
 
 

 

  
Abstract— Discovery of association rule is one of the most 

interesting areas of research in data mining, which extracts 
together occurrence of itemset. In a dynamic database where 
the new transaction are inserted into the database, keeping 
patterns up-to-date and discovering new pattern are 
challenging problems of great practical importance. This may 
introduce new association rules and some existing association 
rules would become invalid. It is important to study efficient 
algorithms for incremental update of association rules in large 
databases. In this paper, we modify an existing incremental 
algorithm, Probability-based incremental association rule 
discovery. The previous algorithm, probability-based 
incremental association rule discovery algorithm uses principle 
of Bernoulli trials to find frequent and expected frequent 
k-itemsets. The set of frequent and expected frequent k-itemsets 
are determined from a candidate k-itemsets. Generating and 
testing the set of candidate is a time-consuming step in the 
algorithm. To reduce the number of candidates 2-itemset that 
need to repeatedly scan the database and check a large set of 
candidate, our paper is utilizing  a hash technique for the 
generation of the candidate 2-itemset, especially for the 
frequent and expected frequent 2-itemsets, to improve the 
performance of probability-based algorithm. Thus, the 
algorithm can reduce not only a number of times to scan an 
original database but also the number of candidate itemsets to 
generate frequent and expected frequent 2 itemsets.  As a result, 
the algorithm has execution time faster than the previous 
methods. This paper also conducts simulation experiments to 
show the performance of the proposed algorithm. The 
simulation results show that the proposed algorithm has a good 
performance. 
 

Index Terms—Incremental Association Rule Discovery; 
Association Rule Discovery; Data mining 

I. INTRODUCTION 
Data mining has attracted great attention in database 

communities because of its wide applicability in many areas, 
including decision support, market strategy and financial 
forecast. One major application area of data mining is 
association rule mining [1] that discovers hidden knowledge 
in database. The association rule mining problem is to find 
out all the rules in the form of X => Y, where X and Y ⊂ I are 
sets of items, called itemsets. The association rule discovery 
algorithm is usually decomposed into 2 major steps. The first 
step is find out all large itemsets that have  support value 
exceed a  minimum support threshold and the second steps is  
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find out all the association rules that have value exceed a 
minimum confidence threshold. 

The rules discovered from a database only reflect the 
current state of the database. However, in a dynamic database 
where the new transaction are inserted into the database, 
keeping patterns up-to-date and discovering new pattern are  
challenging problems of great practical importance. The 
updating of the database may cause not only the generation of 
new rules but also the invalidation of some existing rules. As 
a brute force approach, Apriori algorithm may be applied to 
mining a whole dynamic database when the database has 
been changed. To re-mining the frequent itemsets of the 
whole updated database is clearly inefficient, because all 
computations done in the previous mining are wasted. The 
main idea of the association rule mining in dynamic database 
refers to optimizations that can be done across mining 
computations over updated dataset based on previously 
stored knowledge.  Then several research works [5, 7, 8, 9, 10, 
12, 13, 14, 15, 16, 17] have proposed several incremental 
algorithms to deal with this problem. Review of previous 
works will be introduced in section 2. 

In this paper, we modify an existing incremental algorithm, 
Probability-based incremental association rule discovery 
[15,17]. A previously proposed algorithm Probability-based 
incremental association rule discovery algorithm uses the 
principle of Bernoulli trials to find all frequent itemsets and 
expected frequent itemsets of an updated database efficiently. 
The expected frequent itemset is the itemsets that have 
capable of being frequent itemsets after a number of new 
records have been added to a database.  

In addition, the produce candidate item sets are too many 
when the pattern is too long. Therefore when the database is 
too large, the running time of the algorithm would be too long. 
A hash-based technique can be used to reduce the size of the 
candidate k-itemset (especially when k=2). The key issue of 
this work is utilizing a hash technique for the generation of 
the candidate 2-itemset, especially for the frequent 2-itemsets, 
to improve the performance of probability-based algorithm. 
Our algorithm can reduce not only a number of times to scan 
an original database but also the number of candidate 
itemsets to generate frequent 2 itemsets.  As a result, the 
algorithm has execution time faster than that of previous 
methods. 

II. RELATED WORK 
An influential algorithm for association rule mining is 

Apriori [2]. Apriori computes frequent itemsets in a large 
database through several iterations based on a prior 
knowledge.  Each iteration, it generates a number of 
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candidate frequent itemsets and then verify them by scanning 
the database. For a frequent itemset, its support must be 
higher than a user-specified minimum support threshold. The 
association rule can be discovered based on frequent itemsets.  
DHP [3] algorithm is an extension of Apriori by further 
reducing the number of candidate itemsets using a hashing 
technique. DHP is very efficient for the generation of 
candidate large itemsets, in particular for the large 
2-itemsets.In addition, DHP proposed the effective pruning 
techniques to progressively reduce the number of transaction 
database and   the number of items in each transaction. 

While both Apriori and DHP efficiently discover 
association rules from a database, the rules maintenance 
problem is not addressed. For dynamic databases, several 
incremental updating techniques have been developed for 
mining association rules. One of the previous works for 
incremental association rule mining is FUP algorithm that 
was presented by Cheung et al [4]. FUP algorithm is the first 
incremental updating technique for maintaining association 
rules when new data are inserted into database.  Based on the 
concepts of Apriori algorithm, FUP computes frequent 
itemsets using large itemsets found at previous iteration. The 
major idea of FUP is re-using frequent itemsets of previous 
mining to update with frequent itemsets of an incremental 
database. At each iteration, the supports of the size-k frequent 
item sets of an original database are updated by scanning an 
incremental database. As well as any k-frequent itemset of 
the incremental database are updated by scanning the original 
database to find the new frequent itemsets. As a result, FUP 
algorithm requires to scan passes over an original database 
several times when new frequent itemsets are found. This can 
degrade the performance of FUP algorithm.  

To deal with the rescanning problem, negative border 
approach is presented by Toivonen [6], Thomas et al [7] and 
Feldman et al [10].This approach maintains both frequent 
itemsets and border itemsets. The border itemset is not a 
frequent itemset but all its proper subsets are frequent 
itemsets. The approach need to keep a large number of border 
itemsets in order to reduce scanning times of an original 
database. Basically, the border-based algorithms start by 
scanning a new database. Then, the border-based algorithms 
update support counts of all frequent sets and border sets. 
Most updated frequent itemsets can be found not only from 
frequent itemsets but also from border itemsets. This can 
reduce scanning times of an original database. However, 
when new frequent itemsets are introduced as updated 
frequent itemsets, several database scanning is required to 
obtain support counts of the new frequent itemsets and their 
subsets. Adnan et al [11] shows that the execute time of the 
border-based algorithms can severely slower than that of 
Apriori when new frequent itemsets are introduced as 
updated frequent itemsets. 

Although a large number of itemsets in the border itemsets 
is not become frequent items when a new database is added to 
an original database, the border-based algorithms still need to 
keep them in order to guarantee that all frequent itemsets can 
be found. Thus, the border-based algorithms need large 
memory space to keep the border itemsets. 

To reduce memory space, Hong el al. [13] and 
Amornchewin and Kreesuradej [14] propose a new approach. 

The approach maintains both frequent itemsets and expected 
frequent itemsets. An expected frequent itemset is not a 
frequent itemset but is expected to become a frequent itemset 
when a new database is added to an original database. In 
order to guarantee that all frequent itemsets can be found 
when a new database is added to an original database, the 
approach can only allow very small size of an incremental 
database to insert into an original database. 

To deal with the problem that the previous approach can 
only allow very small size of an increment database to insert 
into an original database, Probability-based Incremental 
Association Rule Discovery Algorithm, is introduced by 
Amornchewin and Kreesuradej [15, 17]. Similar to the 
previous approach, the new algorithm also keeps both 
frequent itemsets and expected frequent itemsets. The 
Probability-based algorithm uses the principle of Bernoulli 
trials to estimate expected frequent itemsets. This technique 
can allow larger size of an increment database to insert into 
an original database than that of the previous approach. 

To reduce the number of candidates 2-itemset that need to 
be checked for a given transaction, our algorithm is a 
improvement of Probability-based algorithm with inclusion 
of the direct hashing technique. Our approach shall apply the 
hashing technique for efficient the 2 frequent itemset 
generation. The preliminary experiments show that the new 
technique has execution time faster that that of previous 
methods.  

III. USING HASH-BASED FOR PROBABILITY-BASED 
INCREMENTAL ASSOCIATION RULES DISCOVERY ALGORITHM 

When a dynamic database is inserted new transactions, not 
only some existing association rules may be invalidated but 
also some new association rules may be discovered. This is 
the case because frequent itemsets can be changed after 
inserting new transactions into a dynamic database. 
Therefore, an association rule discovery algorithm for a 
dynamic database has to maintain frequent itemsets when 
new transactions are inserted into the dynamic database. 
In this section, we describe our algorithm into 2 subsections. 
Firstly, probability-based expected frequent itemsets is 
presented. Secondly, updating frequent and expected 
frequent k-itemsets is introduced.  

A. Probability-Based Expected Frequent Itemsets 
The key idea of previous incremental mining, 

Probability-based algorithm, is solve the updating problem of 
association rules after a number of new records have been 
added to a database. In this algorithm an original database, 
which is a database before being inserted new transactions, is 
firstly mined to find all frequent itemsets that satisfy a 
minimum support count, denoted koriginal.  Furthermore, the 
proposed algorithm also predicts and keeps expected 
frequent itemsets that may become frequent itemsets if new 
transactions are inserted into the original database. 

According to the Probability-based algorithm assumption 
is that the statistics of new transactions slightly change from 
original transactions. Then, the statistics of old transaction 
obtained from previous mining, can be utilized for 
approximating that of new transactions. Therefore, the new 
algorithm uses support count of itemsets obtained from 
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previous mining to approximate the probability of infrequent 
itemsets in an original database that may be capable of being 
frequent itemsets when new transactions are inserted into the 
original database. 

Here, the process of inserting m transactions into an 
original database of n transaction can be considered as (m+n) 
Bernoulli trials, which are (m+n) sequence of identical trials. 
Each itemset has its probability of appearing in a transaction, 
denoted by p, i.e., the probability of success. According to the 
principle of Bernoulli trials, the probability of the number of 
an itemset to appearing in (n+m) transactions, denoted by 
P(x), can be found by the following equation:  

 
xmnx )p(p
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where p is the probability of  an itemset appearing in a 
transaction, m is a number of new transactions, and n is a 
number of transactions of an original database. 

Thus, if k is a minimum support count after inserting new 
transactions into an original database, the probability of an 
itemset to be a frequent itemset in an updated database can be 
obtained as the following equations: 

 
                  ( ) ( )itemitem kxPkxP <−=≥ 1                       (1) 
 

Here, an expected frequent itemset is an itemset that is not 
a frequent itemset but has its probability to be a frequent 
itemset greater than Probpl. Probpl is a threshold constant 
specified by users.  Probpl indicates the minimum confidence 
level that a promising frequent itemset will be a frequent 
itemset after inserting new transaction into an original 
database. The higher Probpl is set, the lesser expected 
frequent itemsets are kept. As results, the algorithm may need 
more number of rescanning times in the original database 
when the algorithm performs the discovering new frequent 
item task.  

B. Updating frequent and expected frequent k- itemsets 
algorithm  

When new transactions are added to an original database, 
an old frequent k-itemset could become an infrequent 
k-itemset and an old expected frequent k-itemset could 
become a frequent k-itemset. This introduces new association 
rules and some existing association rules would become 
invalid. To deal with this problem, all k-itemsets must be 
updated when new transactions are added to an original 
database. The notation used in this section is given in Table1. 

 The notation for Updating frequent and          expected 
frequent itemsets algorithm 

 
DB Original database 
db Incremental Database 
UP Updated database 
k Number of  itemset  
σ Minimum support   
ρ Minimum Expected Frequent  
Ck Candidate k-itemset 
Fk Frequent  k-itemset 

EFk Expected Frequent k-itemset 
 

 
Figure 1.  Main Algorithm 

Here, a new updating algorithm shown in Figure 1 is 
proposed in this paper. The algorithm consists of four phases. 
The first phase is updating 1- frequent and expected frequent 
itemsets, i.e. line1-3. The second phase is applying the hash 
technique to discover the candidate frequent 2-itemsest and 
update the frequent and expected frequent itemset, i.e. line 
6-8. The third phase is repeatedly updating the other frequent 
and expected frequent itemsets by using only an incremental 
database, i.e. line 11-16. The last phase is scanning an 
original database, i.e. line 18-22. 

 
Figure 2.  Update 1-itemsest Algorithm 

Figure 2 shows the algorithm for updating 1- frequent and 
expected frequent itemsets. According to the algorithm, the 
1-candidate itemsets of an updated database, i.e. UPC1 , can be 
found by combining the 1-candidate itemsets of an original 
database, i.e. DBC1 ,   with the 1-candidate itemsets of an 

incremental database, i.e. dbC1 . Then, the support count of 
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UPC1  can be updated by scanning only an incremental 
database, i.e. line 1-4. Then, the 1-frequent and expected 
itemsets of an updated database can be found as shown in line 
5 and 6 respectively. 

The second phase has 2 major steps which are a 
discovering the frequent 2-itemset step in an increment 
database and an updating support count of frequent and 
expected frequent itemset in updated database step. To 
discover the set of frequent 2-itemsets, in view of the fact that 
any subset of a frequent itemset could also have minimum 
support, the Apriori algorithm uses L1*L1 to generate the 
candidates. The operation * is represented for concatenation 
in this case. Therefore, C2 consists of 2-itemset generated by  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

2

L1  as candidates in the second iteration.  

Since the set of candidate itemsets includes all the possible 
permutations of the elements, Probability-based algorithm 
may suffer from a very large set of candidate itemsets, 
especially from candidate 2-itemsets.  

 
Figure 3.  Generate Hash_Candidate 

 

Figure 4.  Update 2-itemsest Algorithm 

The problem of a large set of candidate itemsets will hinder 
an effective use of the hashing technique [3]. In this phase, 
we use a hash technique for the generation of the candidate 
2-itemset, especially for the frequent 2-itemsets, to improve 

the performance of probability-based algorithm.   
After reading each new transaction, itemsets of 2-subset 

can be mapped to hash buckets and stored there. The 
algorithm for generating 2- incremental candidate itemsets 
based on the hash table is shown in Figure  3. For each 
itemset in a hash bucket, the following information is stored: 
1) the length of the itemset, 2) hash address, which is used for 
identifying this itemset, , i.e. line 1-6 and 3) a count of the 
number of occurrences of the itemset as show in line 7. 

Figure  4 shows an algorithm for updating support count of 
2- updated frequent itemsets and 2- updated expected 
frequent 2-itemsets, as shown in line 1-11.  To reduce the 
number of itemset for scanning original database, if sum of 
any new 2 frequent’s support count and support of  probpl 

minus 1 is greater than minimum support  of updated 
database, then it will be moved to Temp_scanDB, as show in 
line 7. 

 
Figure 5.  Generating Candidate k- itemsets Algorithm 

 

Figure 6.  Update (k ≥ 2) itemset Algrithmo 

The third phase has 2 major steps as the second phase 
except that it does not employ a hash table. The algorithm for 
generating k- incremental candidate itemsets for k greater 
than or equal to 3 is shown in Figure  5.  In this phase, the 
algorithm is firstly found k- candidate itemsets of an 
incremental database, i.e. db

kC , by joining db
1kF -  with db

1kF - , 
i.e. line 2. Similar to Apriori algorithm, the k- candidate 
itemsets of an incremental database can be the updated 
frequent itemsets, i.e. UP

kF , only if  the subsets of the k- 
candidate itemsets of an incremental database must be in the 
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Algorithm 6: Update (k ≥ 3) itemset 
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(k-1 )- updated frequent. Thus, the k- incremental candidate 
itemsets, i.e. new

kC , will keep only the k- candidate itemsets 
of an incremental database whose subsets of the k- candidate 
itemsets are in the (k-1) - updated frequent itemsets, i.e. line 
3-5. This can prune the k- candidate itemsets of an 
incremental database that can’t be the k- updated frequent 
itemsets. 

 
Figure 7.  Algorithm for scanning an original database 

Figure 6 shows an algorithm for updating support count of 
k- updated frequent itemsets and k- updated expected 
frequent itemsets for k greater than or equal to 3. As shown in 
line 1, the algorithm scans an incremental database to find 
and update support count of the k- updated candidate itemsets, 
i.e. UP

kC . When any k-itemsets are not in the union set of the 
original k-frequent and the original k- expected frequent 
itemsets, i.e. k-itemsets ∉ DB

k
DB

k EFF ∪ , but is in the k- 

incremental candidate itemsets, i.e.   k- itemsets ∈ new
kC , their 

support counts need to be specially updated. This is the case 
because their support counts obtained from an original 
database are not available. Since these k- itemsets are not 
in DB

k
DB

k EFF ∪ , their support counts are at best equal 

to 1-DBρ . Here, their support counts are assumed to be 
equal to the sum of 1-DBρ  and their support counts 
obtained from an incremental database, i.e. 

( ) ( )1-, DBdbXc ρ+ . If any k- itemsets have support counts 
below updated min support count, i.e. σUP, the k-itemsets 
can’t be the k-updated frequent itemsets. On the other hand, if 
any k-itemsets have support counts above or equal to an 
updated min support count, the k-itemsets are likely to be the 
k-updated frequent itemsets. Thus, the k-itemsets, which have 
support counts above or equal to an updated min support 
count, are set aside for finding their true support counts from 
an original database, i.e. line 9. 

At the last phase, an original database is scanned to find 
true support counts for the k-itemsets that are likely to be the 
k-updated frequent itemsets. The algorithm is shown in 
Figure 7. The support counts of the likely k-updated frequent 
itemsets are found and updated by scanning an original 
database as shown in line 1-6. Then, all k-updated frequent 
itemsets and k-updated expected frequent itemsets are found 
as shown in line 7-8. 

IV. EXPERIMENT 
To evaluate the performance of probability-based 

incremental association rules discovery algorithm, the 
algorithm is implemented and tested on a PC with a 2.8 GHz 
Pentium 4 processor, and 1 GB main memory. The 
experiments are conducted on a synthetic dataset, called 
T10I4D20K. The technique for generating the dataset is 
proposed by Agrawal and etc. [1]. The synthetic dataset 
comprises 250,000 transactions over 70 unique items, each 
transaction has 10 items on average and the maximal size 
itemset is 4. 

Firstly, the proposed algorithm with Probpl = 0.06 used to 
find association rules from an original database of 20,000 
transactions. Then, the same sizes of incremental databases, 
i.e. 10% of the original database, are added to the original 
database. For comparison purpose, FUP, Border, Pre-large 
and Probability-based algorithm are also used to find 
association rules from the same original database and the same 
incremental databases. Figure 8 and Table 2 show the average 
of execution time for FUP, Border, Pre-large, 
Probability-based and our approach. The results also show that 
the proposed algorithm has much better running time than that 
of FUP, Border, Pre-large and Probability-based. 

TABLE I.  EXECUTION TIME OF ALGORITHM 

Algorithm Execution time (sec) 

min_sup 3% min_sup  4% 
FUP 8288.03 3512.08 

Border 10540 5214 

Pre-large 9569.17 3235.39 

Probability-based 2992.11 1647.7 

Hash-Probability-based 2399.05 1072.09 
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Figure 8.  Execution time of  FUP, Borders,Pre-large, Probability-based and 
the proposed   algorithm 

V. CONCLUSION 
We have improved the probability-based incremental 

association rule discovery algorithm by using hashing 
technique. We can generate all of the 2-itemsets for each 
transaction and hash them into the different buckets of a hash 
table structure with increase the corresponding bucket counts. 
If any bucket count of 2-itemset in the hash table is less than 
the minimum support threshold, it cannot be frequent and 
then should be remove from the candidate set. Thus, the hash 
technique might substantially reduce especially the number 
of the candidate 2-itemsets. 

 In our study, we assume that the two thresholds, minimum 
support and confidence, do not change. So, the algorithm can 
guarantee to discover all frequent itemsets. From the 
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experiment, our algorithm has less running time than FUP, 
Borders, Pre-Large and Probability-based algorithm. In the 
future, further researches and experiments on the proposed 
algorithm will be presented. 
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