

Abstract— Discovery of association rule is one of the most

interesting areas of research in data mining, which extracts
together occurrence of itemset. In a dynamic database where
the new transaction are inserted into the database, keeping
patterns up-to-date and discovering new pattern are
challenging problems of great practical importance. This may
introduce new association rules and some existing association
rules would become invalid. It is important to study efficient
algorithms for incremental update of association rules in large
databases. In this paper, we modify an existing incremental
algorithm, Probability-based incremental association rule
discovery. The previous algorithm, probability-based
incremental association rule discovery algorithm uses principle
of Bernoulli trials to find frequent and expected frequent
k-itemsets. The set of frequent and expected frequent k-itemsets
are determined from a candidate k-itemsets. Generating and
testing the set of candidate is a time-consuming step in the
algorithm. To reduce the number of candidates 2-itemset that
need to repeatedly scan the database and check a large set of
candidate, our paper is utilizing a hash technique for the
generation of the candidate 2-itemset, especially for the
frequent and expected frequent 2-itemsets, to improve the
performance of probability-based algorithm. Thus, the
algorithm can reduce not only a number of times to scan an
original database but also the number of candidate itemsets to
generate frequent and expected frequent 2 itemsets. As a result,
the algorithm has execution time faster than the previous
methods. This paper also conducts simulation experiments to
show the performance of the proposed algorithm. The
simulation results show that the proposed algorithm has a good
performance.

Index Terms—Incremental Association Rule Discovery;
Association Rule Discovery; Data mining

I. INTRODUCTION
Data mining has attracted great attention in database

communities because of its wide applicability in many areas,
including decision support, market strategy and financial
forecast. One major application area of data mining is
association rule mining [1] that discovers hidden knowledge
in database. The association rule mining problem is to find
out all the rules in the form of X => Y, where X and Y ⊂ I are
sets of items, called itemsets. The association rule discovery
algorithm is usually decomposed into 2 major steps. The first
step is find out all large itemsets that have support value
exceed a minimum support threshold and the second steps is

Manuscript received March 17, 2011.
Ratchadaporn Amornchewin is with the Faculty of Information

Technology, Thepsatri Rajabhat University, Lopburi, 15000, Thailand.
(e-mail: ramornchewin@yahoo.com).

find out all the association rules that have value exceed a
minimum confidence threshold.

The rules discovered from a database only reflect the
current state of the database. However, in a dynamic database
where the new transaction are inserted into the database,
keeping patterns up-to-date and discovering new pattern are
challenging problems of great practical importance. The
updating of the database may cause not only the generation of
new rules but also the invalidation of some existing rules. As
a brute force approach, Apriori algorithm may be applied to
mining a whole dynamic database when the database has
been changed. To re-mining the frequent itemsets of the
whole updated database is clearly inefficient, because all
computations done in the previous mining are wasted. The
main idea of the association rule mining in dynamic database
refers to optimizations that can be done across mining
computations over updated dataset based on previously
stored knowledge. Then several research works [5, 7, 8, 9, 10,
12, 13, 14, 15, 16, 17] have proposed several incremental
algorithms to deal with this problem. Review of previous
works will be introduced in section 2.

In this paper, we modify an existing incremental algorithm,
Probability-based incremental association rule discovery
[15,17]. A previously proposed algorithm Probability-based
incremental association rule discovery algorithm uses the
principle of Bernoulli trials to find all frequent itemsets and
expected frequent itemsets of an updated database efficiently.
The expected frequent itemset is the itemsets that have
capable of being frequent itemsets after a number of new
records have been added to a database.

In addition, the produce candidate item sets are too many
when the pattern is too long. Therefore when the database is
too large, the running time of the algorithm would be too long.
A hash-based technique can be used to reduce the size of the
candidate k-itemset (especially when k=2). The key issue of
this work is utilizing a hash technique for the generation of
the candidate 2-itemset, especially for the frequent 2-itemsets,
to improve the performance of probability-based algorithm.
Our algorithm can reduce not only a number of times to scan
an original database but also the number of candidate
itemsets to generate frequent 2 itemsets. As a result, the
algorithm has execution time faster than that of previous
methods.

II. RELATED WORK
An influential algorithm for association rule mining is

Apriori [2]. Apriori computes frequent itemsets in a large
database through several iterations based on a prior
knowledge. Each iteration, it generates a number of

Probability-based Incremental Association Rules
Discovery Algorithm with Hashing Technique

Ratchadaporn Amornchewin

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

43

candidate frequent itemsets and then verify them by scanning
the database. For a frequent itemset, its support must be
higher than a user-specified minimum support threshold. The
association rule can be discovered based on frequent itemsets.
DHP [3] algorithm is an extension of Apriori by further
reducing the number of candidate itemsets using a hashing
technique. DHP is very efficient for the generation of
candidate large itemsets, in particular for the large
2-itemsets.In addition, DHP proposed the effective pruning
techniques to progressively reduce the number of transaction
database and the number of items in each transaction.

While both Apriori and DHP efficiently discover
association rules from a database, the rules maintenance
problem is not addressed. For dynamic databases, several
incremental updating techniques have been developed for
mining association rules. One of the previous works for
incremental association rule mining is FUP algorithm that
was presented by Cheung et al [4]. FUP algorithm is the first
incremental updating technique for maintaining association
rules when new data are inserted into database. Based on the
concepts of Apriori algorithm, FUP computes frequent
itemsets using large itemsets found at previous iteration. The
major idea of FUP is re-using frequent itemsets of previous
mining to update with frequent itemsets of an incremental
database. At each iteration, the supports of the size-k frequent
item sets of an original database are updated by scanning an
incremental database. As well as any k-frequent itemset of
the incremental database are updated by scanning the original
database to find the new frequent itemsets. As a result, FUP
algorithm requires to scan passes over an original database
several times when new frequent itemsets are found. This can
degrade the performance of FUP algorithm.

To deal with the rescanning problem, negative border
approach is presented by Toivonen [6], Thomas et al [7] and
Feldman et al [10].This approach maintains both frequent
itemsets and border itemsets. The border itemset is not a
frequent itemset but all its proper subsets are frequent
itemsets. The approach need to keep a large number of border
itemsets in order to reduce scanning times of an original
database. Basically, the border-based algorithms start by
scanning a new database. Then, the border-based algorithms
update support counts of all frequent sets and border sets.
Most updated frequent itemsets can be found not only from
frequent itemsets but also from border itemsets. This can
reduce scanning times of an original database. However,
when new frequent itemsets are introduced as updated
frequent itemsets, several database scanning is required to
obtain support counts of the new frequent itemsets and their
subsets. Adnan et al [11] shows that the execute time of the
border-based algorithms can severely slower than that of
Apriori when new frequent itemsets are introduced as
updated frequent itemsets.

Although a large number of itemsets in the border itemsets
is not become frequent items when a new database is added to
an original database, the border-based algorithms still need to
keep them in order to guarantee that all frequent itemsets can
be found. Thus, the border-based algorithms need large
memory space to keep the border itemsets.

To reduce memory space, Hong el al. [13] and
Amornchewin and Kreesuradej [14] propose a new approach.

The approach maintains both frequent itemsets and expected
frequent itemsets. An expected frequent itemset is not a
frequent itemset but is expected to become a frequent itemset
when a new database is added to an original database. In
order to guarantee that all frequent itemsets can be found
when a new database is added to an original database, the
approach can only allow very small size of an incremental
database to insert into an original database.

To deal with the problem that the previous approach can
only allow very small size of an increment database to insert
into an original database, Probability-based Incremental
Association Rule Discovery Algorithm, is introduced by
Amornchewin and Kreesuradej [15, 17]. Similar to the
previous approach, the new algorithm also keeps both
frequent itemsets and expected frequent itemsets. The
Probability-based algorithm uses the principle of Bernoulli
trials to estimate expected frequent itemsets. This technique
can allow larger size of an increment database to insert into
an original database than that of the previous approach.

To reduce the number of candidates 2-itemset that need to
be checked for a given transaction, our algorithm is a
improvement of Probability-based algorithm with inclusion
of the direct hashing technique. Our approach shall apply the
hashing technique for efficient the 2 frequent itemset
generation. The preliminary experiments show that the new
technique has execution time faster that that of previous
methods.

III. USING HASH-BASED FOR PROBABILITY-BASED
INCREMENTAL ASSOCIATION RULES DISCOVERY ALGORITHM

When a dynamic database is inserted new transactions, not
only some existing association rules may be invalidated but
also some new association rules may be discovered. This is
the case because frequent itemsets can be changed after
inserting new transactions into a dynamic database.
Therefore, an association rule discovery algorithm for a
dynamic database has to maintain frequent itemsets when
new transactions are inserted into the dynamic database.
In this section, we describe our algorithm into 2 subsections.
Firstly, probability-based expected frequent itemsets is
presented. Secondly, updating frequent and expected
frequent k-itemsets is introduced.

A. Probability-Based Expected Frequent Itemsets
The key idea of previous incremental mining,

Probability-based algorithm, is solve the updating problem of
association rules after a number of new records have been
added to a database. In this algorithm an original database,
which is a database before being inserted new transactions, is
firstly mined to find all frequent itemsets that satisfy a
minimum support count, denoted koriginal. Furthermore, the
proposed algorithm also predicts and keeps expected
frequent itemsets that may become frequent itemsets if new
transactions are inserted into the original database.

According to the Probability-based algorithm assumption
is that the statistics of new transactions slightly change from
original transactions. Then, the statistics of old transaction
obtained from previous mining, can be utilized for
approximating that of new transactions. Therefore, the new
algorithm uses support count of itemsets obtained from

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

44

previous mining to approximate the probability of infrequent
itemsets in an original database that may be capable of being
frequent itemsets when new transactions are inserted into the
original database.

Here, the process of inserting m transactions into an
original database of n transaction can be considered as (m+n)
Bernoulli trials, which are (m+n) sequence of identical trials.
Each itemset has its probability of appearing in a transaction,
denoted by p, i.e., the probability of success. According to the
principle of Bernoulli trials, the probability of the number of
an itemset to appearing in (n+m) transactions, denoted by
P(x), can be found by the following equation:

xmnx)p(p

x
mn

)x(P −+−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
= 1

 ,

where p is the probability of an itemset appearing in a
transaction, m is a number of new transactions, and n is a
number of transactions of an original database.

Thus, if k is a minimum support count after inserting new
transactions into an original database, the probability of an
itemset to be a frequent itemset in an updated database can be
obtained as the following equations:

 () ()itemitem kxPkxP <−=≥ 1 (1)

Here, an expected frequent itemset is an itemset that is not
a frequent itemset but has its probability to be a frequent
itemset greater than Probpl. Probpl is a threshold constant
specified by users. Probpl indicates the minimum confidence
level that a promising frequent itemset will be a frequent
itemset after inserting new transaction into an original
database. The higher Probpl is set, the lesser expected
frequent itemsets are kept. As results, the algorithm may need
more number of rescanning times in the original database
when the algorithm performs the discovering new frequent
item task.

B. Updating frequent and expected frequent k- itemsets
algorithm

When new transactions are added to an original database,
an old frequent k-itemset could become an infrequent
k-itemset and an old expected frequent k-itemset could
become a frequent k-itemset. This introduces new association
rules and some existing association rules would become
invalid. To deal with this problem, all k-itemsets must be
updated when new transactions are added to an original
database. The notation used in this section is given in Table1.

 The notation for Updating frequent and expected
frequent itemsets algorithm

DB Original database
db Incremental Database
UP Updated database
k Number of itemset
σ Minimum support
ρ Minimum Expected Frequent
Ck Candidate k-itemset
Fk Frequent k-itemset

EFk Expected Frequent k-itemset

Figure 1. Main Algorithm

Here, a new updating algorithm shown in Figure 1 is
proposed in this paper. The algorithm consists of four phases.
The first phase is updating 1- frequent and expected frequent
itemsets, i.e. line1-3. The second phase is applying the hash
technique to discover the candidate frequent 2-itemsest and
update the frequent and expected frequent itemset, i.e. line
6-8. The third phase is repeatedly updating the other frequent
and expected frequent itemsets by using only an incremental
database, i.e. line 11-16. The last phase is scanning an
original database, i.e. line 18-22.

Figure 2. Update 1-itemsest Algorithm

Figure 2 shows the algorithm for updating 1- frequent and
expected frequent itemsets. According to the algorithm, the
1-candidate itemsets of an updated database, i.e. UPC1 , can be
found by combining the 1-candidate itemsets of an original
database, i.e. DBC1 , with the 1-candidate itemsets of an

incremental database, i.e. dbC1 . Then, the support count of

Algorithm1: Main Algorithm

()

scanDBTempclear23
doend22

1kk21

scanDBTempDatabaseOriginalScan20

domkandscanDBlTempwhile19
2k18
ifend17

doend16
1kk15

scanDBTempofitemsetimumtheism14
scanDBTempmreturnitemsetkUpdate13

ItemsetCandidateGenerate12

dokF3kfor11

else10
1kk9

itemset2Update8
CandidateHashGenerate7

2kif6
ifend5

1kk4
itemset1Update3

1kif2
1k1

EFFOutput

counttheirandEFFCkdbDBInput

k

k

UP
k

UP
k

UP
k

DB
1

DB
1

DB
1

DBUPUP

_.
.
.

)_(.

)(_(.
.
.
.
.

_max//.
)_,(.

.

;;.

.
.
.

_.
.
.
.
.
.
.

,:

,,,,,,,,:

+=

≤φ≠
=

+=

−

++φ≠≥

+=
−

=

+=
−

=
=

ρρσ

Algorithm 2: Updating 1-itemsets

{ }
{ }UPUPUP

1
UP
1

UPUP
1

UP
1

db
1

DB
1

UP
1

UP
1

UP
1

db
1

DB
1

DB
1

DB
1

UPUP

UPxcCxEF5

UPxcCxF4

doend3
dbxcDBxcUPxc2

doCCxallfor1

counttheirandCEFFOutput

counttheirandCEFFCdbDBInput

σ<≤ρ∈=

σ≥∈=

+=

∪∈

ρσ

),(.

),(.

.
),(),(),(.

.

,,:

,,,,,,,:

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

45

UPC1 can be updated by scanning only an incremental
database, i.e. line 1-4. Then, the 1-frequent and expected
itemsets of an updated database can be found as shown in line
5 and 6 respectively.

The second phase has 2 major steps which are a
discovering the frequent 2-itemset step in an increment
database and an updating support count of frequent and
expected frequent itemset in updated database step. To
discover the set of frequent 2-itemsets, in view of the fact that
any subset of a frequent itemset could also have minimum
support, the Apriori algorithm uses L1*L1 to generate the
candidates. The operation * is represented for concatenation
in this case. Therefore, C2 consists of 2-itemset generated by

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

2

L1 as candidates in the second iteration.

Since the set of candidate itemsets includes all the possible
permutations of the elements, Probability-based algorithm
may suffer from a very large set of candidate itemsets,
especially from candidate 2-itemsets.

Figure 3. Generate Hash_Candidate

Figure 4. Update 2-itemsest Algorithm

The problem of a large set of candidate itemsets will hinder
an effective use of the hashing technique [3]. In this phase,
we use a hash technique for the generation of the candidate
2-itemset, especially for the frequent 2-itemsets, to improve

the performance of probability-based algorithm.
After reading each new transaction, itemsets of 2-subset

can be mapped to hash buckets and stored there. The
algorithm for generating 2- incremental candidate itemsets
based on the hash table is shown in Figure 3. For each
itemset in a hash bucket, the following information is stored:
1) the length of the itemset, 2) hash address, which is used for
identifying this itemset, , i.e. line 1-6 and 3) a count of the
number of occurrences of the itemset as show in line 7.

Figure 4 shows an algorithm for updating support count of
2- updated frequent itemsets and 2- updated expected
frequent 2-itemsets, as shown in line 1-11. To reduce the
number of itemset for scanning original database, if sum of
any new 2 frequent’s support count and support of probpl

minus 1 is greater than minimum support of updated
database, then it will be moved to Temp_scanDB, as show in
line 7.

Figure 5. Generating Candidate k- itemsets Algorithm

Figure 6. Update (k ≥ 2) itemset Algrithmo

The third phase has 2 major steps as the second phase
except that it does not employ a hash table. The algorithm for
generating k- incremental candidate itemsets for k greater
than or equal to 3 is shown in Figure 5. In this phase, the
algorithm is firstly found k- candidate itemsets of an
incremental database, i.e. db

kC , by joining db
1kF - with db

1kF - ,
i.e. line 2. Similar to Apriori algorithm, the k- candidate
itemsets of an incremental database can be the updated
frequent itemsets, i.e. UP

kF , only if the subsets of the k-
candidate itemsets of an incremental database must be in the

Algorithm 3: Generate Hash Candidate

[]

{ }0dbycCyC10

doend9
doend8

Cyallfordbyccount7

yhH6
candidatesarethat2ofsubsetstheget5

dotofysubsets2allfor4
dodbtntransactioallfor3

zerotoHofbuckettheallset2
2k1

counttheirandCOutput

kdbInput

db
2

db
2

db
2

22

2

db
2

>∈=

∈

++

−
∈

=

),(.

.

.

),(.

)(.
//.

.

.

.

.

:

,:

Algorithm 4 : Updating 2-itemsets

()
()
() () ()

()
() ()

()
()

() ()()

(){ }
(){ }UPUPUP

2

UPUP
2

UPDB
2

db

db
2

DB
2

DB
2

db
2

DB
2

DB
2

db
2

DB
2

DB
2

db
2

DB
2

DB
2

2
UP
2

UP
2

db
2

DB
2

DB
2

UPUPdb

UPycyEF11

UPycyF10

doend9
ifend8

ifend9

1dbycyscanDBTemp8

thendbycif7

thenCyandEFFyifelse6

DBycUPyc5

thenCyandEFFyifelse4

dbycDBycUPyc3

thenCYandEFFyif2

doCEFFyallfor1

counttheirandscanDBTempEFFOutput

counttheirandCEFFInput

σ<≤ρ=

σ≥=

σ≥−ρ+=

σ≥

∈∪∉

=

∉∪∈

+=

∈∪∈

∪∪∈

ρσσ

,.

,.

..

.

},{_.

,.

.

,,.

.

,,,.

.

.

_,,:

,,,,,:

Algorithm 5: Generating Candidate k-itemsets

(){ }

ifend6
doend5

EFFXandFXCXC4

doCXallfor3

FFC2

then2kif1

COutput

kFFFInput

DB
k

DB
k

UP
1k

db
k

new
k

db
k

db
1k

db
1k

db
k

new
k

db
1k

UP
1k

UP
1

.

..

.

.

*.

.

:

,,,:

∪∉∈∈=

∈

=

>

−

−−

−−

Algorithm 6: Update (k ≥ 3) itemset

()
()

()
() () ()

()
() ()

()
() ()() UPDB

k

new
k

DB
k

DB
k

new
k

DB
k

DB
k

new
k

DB
k

DB
k

new
k

DB
k

DB
k

new
k

DB
k

DB
k

db
k

UP
k

UP
k

DB
k

DB
k

DBUPUP

doend11
ifend10

1dbXcXscanDBTemp9

thenCXandEFFXifelse8

DBXcUPXc7

thenCXandEFFXifelse6

dbXcDBXcUPXc5

thenCXandEFFXif4

doCEFFXallfor3

CYandEFFX2

dbYcanddbXccountfindanddbScan1

mcounttheirandscanDBTempFEFandFOuiput

counttheirandEFFdbDBInput

σ≥−ρ+=

∈∪∉

=

∉∪∈

+=

∈∪∈

∪∪∈

∈∪∈

ρρσ

..

},{_.

.

,,.

.

,,,.

.

.

\\.

),(),(.

,_,,:

,,,,,,:

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

46

(k-1)- updated frequent. Thus, the k- incremental candidate
itemsets, i.e. new

kC , will keep only the k- candidate itemsets
of an incremental database whose subsets of the k- candidate
itemsets are in the (k-1) - updated frequent itemsets, i.e. line
3-5. This can prune the k- candidate itemsets of an
incremental database that can’t be the k- updated frequent
itemsets.

Figure 7. Algorithm for scanning an original database

Figure 6 shows an algorithm for updating support count of
k- updated frequent itemsets and k- updated expected
frequent itemsets for k greater than or equal to 3. As shown in
line 1, the algorithm scans an incremental database to find
and update support count of the k- updated candidate itemsets,
i.e. UP

kC . When any k-itemsets are not in the union set of the
original k-frequent and the original k- expected frequent
itemsets, i.e. k-itemsets ∉ DB

k
DB

k EFF ∪ , but is in the k-

incremental candidate itemsets, i.e. k- itemsets ∈ new
kC , their

support counts need to be specially updated. This is the case
because their support counts obtained from an original
database are not available. Since these k- itemsets are not
in DB

k
DB

k EFF ∪ , their support counts are at best equal

to 1-DBρ . Here, their support counts are assumed to be
equal to the sum of 1-DBρ and their support counts
obtained from an incremental database, i.e.

() ()1-, DBdbXc ρ+ . If any k- itemsets have support counts
below updated min support count, i.e. σUP, the k-itemsets
can’t be the k-updated frequent itemsets. On the other hand, if
any k-itemsets have support counts above or equal to an
updated min support count, the k-itemsets are likely to be the
k-updated frequent itemsets. Thus, the k-itemsets, which have
support counts above or equal to an updated min support
count, are set aside for finding their true support counts from
an original database, i.e. line 9.

At the last phase, an original database is scanned to find
true support counts for the k-itemsets that are likely to be the
k-updated frequent itemsets. The algorithm is shown in
Figure 7. The support counts of the likely k-updated frequent
itemsets are found and updated by scanning an original
database as shown in line 1-6. Then, all k-updated frequent
itemsets and k-updated expected frequent itemsets are found
as shown in line 7-8.

IV. EXPERIMENT
To evaluate the performance of probability-based

incremental association rules discovery algorithm, the
algorithm is implemented and tested on a PC with a 2.8 GHz
Pentium 4 processor, and 1 GB main memory. The
experiments are conducted on a synthetic dataset, called
T10I4D20K. The technique for generating the dataset is
proposed by Agrawal and etc. [1]. The synthetic dataset
comprises 250,000 transactions over 70 unique items, each
transaction has 10 items on average and the maximal size
itemset is 4.

Firstly, the proposed algorithm with Probpl = 0.06 used to
find association rules from an original database of 20,000
transactions. Then, the same sizes of incremental databases,
i.e. 10% of the original database, are added to the original
database. For comparison purpose, FUP, Border, Pre-large
and Probability-based algorithm are also used to find
association rules from the same original database and the same
incremental databases. Figure 8 and Table 2 show the average
of execution time for FUP, Border, Pre-large,
Probability-based and our approach. The results also show that
the proposed algorithm has much better running time than that
of FUP, Border, Pre-large and Probability-based.

TABLE I. EXECUTION TIME OF ALGORITHM

Algorithm Execution time (sec)

min_sup 3% min_sup 4%
FUP 8288.03 3512.08

Border 10540 5214

Pre-large 9569.17 3235.39

Probability-based 2992.11 1647.7

Hash-Probability-based 2399.05 1072.09

0
2000
4000
6000
8000

10000
12000

Execution
time(sec)

3% 4%

Minimum support (%)

T10I4D20

FUP Border Pre-large Probability-based Hash-Probability-based

Figure 8. Execution time of FUP, Borders,Pre-large, Probability-based and
the proposed algorithm

V. CONCLUSION
We have improved the probability-based incremental

association rule discovery algorithm by using hashing
technique. We can generate all of the 2-itemsets for each
transaction and hash them into the different buckets of a hash
table structure with increase the corresponding bucket counts.
If any bucket count of 2-itemset in the hash table is less than
the minimum support threshold, it cannot be frequent and
then should be remove from the candidate set. Thus, the hash
technique might substantially reduce especially the number
of the candidate 2-itemsets.

 In our study, we assume that the two thresholds, minimum
support and confidence, do not change. So, the algorithm can
guarantee to discover all frequent itemsets. From the

Algorithm 7 : Scanning an original database

()
() () ()

(){ }
(){ }

new
kEFUP

kEFUP
kEF8.

new
kFUP

kFUP
kF7.

UPσX,UPcUPρandkBTemp_scanDXXnew
kEF6.

UPσX,UPcandkBTemp_scanDXXnew
kF5.

doend4.
dbX,cDBX,cX,UPc3.

dokBTemp_scanDXallfor2.
kBTemp_scanDallforDBX,ccountobtainandDBScan1.

counttheirandUP
kEF,UP

kF:Output
counttheirandUP

kEF,UP
kF,UPρ,UPσ,kBTemp_scanD:Input

∪=

∪=

<≤∈=

≥∈=

+=
∈

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

47

experiment, our algorithm has less running time than FUP,
Borders, Pre-Large and Probability-based algorithm. In the
future, further researches and experiments on the proposed
algorithm will be presented.

REFERENCES
[1] R. Agrawal., T. Imielinski, and A. Swami, “Mining association rules

between sets of items in large databases”, In Proceeding of the ACM
SIGMOD Int'l Conf. on Management of Data (A CM SIGMOD '93),
Washington, USA,May 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules”, In Proceedings of 20 th Intl Conf. on Very Large Databases
(VLDB'94), pages487-499, Santiago, Chile, September 1994, pp. 478
-499.

[3] J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash-based
algorithm for mining association rules,” In Proc.1995 ACM-SIGMOD
Intl. Conf. on Management of Data, San Jose, CA, pp. 175-186, May
1995.

[4] D. Cheung, J. Han, V. Ng, and C. Y. Wong, “Maintenance of
discovered association rules in large databases: An incremental
updating technique”, In 12th IEEE International Conference on Data
Engineering, February 1996, pp. 106-114.

[5] D. W. Cheung, S.D. Lee, B. Kao, “A General incremental technique for
maintaining discovered association rules” , In Proceedings of the 5 th
Intl. Conf. on Database Systems for Advanced Applications
(DASFAA'97), Melbourne, Australia, April 1997, pp. 185-194.

[6] H. Toivonen. “Sampling Large Databases for Association Rules”,
Proceeding of the 22th International conference on Very Large Data
Bases, September 1996,pp. 134-145.

[7] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka, “An efficient
algorithm for the incremental updation of association rules in large
databases” , In Proceedings of the 3rd Intl. Conf. on Knowledge
Discovery and Data Mining (KDD'97), New Port Beach, California,
August 1997, pp. 263-266.

[8] N.F. Ayan, A.U. Tansel, and E. Arun, “An efficient algorithm to update
large itemsets with early pruning”; Proceedings of the Fifth ACM

SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Diego, August 1999, 287-291

[9] C.C. Chang, Y.C. Li and J.S. Lee, “An efficient algorithm for
incremental mining of association rules”, Proceedings of the 15th
international workshop on research issues in data engineering: stream
data mining and applications (RIDE-SDMA’05), IEEE, 2005.

[10] R. Feldman, Y. Aumann, and O. Lipshtat, “Borders: An efficient
algorithm for association generation in dynamic
databases”,Journal,Intelligent Information System, 1990, pp. 61-73.

[11] M. Adnan, R. Alhajj, and K. Barker, “Performance Analysis of Incremental
Update of Association Rules Mining Approaches”; In Proceeding of 9th
IEEE International Conference on Intellgent Engineering System 2005,
Sept. 16-19, 2005. 129-134

[12] C. H. Lee, C. R. Lin, and M. S. Chen, “Sliding-Window Filtering: An
Efficient Algorithm for Incremental Mining” , Proceeding of the ACM 10th
International Conference on Information and Knowledge Management ,
November 2001.

[13] T.P. Hong C.Y. Wang and Y.H. Tao, “A new incremental data mining
algorithm using pre-large itemsets”, Journal, Intelligent Data Analysis,
Vol. 5, No.2, pp. 111-129, 2001.

[14] R. Amornchewin and W. Kreesuradej, “Incremental association rule
mining using promising frequent itemset algorithm”, In Proceeding 6th
International Conference on Information, Communications and Signal
Processing, Dec. 10-13 2007, pp.1-5.

[15] R. Amornchewin and W. Kreesuradej, “Probability-based incremental
association rule discovery algorithm”; The 2008 International
Symposium on Computer Science and its Applications (CSA-08),
Australia (2008).

[16] R. Amornchewin and W. Kreesuradej, “False Positive Itemset
Algorithm for Incremental Association Rule Discovery” ,International
Journal of Multimedia and Ubiquitous Engineering. Vol. 4, No. 2,
April,2009.

[17] R. Amornchewin and W. Kreesuradej, “Mining Dynamic Databases
using Probability-Based Incremental Association Rule Discovery
Algorithm”, Journal of Universal Computer Science, vol. 15, no. 12 ,
2009, pp. 2409-2428 .

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

48

