

Abstract— In this work, we propose an FPGA implemented

associative-memory-based lazy learning method with a
short/long-term memory concept which has an online learning
capability. The conventional lazy or memory-based learning
algorithm has low computational costs in the training stage
since it simply stores the inputs and defers processing of
training data until a query needs to be answered. However, it
requires large storage capability, often pays high computational
costs to answer a request, and is easily fooled by irrelevant
attributes. To speed-up the query time, which is a deficiency of
conventional lazy learning, we apply an associative memory
which is implemented in an FPGA for searching the most
similar data among the previously stored reference data in
parallel. The proposed learning method can eliminate
irrelevant attributes and reduce the storage requirements
through a forgetting process in the short-term memory. When
the online lazy learning model is applied to handwritten
character recognition, the mismatch rate is reduced to 0.6%
after a learning process with 450 alphabet letters learning and
the number of reference is reduced by about 40% in
comparison to the conventional method.

Index Terms—FPGA implemented associative memory,
short/long-term memory concept.

I. INTRODUCTION
 In artificial intelligence, lazy learning has attracted a

widespread attention since the end of last century. It simply
stores the training data rather than compile them into an
intensional description by a rule set or neural network for
future requests [1]. Therefore, the lazy learning is very fast in
training data, can learn complex functions to yield highly
adaptive behavior, and does not lose information. Many
industrial applications and robot control systems have
employed the lazy learning approach to solve learning tasks
[2-5]. However, this learning method needs large memory
storage for the training data and has high computational costs
for finding relevant data in memory to answer a particular
requirement. This type of lazy learning is also referred to as
memory-based or instance-based learning. Relevance of
possible answers is usually measured using a distance
function where the nearest distance has the highest relevance.
Distance is often measured by using the Manhattan or
Euclidean distance metric which depends on the type of the
relevance attribute.

Manuscript received March 22, 2011.
Fengwei An, Hans Jürgen Mattausch and Tetsushi Koide is with Research

Institute for Nanodevices and Bio systems (TEL: +81-82-424-6265 FAX:
+81-82-424-6265 EMAIL: anfengwei, hjm, koide@hiroshima-u.ac.jp).

Given a set of feature-values for instances in memory, a
prediction function has to distinguish the similarity by the
distance. In the lazy learning method, local prediction
functions such as the k Nearest Neighbor algorithm (KNN)
can be used to fit all of the training data. Many algorithms are
to find an optimal number of neighbors efficiently [6-8].
However, training the neighborhood size k leads to high
complexity and costs. The previous works on lazy learning
algorithms have difficulties to deal with the case of sudden
changes in the input distribution. The first contribution of this
work is that we develop a fully-parallel associative memory
for reducing the query time to find the nearest distance which
is taken as a combination of Manhattan and Hamming
distance.

Methods to overcome the drawbacks of the lazy learning

have been studied for many years. Daelemans et al.
introduced an algorithm which uses decision trees to
compress the pattern memory by removing feature-value
redundancy to reduce storage requirements and query time
[9]. The lazy learning retains all the training data which are
represented by feature-values. When many features are
irrelevant to the performance task, the lazy learner or
classifier would be fooled. Thus many researchers have
proposed approaches to decrease the influence of irrelevant
attributes. A parallel racing algorithm has significant speed
advantages for both model and feature selection tasks [10].
The context-sensitive feature selection algorithm allows
distinguishing the relevance of features [11]. These previous
works focus on distinguishing the task characteristics using a
specific weighting function. We propose a short/long-term
memory-based learning model with an online learning
capability to eliminate the irrelevant feature attributes and to
reduce the storage requirements.

In this paper, we first introduce the fully-parallel mixed

digital/analog architecture for searching the nearest
Manhattan and Hamming distance and the
FPGA-implemented associative memory for searching the
nearest Euclidean distance. In section III, we illustrate the
proposed learning model based on short/long-term memory.
This learning model can achieve an online learning capability
by the forgetting process. We then apply our lazy learning
model to handwritten character recognition in section IV. To
reduce the feature complexity, we propose a novel
gradient-based feature extraction method in section V. The
experimental results in section VI are to show the efficiency
and accuracy of the proposed online lazy learning method. At
last, we conclude in section VII.

An FPGA-implemented Associative-memory
Based Online Learning Method

Fengwei An, Hans Jürgen Mattausch, Tetsushi Koide

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

36

II. FPGA IMPLEMENTATION OF ASSOCIATIVE MEMORY
ARCHITECTURE

A. VLSI implementation
The convention methods for searching nearest distance

often calculate between the input and reference patterns
based on a general purpose computer in a sequential
processing. Mixed digital/analog solutions for a fully-parallel
associative memory have been reported for finding the
nearest Manhattan and Hamming distance in the previous
work [12, 13]. Currently, we introduce a time-domain
concept for fully-parallel nearest hamming distance
searching [14]. It maps the distance into time-domain with
adjustable ring oscillators. The associative memory with
time-domain Winner-Take-All circuit, which is scalable to
small design rules and low supply voltages, detects the first
arrived ring oscillator signal that is referred to as the winner
(nearest-match) [15]. The time domain nearest Manhattan
distance searching circuit will be developed in our future
work.
The Manhattan distance is defined as in

∑
∞<

∞<≤

−=
i

j
jiji REFSWD

1

|| (1)

where SW= {SW1, SW2, ..., SWW} is the input data and
REFij={REFi1, REFi2, ..., REFiW} is the reference data. Both
SW and REF are W-bit length integers. The Hamming
distance is obtained when SWj and REFij are 1-bit data.

B. FGPA implementation
We also have developed the VLSI circuit for searching the

nearest Euclidean distance by the mixed digital/analog
solution [16]. However, because of the computational
complexity which needs many multipliers for the Euclidean
distance computing, we implement the associative memory
for searching nearest Euclidean distance in an FGPA which is
a programmable VLSI device. The Euclidean distance is
defined as

2

1
)(∑

∞<

∞<≤

−=
i

j
ijji REFSWD (2)

. Both SW and REF are real number. Figure 1 illustrates the
parallel architecture of the associative memory which is
implemented in the FPGA. The row RAM is used to store the
reference features where the dimension of the corresponding
vector determines its storage requirements. All the
calculations are based on a fix-point decimal format. As a
result, the floating-point calculation is avoided. The registers,
which are used to the pipeline the arithmetic operations, help
to improve the clock frequency so that high processing
performance are obtained. Because the square root is
difficult to be implemented, we only calculate the sum and
simplify (2) to

2

1

)(∑
∞<

∞<≤

−=
i

j
ijji REFSWD

 (3)

This simplification has no influences on the results of the

searching the minimum.

Row RAM

Row RAM

Row RAM

Row_1

Row_2

Row_n

…

-

-

-

x +

x +

x +

16

16

16

16

16

16

16 32

32

32 40

40

40

…

Sum RAM

Search
nearest

Input _sample

selection Control

Figure 1. The associativ-memory’s FPGA implementation for searching
nearest Euclidean distance

However, the searching time of the above architecture is
increasing when more rows for reference are added. For
example, if the associative memory has 1024 rows, the
processing of nearest distance search after the calculations
for each row needs 1024 clock cycles when the memory is
full. Therefore, we divided the searching for the nearest
distance into 2 stages. We define the above architecture
which only has 32 rows. In the first stage, there are 32 blocks
where each block contains the architecture to search 32 rows
in parallel. The second stage searches the nearest distance
from the local nearest distances which are provided by the
first stage. Therefore, the final searching time of the parallel
associative memory is only 1/32 times in comparison to a
single stage solution according to Fig.2. Obviously, the final
output of FPGA-implemented associative memory is the
address which has a minimum value.

Block 1

Block 2

Block 3

…

Min_value RAM

Address of Min_value RAM

Search the nearest distance

Selection

Figure 2. The parallel architecture of the associativ-memory’s FPGA
implementation for searching nearest Euclidean distance: Each block

contains the arehitecture in Figure 1.

The FPGA implementation has lower speed and higher
power consumptions than a realization of VLSI ASIC,
because the FPGA is a reconfigurable device. However, the
FPGA-implemented associative –memory is flexible to the
versatile feature vectors for the different applications.

III. LEARNING ALGORITHM BASED ON SHORT/LONG-TERM
MEMORY CONCEPT

The learning algorithm based on a short-term and a
long-term memory has been proposed for the pattern
recognition previously [17, 18]. The memorized reference
data are classified into two parts according to their ranks in

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

37

this concept. The rank, which can determine whether the
reference data is in short-term or long-term memory, may be
equivalent the address of each reference data. The top
address has the highest rank which implies it belongs to the
long-term memory.

Short-term

Long-term

Rank_n Ref._address_n

…

…

…

Rank_i Ref._address_i

…

…

…

…

Rank_1 Ref._address_1

input

Short-term

Long-term

Rank_i Ref._address_i

…

…

…

Rank_1 Ref._address_1

inputinput

Figure 3. Two input types of short/long-term memory mechanism for

memorizing the reference.

The reference data are temporarily memorized in the
short-term part and they can be memorized for a longer time
without receiving the direct influence of input patterns in the
long-term memory. The transition of reference data between
short-term and long-term storage parts is carried out by a
ranking algorithm. There are two types of ranking
approaches as shown in Fig.3. The difference of the two
approaches is the way of inputting data to memory. In other
words, it is the influence to the long-term memory from input
data. One approach is that the input data are inserted in the
top address of the short-term memory. The previous stored
contents should move down to make way for the new input.
The rank of previous stored data goes down one by one. As a
result, the reference data of lowest rank is deleted and that
leads to a forgetting process in Fig.4 when the short-term
memory is full.

Short-term

Long-term

Rank_i Ref._address_i

…

…

…

Rank_1 Ref._address_1

input
New reference

Rank_1 Ref._address_1

…

…

Rank_i Ref._address_i

Reference Memory

Move
down

forgetting

Rank Memory

Figure 4. The forgetting process when a new sample is added in the

reference memory

The input data are firstly stored to the long-term memory
in the other approach. When the long-term memory is full,
the input port is changed to short-term part. The following
processing is same to the first approach. The forgetting
process not only discards the content in short-term memory
but also deletes the reference pattern in the reference memory.
The discarded address of reference data may not be the
inserted data at the beginning because the ranking algorithm
changes the original order in the short/long-term memory.

The ranking algorithm is illustrated in Fig.5.The rank is the
index of a memory which contains the address of a reference.
The rank is moved up when a new input is matched with the
current reference pattern. The occurrence of matching is

determined by the winner which is detected by the
associative memory. If the winner distance is less than a
given distance threshold value, we can consider this is an
occurrence of matching that gives a new rank to the matched
pattern. The new rank is obtained from a predefined jump
value. The jump value is an adjustable variable to fit different
application. Therefore, the new rank of an occurrence of
matching is obtained by subtracting a jump value from the
current index. It must be made clear that the lower index
(address) of memory represents a higher rank. When the
winner distance is more than a threshold value, there is no
occurrence of matching. The non-matched sample is added as
a new reference in the memory and gets the top rank in the
short-term or long-term memory.

Short-term

Long-term

Rank_n Ref._address_n

…

…

…

Rank_i Ref._address_i

…

Rank_j Ref._address_j

Rank_j-1 Ref._address_j-1

Rank_j-2 Ref._address_j-2
Rank_1 Ref._address_1

input

Jump
up

Short-term

Long-term

Rank_n Ref._address_n

…

…

…

Rank_i Ref._address_i

…

Rank_1 Ref._address_1

Rank_j Ref._address_j

Rank_j-1 Ref._address_j-1
Rank_j-2 Ref._address_j-2

input

Figure 5. The ranking algorithm to reduce the storage and increase the

relaibility of reference.

The boundary between short-term and long-term memory
is used to judge whether the rank is short-term or long-term.
Empirical results demonstrate that the learning capability is
related to the size of short-term storage.

IV. DESCRIPTION OF ONLINE LEARNING METHOD
As described in the introduction, the lazy learning needs a

prediction function to distinguish the similarity by distance.
In this work, a combination of Manhattan and Hamming
distance is used. The hardware approach is based on an
associative memory with fully-parallel nearest distance
search for enabling low power and real-time applications.
The short/long-term memory learning model, which has an
online learning capability [19], is to classify the training data.

Feature –value
& Normalized binary image

Euclidean Distance
(FGPA-implemented
Associative memory)

Winner
distance

> Dthreshold

= Dthreshold

Ranking AddingAdjusting

END

Next input

Classification
function

Learning
function

Figure 6. The demonstration of online learning model

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

38

The core part in this learning model is the classification
function and the short/long-term memory. If the input
matches a reference pattern in memory that makes the rank of
this matched reference pattern jump up to a predefined
location. Otherwise, the new input is inserted into the
reference memory and the ranking algorithm gives it the top
rank of the long-term or short-term memory as mentioned in
section 3. Meanwhile, the location at lowest rank is forgotten
and it also is deleted from the reference memory. With new
reference data added into memory, an online learning
capability is achieved and this also triggers the ranking
algorithm to forget the lowest rank when the short-term
memory is full. This online learning algorithm is illustrated in
the flowchart of Fig.6.

The advantages of the proposed online lazy learning
method are eliminating the irrelevant feature attributes and
reducing the storage requirements through the forgetting
process in the short-term memory. The other superiority is
that the online learning based on an FPGA implementation
structure can be used in real-time applications such as robot
vision and video image recognition.

V. CHARACTER RECOGNITION
We apply our online learning method to handwritten

character recognition which attracts much attention to verify
machine learning algorithms. In this paper, the handwritten
alphabetic letters and digits from different writers are used to
be learned and recognized.

A. Pre-processing
All handwritten characters are extracted from scanned

images. The size and position of every character are not
always alike. Thus, a preprocessing algorithm is used which
contains noise removal, binarizing, labeling, segmentation
and normalization.
Noise Removal: Because the characters are obtained from
scanned images, the noise is certainly inevitable. In this work,
to avoid the damage of each character's connectivity which
affects the results of the labeling step, the 3×3 GAUSSIAN
filter is used to remove noise. We only use this filter in the
simulation as it is difficult to be implemented in hardware.
Binarizing: OTSU's method is applied for binarizing in this
work. In OTSU's method, the image is classified into
foreground and background and an optimum threshold is
used to separate those two classes. This step prepares a binary
image for labeling the connected components.
Labeling: The labeling which gives a label number to the
binary connected components, is based on 4-connectivity.
The binary image is scanned from left to right and top to
bottom. The Floyd-Warshall algorithm [20] is used to resolve
equivalences.
Segmentation: The connected binary components obtain a
label number after the labeling step. Therefore, they can be
distinguished by the label number. Each connected segment
is stored as one image that represents a separated character.
Normalization: Each segmented character image is different
from the others in size and position. Therefore, the character
binary images are rescaled to 16×16 pixels by the bilinear
interpolation method. A thresholding process is used to
guarantee a binary output image for feature extraction in this
step.

B. Feature extraction
An extracted feature vector is used to calculate the

Manhattan distance between the input and reference patterns.
We apply a gradient feature which is constructed only from
the direction of the greatest change in intensity in a small
neighborhood of each pixel. The resulting gradient feature
maps are divided into 8×8 blocks and the direction is
independently obtained in each block.

The direction gradient features are computed by
convolving two 3×3 Sobel operators on the normalized
binary image. These Sobel operators are used to calculate the
horizontal x and vertical y derivatives in the image.

The gradient in x and y direction of a center pixel is
obtained by a function including its eight neighbors as
follows. The expressions of both horizontal x and vertical y
derivatives are Sx(i, j)=I(i-1, j+1)+2I(i, j+1)+I(i+1,
j+1)-I(i-1, j-1)-2I(i, j-1)-I(i+1, j-1) and Sy=I(i-1, j-1)+2I(i-1,
j)+I(i-1, j+1)-I(i+1, j-1)-2I(i+1, j)-I(i+1, j+1), where I(i, j)
represents the pixel value in location (i, j). The 16×16 image
has been divided into an 8×8 grid where each grid point
contains 4 pixels. The directions at each grid point according
to (3) constitute the feature vector which is stored in the
reference memory. The accumulations in x and y direction of
the 4 pixels are used as horizontal and vertical derivatives to
compute the gradient direction of each grid point.

∑
∑=

),(
),(

arctan
jiS
jiS

x

yθ (3)

VI. EXPERIMENTAL RESULTS

A. The resource usage of the FPGA implementation
The architecture as mentioned above is implemented on

the ALTERA Stratix series FPGA. Because the FPGA
platform can be connected with a host PC by the PCI-e bus, it
is possible to verify the architecture of the associative
memory for searching the nearest Euclidean distance as
illustrated in Fig.7. The resource usages after synthesis of the
architecture in Fig.1 are shown in Table I.

Host
PC FPGA

The implementation
of Associative memory

PCI-e Platform

Figure 7. The verification of associative memory for searching the nearest

Euclidean distance with Host PC and PCI-e bus.

TABLE I. RESOURCE USAGE AFTER SYNTHESIS OF
FPGA-IMPLEMENTED ASSOCIATIVE MEMORY

Logic Units Usage of FPGA Resources
Combinational
Look Up Table

19931 (14%)

Dedicated logic 5924 (4%)

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

39

Registers
Total Block
Memory bits

1280 bits (<1%)

Synthesized
Frequency

114.81MHz

The FPGA-implemented associative memory can achieve
a 114.81MHz frequency where each clock cycle takes about
8.71ns. The feature vector, which has been calculated in
Section V-B, has 64 dimensions, which implies that the
calculation of the summary needs 256 (64*4) clock cycles.
The nearest distance searching stage spends 32 clock cycles
to find the local minimum from 32 rows references.
Therefore the search time of 32 rows is about 2508.48ns.

B. Classification results
In order to verify the online learning capability,

experiments are performed using two databases where the
first one contains 450 alphabet letters written by different
writers (Fig.8) and the second one is a standard
handwritten-digit database called MNIST (Fig.9) with 60000
training samples and 10000 test samples.

��

��

���������		
��

Figure 8. Excerpt from the handwritten alphabet-letters database.

Figure 9. Excerpt from the handwritten-digit database:MNIST.

As described above, the distance of the winner is the
nearest Euclidean distance searched by the associative
memory. The Euclidean distance is computed by comparing
the gradient features which are 64 dimension vectors (see
section V-B).

�

��

���

���

���

���

���

���

���

���

���

� �� �� ��� ��	 ��
 ��� ��� ��� ��� ���

��������	�
��

y=x

�����������������

�
�
�
��
�
�
�
�
��
�
	�
��

�
�
�

Figure 10. Relation of input samples and added new references to show the

reduced storage.

The lazy learning method based on associative memory is
applied to handwritten character recognition without initial
reference data to verify the online capability. A pattern is
added (learned) when the winner according to the hybrid
distance measurement has a smaller distance than a
predefined threshold value. In addition, each occurrence of
matching increases the rank of the respective learned
reference to become a more stable reference. After a period
of learning, a number of references have been added to the
reference memory or jumped to a stable area in the long-term
memory. Meanwhile, the rate of newly added references and
mismatched input data are decreasing. We examine the
learning capability with the relation of input samples and
added new references in Fig.10 where it illustrates that the
number of reference is reduced by about 40%.

Along with an increase of the learning capability, the rate
of new added patterns and mismatched patterns is decreasing.
Because the alphabet letters are more complex than digits, the
mismatch rate of digits is also lower than that of alphabet
letters as confirmed by the experimental results.

TABLE II. CLASSIFICATION RESULTS

Stage New Added Misclassification matched
1 206 (68.7%) 1.3% 94
2 76 (50.7%) 0.6% 74

We investigate the efficiency of the forgetting process to

reduce the storage and to decrease the possibility of being
fooled by irrelevant feature attributes. Suppose that, the first
stage learning contains 300 alphabet characters and that the
remaining 150 characters are used to test the classification
results as shown in Table II. There are 206 characters from
the first database which are online learned and a
misclassification rate of 1.3% in 94 occurrences of matching.
The rate of new learned references and misclassification are
respectively decreased to 50.7% and 0.6% after only 300
characters have been learned firstly.

�

��

���

���

���

���

���

���

�
�
�

�
�

�
�

�
	

�
�
�

�
�
�

�
�
�

�
�
�

�
	
	

�
�
�

�
�
�

�
�
�

�
�
�

�

	

�
�
�

�
�
�

�
�
�

�
	
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
�
�
�
��
�
�
��
�
��
��
�
	
�

��������	�
���

�������	�
����������

��

Figure 11. Forgetting process to increase the reliability of the reference

patterns and reduce the storage.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

40

�

��

���

���

���

���

���

���

� � � � � � �

�
�
�
�
�
��
�
�
��
�
��
��
�
	
�

�

���������	
	����
Figure 12. The relation of learning cycles and the new added references:

from the second cycles the new added referecne is becoming stable.

In the short/long-term memory learning mechanism, the
new learned references are added if the memory is not full.
Otherwise, learning implies forgetting the lowest rank in
short-term memory. The 450 characters are learned again and
again. The reference data in memory are evolved to reduce
the irrelevant features as shown in Fig.11.

Supposed the storage of short/long-term memory is less
than the new learned patterns. After a number of learning
cycles, the new learned patterns become less and less as
shown in Fig.12. At last, the number of references is stable
with a small amount of changes.

However, the sufficient references stored in the memory
can attain a higher accuracy rate. Therefore, we present the
FPGA-implemented associative memory which is
reconfigurable to provide enough references.

VII. CONCLUSION

We presented the FPGA-implemented associative
memory architecture, an online lazy learning based on this
associative-memory and an application to handwritten
character recognition. The core part is a learning concept
with a short/long-term memory which reduces the storage
and the number of irrelevant attributes by a forgetting process.
This learning model can be operated without any initial
reference patterns or a predefined database, which indicates
an online learning capability. The online learning model can
be used also in real-time applications because of the
implementation possibility with a high-performance
hardware structure.

REFERENCES
[1] D. W. Aha, “Lazy Learning", The Artificial Intelligence Review,

Vol.11, No.1-5, pp. 7-10, 1997.
[2] Jabbour K., Riveros J.F.V., Landsbergen D.,Meye W., "ALFA:

automated load orecasting assistant", IEEE Transaction on Power
System, Vol.3, pp. 908-914, 1988.

[3] R.H. Creecy, B.M. Masand, S.J. Smith, D.L. Waltz, “Trading MIPS
and memory for knowlege engineering: classifying census returns on
the Connection Machine", Communications of the ACM, Vol.35, No.8,
pp. 48-63, 1992.

[4] T. Nguyen, M. Czerwinski, D. Lee, “COMPAQ QuickSource:
Providing the Consumer with the Power of Artificial intelligence",
Proceeding of the Fifth Conference on Innovative Applications of AI,
pp. 142-151, 1993.

[5] G. Bontempi, M. Birattari, H.Bersini, "Lazy Learning for local
modeling and control design", International Journal of Control, Vol.72,
No.7-8, pp. 643–658, 1999.

[6] C. Böhm, S. Berchtold, D. Keim, "Searching in high-dimensional
spaces-index structures for improving the performance of multimedia
databases", ACM Computing Surveys, Vol.33, No.3, pp322-373, 2001.

[7] D. Cantone, A. Ferro, A. Pulvirenti, D. Reforgiato, D. Shasha,
"Antipole indexing to support range search and k-nearest neighbor on
metric spaces", IEEE Trans. on Knowledge and Data Engineering,
Vol.17, No.4, pp. 535-550, 2005.

[8] T. Liu, A. Moore, A. Gray, “New algorithm for efficient
high-dimensional nonparametric classification", Journal Machine
Learning Research, Vol.7, pp1135-1158,2006.

[9] W. Daelemans, A.V.D Bosch, T. Weijters, “IGTree: Using Trees for
Compression and Classification in Lazy Learning Algorithms",
Artificial Intelligence Review,Vol.11, No.1-5, pp. 407-423, 1997.

[10] O. Maron, A.W. Moore, “The Racing Algorithm: Model Selection for
Lazy Learners", Artificial Intelligence Review, Vol.11, No.1-5, pp.
193-225, 1997.

[11] P. Domingos, “Control-Sensitive Feature Selection for Lazy Learners",
Artificial Intelligence Review, Vol.11, No.1-5, pp. 227-253, 1997.

[12] H.J. Mattausch, T. Gyohten, Y. Soda, T. Koede, "Compact
Associative-Memory Architecture with Fully-Parallel Search
Capability for the Minimum Hamming distance", IEEE Journal of
Solid-State Circuits, Vol.37,pp218-227, 2002.

[13] Y. Yano, T. Koide, H.J. Mattausch, “Associative Memory with Fully
Parallel Nearest-Manhattan-Distance Search for Low-Power
Real-Time Single-Chip Applications", Proceedings of the Asia and
South Pacific Design Automation Conference, pp. 543-544, 2004.

[14] H.J. Mattausch, W. Imafuku, T. Ansari, A. Kawata, T. Koide,
"Low-Power Word-Parallel Nearest-Hamming-Distance Search Circuit
based on Frequency Mapping", 36th European Solid-State Circuits
Conference, pp. 538-541, 2010.

[15] M. Yasuda, T. Ansari, W. Imafuku, A. Kawabata, T. Koide, H.J.
Mattausch, "Low-Complexity Time-Domain Winner-Take-All Circuit
with High Time-Difference Resolution Limitted only by With-In-Die
Variation",Solid State Devices and Materials, in press, 2010.

[16] Md.A. Abedin, Y. Tanaka, A. Ahmadi, T. Koide, H.J. Mattausch,
"Nearest Euclidean-Distance-Search Associative Memory Architeture
with Fully Parallel Mixed Digital-Analog Match Circuitry", Extended
Abstracts of 2006 International Conference on Solid State Devices and
Materials, pp. 282-283, 2006.

[17] Y. Shirakawa, M. Mizokami, T. Koide, H.J. Mattausch, “Automatic
Pattern-Learning Architecture Based on Associative Memory and
Short/Long Term Storage Concept",Ext. Abst. of SSDM2004, pp.
362-363, 2004.

[18] A. Ahmadi, H.J. Mattausch, M.A. Abedin, T. Koide, Y. Shirakawa, A.
Ritonga, "Developing a Reliable Learning Model for Cognitive
Classification Tasks Using an Associative Memory", IEEE Symposium
on Computational Intelligence in Image and Signal Processing, pp.
214-219, 2007.

[19] A. Ahmadi, H.J. Mattausch, M.Saeidi,M.A. Abedin, T. Koide, "An
Associative Memory Based Learning Model with an Efficient
Hardware Implementation in FPGA", Elsevier, in press, 2010.

[20] R.C. Gonzalez, R.E. Woods, “Digital Image Processing", Addison
Wesley, 1992.

About author -- Fengwei An received the B.E. of computer science from
Qingdao University of Science and Technology, China, in July 2006. Then
he worked in a software development Company from August 2006. He
received his M.E. from Graduate School of Information Engineering of
Hiroshima University, Japan, in March 2009. Now, he is studying a PhD
candidate in Graduate School of Advanced Science of Matter of Hiroshima
University where he has been engaged in the hardware implementation of
Machine learning for real-time applications based on the associative
memory.

About author -- Hans Jürgen Mattausch received the Dipl. Phys. Degree
from University of Dortmund, Dortmund, Germany, in 1977, and the
Doctoral degree from the University of Stuttgart Germnay, in 1981. In 1982
he joined the Research Laboratories of Siemens AG in Munich, Germany,
where he was involved in the development of MOS technology as well as the
design of memory and telecommunication circuits. From 1990 he led a
research group on MOS-technology based power semiconductor devices,
which include device design, modeling and packaging. In 1995 he joined the
Siemens Semiconductor Group as Manager of the Department for Product
Analysis and Improvement in the Chip Card IC Division. Since 1996 he is

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

41

with Hiroshima University, Japan, where he is presently a Professor at the
Research Institute for NanoDvices and Bio Systems. His present interests are
circuit design and device model issues related to effective utilization of
nanodevices and nanotechnology. Dr. Mattausch is senior member of IEEE.

About author -- Tetsushi Koide received the B.E degree in Physical
Electronics, the M.E and the PhD degrees in Systems Engineering from
Hiroshima University in 1990, 1992, and 1998, respectively. He was a
Research Associative and Associate Professor in the Faculty of Engineering
at Hiroshima University in 1992-1999. From 1999, he was with the VLSI
design and Education Center (VDEC), University of Tokyo as an Associate
Professor and from 2001 he was an Associate Professor in the Research
Center for Nanodevices and Systems and Graduate School of Advanced
Sciences of Matter, Hiroshima University respectively. His research interests
include system design and architecture issues for functional-memories-based
intelligent architecture and sensing systems, real-time image processing
VLSI, VLSI CAD/DA, and combinational optimization. Dr. Koide is a
member of the IEEE, the Association for Computing Machinery, and the
Information Processing Society of Japan.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

42

