1 0.7161 10.81 0.017 

g* c 0.3667 2 0.1833 0.0663 0.141 
Error 0.3977 6 0.0663   
Total 1.5384 11    

 

M
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n 
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g c

M a i n  E f f e c ts  P l o t  ( d a ta  m e a n s )  f o r  Y 1

 
Figure 6.  Main Effect Plots for Y1 with the Error Standard Deviation 

of 1.0. 

With the error standard deviation (Stdev.) of 1.0, the main 
finding was that the probability of g for Y1 and Y3 should be 
high (-0.5). This leads to higher average and lower level of 
standard deviation of actual responses. No other statistically 
significant results were found. The preferred levels of g and c 
could be high (-0.5 or -1.0) and low (4.5), respectively. 
Results are included for all cases in which the ANOVA 
P-values, for main effects and interaction, are less than 0.1 in 
Table III. 

TABLE III.  THE PREFERRED LEVELS OF THE PARAMETERS OF THE SA 

Stdev. Preferred Levels Overall Significant and 
P-Value 

g c Y1 Y2 Y3 
0.5 -0.5 - 0.081 - 0.077 
1.0 -1.0 4.5 0.017 - - 

 - 4.5 - 0.048 - 
 -1, -0.5 4.5 - - 0.040 

2.0 - - - - - 
3.0 - - - - - 

 
Similarly, preferable levels of parameters are determined 

and are set to be suggested levels for SA, FFA and ACO 
parameters (Table IV). Under a consideration of 
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recommended levels of their parameters, those may bring the 
benefit to solve the CSTR. 

TABLE IV.   THE PREFERRED LEVELS OF THE PARAMETERS OF THE SA, 
FFA AND ACO. 

Stdev. SA FFA ACO 
g c β0 γ ρ η ξ δ 

0.05 -0.5 4.5 1 0.01 0.6 0.1 0.1 1.5 
1.0 -1.0 4.5 1 0.01 0.4 0.5 0.5 2.5 
2.0 -0.5 4.5 1 0.50 0.4 0.5 0.5 2.5 
3.0 -0.5 4.5 1 0.50 0.4 0.5 0.5 2.5 

 

V. DETAILS OF THE PROPOSED METHODS  
SAM Parameters: the volume of the factorial design [8]; the 
step length [1]; the significance level for tests of significance 
of slopes [10%]. 
SA Parameters: arbitrary positive and negative numbers of g 
[–1] and c [4.5]. 
FFA Parameters: the attractiveness at r = 0 of β0 [1]; the light 
absorption coefficient of γ [0.01]. 
ACO Parameters: pheromone evaporation rate of ρ [0.4]; 
heuristic factor for preferring among available options of η 
[0.5]; ξ and δ are exponent parameters that control the relative 
importance of pheromone concentration versus the heuristic 
factor [0.5 and 2.5]. 
 
Step 1: Perform a 23 design at a random centre point. 
Step 2: Fit a regression plane to the data so that the fitted 
model has the form 
 ŷ  = 0β̂  + 1̂β T(in) + 2β̂ F(in) + 3β̂ CA(in). 
Step 3: Test whether there is evidence that either 1β , 2β or 

3β  is different from zero at the 10% level of significance, i.e. 

does |
MSEC ii

iβ̂ | exceed tv, 0.10?, where ν is the number of 

degree of freedom, one for the first experiment increasing by 
eight for each replicated experiment. 
Step 4a: If the result is significant, move one step along the 
path of steepest ascent, that is along the line whose formula in 
parametric form is (f 1̂β , f 2β̂ , f 3β̂ ), (-∞<f<∞), and 
determine the yield. The step length is  
[

2
3

2
2

2
1

3
2
3

2
2

2
1

2
2
3

2
2

2
1

1
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ˆ
,
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ˆ
,

ˆˆˆ

ˆ

βββ

β

βββ

β

βββ

β

++++++

]. 

Otherwise go to Step 4b. 
Step 4b: Test whether there is evidence that the interaction or 
curvature check is significant. If the check is significant, go 
to Step 6. Otherwise, replicate the design and return to Step 2. 
Step 5a: If the yield is greater than the previous yield or the 
stochastic element meets the requirement of acceptance, 
continue by moving another step in the same direction. 
Step 5b: If the yield is not greater than the previous one, then 
calculate the objective increment (Δy) and test the element as 
follows: Randomly generate a random variable, x ~ Uniform 
(0, 1). Apply the following rules then go to Step 5a.  

 
SA element: If x < P(Δy) ≡ EXP(cy0

gΔy)  
 

FFA element:  If x < P(Δy) ≡ β0EXP[γ(Δy)2)]  
 

ACO element:  If x < P(Δy) ≡ 
1

ξ δ

ξ δ ξ δ
τ η

τ η τ η−+
i

i i
  

1τ ρτ τ−= + Δi i  
; where i is the number of iteration,

 
1ρτ −i  is the 

concentration of the pheromone at the previous 
iteration and τΔ is the cumulative process yields of 
the previous and current iterations.  
 

Step 5c: Otherwise return to the preceding point then carry 
out another 23 design and return to Step 2. If the first step 
leads to a yield less than the yields obtained in the preceding 
23 designs then replicate the design and go to Step 2. 
Step 6: Implement the finishing strategy. This is a central 
composite design (CCD) centred on the point (T(in)p, F(in)p, 
CA(in)p), and fit then a quadratic surface to find the maximum 
(T(in)p, F(in)p, CA(in)p). If (T(in)p, F(in)p, CA(in)p) is within the 
volume of the designs, then (T(in)p, F(in)p, CA(in)p) is taken as the 
optimum operating condition. If (T(in)p, F(in)p, CA(in)p) is not 
within this volume, another CCD is carried out, centered on 
the point from the first CCD with the greatest yield. A 
quadratic surface is now fitted to all the data. If the maximum 
is outside the volume of the union of the two containing 
cubes, the ridge is searched for the greatest value of the 
function, using a step length of 0.05 (from additional 
experiments by using fewer runs). 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 
In this work, for the computational procedures described 

above a computer simulation was implemented in Matlab 
2006v.7.3B. A Laptop computer Lenovo R61 with Microsoft 
Windows version 5.1 (Build 
2600.xpsp_sp2_gdr.070227-2254: service pack 2) was used 
for computational experiments. The comparison is made with 
the measurement noise on the concentration of the desired 
product B (normal and independent with zero mean and 
standard deviation of 0.5, 1, 2 and 3). The typical 
three-dimensional response surfaces, with CA(in) fixed at 1 
and 15, are shown in Figure 7. There are four performance 
measures over 50 realisations in this study. The first and 
second measures are an average (YF1) and a standard 
deviation (YF2) of greatest actual concentration of the desired 
product B from the finishing strategy respectively. The third 
is an average number of runs until the algorithms converge 
(YF3). Finally it is the percentage of sequences ended at the 
optimum (YF4). 

 
(a) 
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(b) 

Figure 7.  The Surface Plot with CA(in) Fixed at 1 (a) and 15 (b) 
Respectively. 

The process settings for all the scenarios are given in Table 
V. The experimental results suggested that the conventional 
algorithm of SAM alone can produce an acceptable solution 
or even an optimal solution if the problem was not so noisy. 
When the problem is noisier, the integrated algorithms of 
SAM with SA (SAMSA), FFA (SAMFFA) and SAM with 
ACO (SAMACO) are more suitable to exploit a solution 
space as a local search by embedding within the SAM. The 
exploitation process can be performed on each population 
member to improve its experience and thus obtain a 
population of local optimum solutions. However, ant colony 
optimisation algorithm (ACO) requires higher levels of 
design points towards the optimum. 

TABLE V.  FOUR ACHIEVEMENTS OVER 50 REALISATIONS  

Performance 
Measures 

Standard Deviation of Noise 
0.5 1 2 3 

YF1 

59.3025A 
57.6587B 
56.7503C 

57.7124D 

57. 2845 
57.4589 
57. 6083 
57.9102 

59.3670 
60.9887 
61. 6109 
61.5745 

60. 0308 
60.5890 
61. 6276 
61.0987 

YF2 

7.6283 
10.9875 
10.2718 
11.3545 

7.3860 
6.9987 
6.8989 
7.0215 

9.5658 
7.0548 
7. 6716 
7.8541 

7.7273 
6.7858 
6. 4331 
6.1568 

YF3 

33. 03 
49.01 
38.17 
40.25 

33. 57 
35.26 
34.90 
35.69 

32. 06 
35.98 
34.75 
36.25 

31. 53 
36.02 
33.30 
35.95 

YF4 

0.85 
0.84 
0.85 
0.83 

0.87 
0.87 
0.90 
0.89 

0.82 
0.89 
0.90 
0.89 

0.78 
0.86 
0.92 
0.85 

NOTE: SAMA, SAMSAB, SAMFFAC, SAMACOD  

 

In Figure 8, the actual yield and its best so far achieved on 
one replicate of the sequential procedures revealed the higher 
performance of all the integrated algorithms SAMSA, 
SAMFFA and SAMACO when compared with the 
conventional steepest ascent method (SAM). Accordingly to 
noises, some operating points from factorial designs may 
need to duplicate and measure process yields.  
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Figure 8.  Sequential Performance of  all Algorithms on the CSTR 

with Noise Standard Deviation of 2.0. 

The performance of the method of steepest ascent and the 
integrated approaches for 50 realisations can be explained by 
the Box-Whisker plots in Figure 9 when the error standard 
deviation levels were 2.0 and 3.0. Note that since the 
efficiency of these algorithms is related to their initial design 
points based on factorial designs, it would be helpful to set 
random starting points for all algorithms. These results show 
that the performance of the integrated approach under the 
stochastic elements of SA, FFA and ACO seems superior to 
the algorithm based on the method of steepest ascent at the 
higher levels of error standard deviations. 
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Figure 9.  Two Independent Box-Whisker Plot Comparisons 
Showing the Performance of the SA and the Integrated Approaches when the 

Error Standard Deviation was 2.0 (a) and 3.0 (b) respectively. 

An analysis of variance, ANOVA, is a confirmation 
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technique for analysing experimental data in which a 
response or the actual yield is measured under various 
conditions identified by the algorithms. It can also be seen 
that these experimental results on all scenarios categorised by 
SAM, SAMSA, SAMFFA and SAMACO, were statistically 
significant with a 90% confidence interval (Tables VI and 
Figure 10). The numerical results suggested that all the 
hybridisations provided the better performance in terms of 
the average actual yield or the concentration of the desired 
product B, CB. The goodness of the linear statistical model 
via experimental errors or residuals is also adequate. As the 
results, all hybridisations seem to be better to apply to the 
CSTR, especially the hybridisations of SAM with SA and 
ACO. 

TABLE VI.  ONE-WAY ANOVA: ACTUAL YIELD VERRSUS FOUR 
SCENARIOS  

Source of 
Variation 

Sum of 
Square 

Degree of 
Freedom 

Mean 
Square 

F P-Value

Factor 135.83 3 45.28 20.86 0.000 
Error 425.50 196 2.17   
Total 561.33 199    

         

 
Figure 10.  Graphical Comparison for Four Scenarios on the CSTR 

with Noise Standard Deviation of 2.0. 

Moreover, the percentage of sequences ended at the 
optimum or near optimum of radius equalling two from the 
integrated approaches is better at higher levels of error 
standard deviation although the greater number of runs were 
required to converge to the optimum. To find out the best 
solution within a limited time, is obviously difficult. There 
are various modifications to overcome in the research. 
However, convergence to the global optimum is not 
substantially rapid.  

Recommendations should be made for the values of the 
algorithm parameters, although these values depend on the 
selected performance measure. As stated earlier, the system 
in this research was restricted to three predictor variable. 
Consequently, comparisons and conclusions among the three 
algorithms may not be valid for other families of systems. 
Other stochastic approaches could be extended to the method 
based on conventional factorial designs to increase its 
performance, especially in terms of speed of convergence, 
when the error standard deviation is at higher levels.  

 

APPENDIX 
Initial conditions of process state variables, values of the 

parameters of the process and parameters of controller are 
given in Tables VII, VIII and IX, respectively. The time 
constant of the system is such that equilibrium is attained 
after approximately ten minutes. 

 

TABLE VII.  PROCESS STATE VARIABLES AND THEIR INITIAL 
CONDITIONS 

Variable Description Unit Value
CA Concentration of reactant A mole/m3 747.9
CB Concentration of product B mole/m3 1609
T Reactor temperature K 341.4
TR Temperature of the recycled flow K 333.3
TC Temperature of the coolant K 330.5

TABLE VIII.  PARAMETERS OF THE PROCESS 

Parameter Description Unit Value
V Volume of the CSTR m3 3 

KOA Rate coefficient (A to B) mole/s 7.1011

EA Activation energy (A to B) J 90000
R Gas constant J/mole/K 8.314

KOB Rate coefficient (B to C) mole/s 9.1011

EB Activation energy (B to C) J 100000
ρ Process fluid density kg/m3 1000
cp Process fluid heat capacity J/kg/K 4180

-ΔHRA Heat of reaction (A to B) J/mole 80000
-ΔHRB Heat of reaction (B to C) J/mole 40000

FR Feed flow rate of recycled stream m3/s 0.025
U Heat transfer coefficient W/m2K 3000
A Area, heat exchanger(HX) m2 100 
VC Volume, cooling water in HX m3 0.2 
VR Volume, process stream in HX m3 0.2 

TC(in) Feed temperature of cooling stream K 293 

TABLE IX.  PARAMETERS OF CONTROLLER 

Parameter Description Unit 
Tr Required temperature K 
KC Controller gain m3/sK

TBIAS Offset m3/s 
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