

Abstract— The Cerebellar Model Articulation Controller

(CMAC) neural network is an associative memory that is
biologically inspired by the cerebellum, which is found in the
brains of animals. The standard CMAC uses the least mean
squares algorithm to train the weights. Recently, the recursive
least squares (RLS) algorithm was proposed as a superior
algorithm for training the CMAC online as it can converge in
just one epoch, and does not require tuning of a learning rate.
However, the RLS algorithm was found to be very
computationally demanding as its computational complexity is
dependent on the square of the number of weights required
which can be huge for the CMAC. Here, we show a more
efficient RLS algorithm that uses inverse QR decomposition
and additionally provides a regularized solution, improving
generalization. However, while the inverse QR decomposition
based RLS algorithm reduces computation time significantly; it
is still not fast enough for use in CMACs greater than two
dimensions. To further improve efficiency we show that by
using kernel methods the CMAC computational complexity can
be transformed to become dependent on the number of unique
training data. Additionally, it is shown how modeling error can
be improved through use of higher order basis functions.

Index Terms—artificial neural networks, CMAC, kernel
methods, recursive least squares

I. INTRODUCTION

The Cerebellar Model Articulation Controller (CMAC)
was invented by Albus [1] in 1975. The CMAC is modeled
after the cerebellum which is the part of the brain responsible
for fine muscle control in animals. It has been used with
success extensively in robot motion control problems [2]. In
the standard CMAC, weights are trained by the least mean
square (LMS) algorithm. Unfortunately, the LMS algorithm
requires many training epochs to converge to a solution. In
addition, a learning rate parameter needs to be carefully tuned
for optimal convergence. Recently, CMAC-RLS [3] was
proposed where the recursive least squares (RLS) algorithm is
used in place of the LMS algorithm. CMAC-RLS is
advantageous as it does not require tuning of a learning rate,
and will converge in just one epoch. This is especially
advantageous in methods such as feed-back error learning [2]
where online learning is used. In order to achieve such
advantages, the price paid is an 2()O n computational
complexity, where n is the number of weights required by the

Manuscript received March 22, 2011.
Carl Werner Laufer is a PhD student in the Electrical and Electronic

Engineering Department of the University of Auckland, New Zealand.
(e-mail: clau070@aucklanduni.ac.nz)

George Coghill is a Senior Lecturer in the Electrical and Electronic
Engineering Department of the University of Auckland, New Zealand.
(e-mail: g.coghill@auckland.ac.nz)

CMAC. Unfortunately, the number of weights required by the
CMAC can be quite large for high dimensional problems.

However, it is shown in [4] that by using a
QR-decomposition based RLS algorithm, computation time
can be reduced by half for a univariate CMAC. In this paper
we show that the computation time can be further reduced for
univariate and additionally multivariate CMACs by using an
inverse QR decomposition RLS (IQR-RLS) algorithm,
tailoring it for the CMAC and finally parallelizing it for use on
multi-core CPUs. While the complexity remains 2()O n , the
new algorithm is fast enough to solve problems up to two
dimensions at a reasonable speed.

For higher dimensional problems the IQR-RLS algorithm
still falls short in terms of computation as its complexity
remains 2()O n . In [5] the kernel CMAC (KCMAC) trained
with LMS was proposed. An advantage of the KCMAC is that
it requires significantly fewer weights without the use of
hashing methods. In the KCMAC at most only dn weights are
needed, where dn is the number of unique quantized training
points presented. In most situations dn is significantly less
than n, and additionally not every training point needs to be
used. Another advantage to the KCMAC is that the full
overlay of basis functions can be implemented without
requiring an unmanageable amount of memory space for the
weights. In [6] it was shown that the multivariate CMAC is
not a universal approximator, and can only reproduce
functions from the additive function set. The work in [5]
showed that the reason for this is the reduced number of basis
functions in the multivariate CMAC. When the full overlay of
basis functions is used the CMAC becomes a universal
approximator, with improved modeling capabilities. The full
overlay of basis functions is typically not used as it would
require a huge memory space. However, with the KCMAC
the number of weights needed does not depend on the overlay,
thus allowing the full overlay to be used. In this paper we
show that the kernel RLS (KRLS) [7] algorithm can be used in
the CMAC neural network. The proposed CMAC-KRLS
algorithm combines the one epoch convergence and no
learning rate selection advantages of the CMAC-RLS
algorithms, whilst offering a superior computational
complexity, a smaller memory footprint and better modeling
capabilities.

II. BRIEF INTRODUCTION TO THE CMAC

A. Standard CMAC
The CMAC can be considered as a mapping

S M A P→ → → . Where S M→ is a mapping from an
yn -dimensional input vector 1 2[]

y

T
ny y y=y L where

Efficient Recursive Least Squares Methods for
the CMAC Neural Network

C. Laufer, G. Coghill

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

20

iy ∈ to a quantized vector 1 2[]
y

T
nq q q=q L where

iq ∈ . Quantization is performed by the function

 j j
j j

j j

⎢ ⎥−
= ×⎢ ⎥

−⎢ ⎥⎣ ⎦

i min
q r

max min
 (2.1)

where j is the dimension, jq is the quantized value, jr is the
desired quantization resolution, ji is the original real valued
input, and jmax and jmin are the known bounds of ji .

The mapping M A→ is a non-linear recoding from
vector q into a higher dimensional binary vector called the
association vector, 1 2[]T

nx x x=x L where n is the
number of weights in the CMAC and {0,1}ix ∈ . The number
of weights in the CMAC can be large but the association
vector will only contain m ‘1’s, where m is the number of
layers in the CMAC.

In the mapping A P→ the association vector is used to
select and add together m values from an array of weights

1 2[]T
nw w w=w L where iw ∈ to form the output.

This can be viewed as an inner product calculation Tx w.
Learning in the CMAC corresponds to adjusting the value

of the weights in order to produce a correct output for an input.
In the standard CMAC, the LMS algorithm shown in (2.2) is
used for this purpose, where μ is the learning rate, td is the
desired output for training sample t , and T

oldx w is the actual
CMAC output.

 ()T T
new old t oldd

m
μ= + −w w x x w (2.2)

In Fig 1 a visualization of a two input (2yn =) CMAC is
shown with current quantized input [4 8]T=q , quantizing
resolution 13r = in both dimensions, and 64n = . Here

4m h= = layers are used, which correspond to the four
weight tables on the right of the figure. We can see that the
input vector slices through the four layers on both axes. The
sliced letters for each layer activate a certain weight in its
corresponding weight table. Each individual weight
corresponds to a hypercube in the input space, which for the
2D CMAC is simply a square. The activated hypercubes for
the problem in Fig 1 is shown as four squares diagonally
arranged in the input space. Here weights Bc, Fg, Jk and No
are activated. If put into activation vector form it will appear
as,

() [0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0]T

Aa Ba Bc Fg Jk No Pp
ϕ= =x q

L L L L L

L L L L L
where ϕ is the CMAC addressing function which is not shown
here but can be found in [11]. We can also sparsely store this
vector by simply storing the addresses of the activated
weights,

 []9 25 41 57activatedAddresses = (2.3)

The number of weights required by the CMAC grows
exponentially with the input dimension and resolution, and
can thus be very large. The number of weights in a CMAC is
given by

()

1 1

1
1

y
inm

j j

i j

n
h= =

⎢ ⎥− +
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑∏
r d

 (2.4)

Fig 1. A two-input CMAC with four layers, diagonal overlay and requiring 64

weights.

where i
jd dictates how many quantization grid squares layer i

in dimension j is displaced and h is the length of a ‘full block’.
An example of a full block in Fig 1 is letter A which spans the
maximum 4h = quantization grid squares. The number of
layers m is usually given by m h= , however, as is seen in the
next section this is not always the case.

1) Overlays
The displacement/arrangement of the layers/hypercubes

plays a large role in the modeling performance of the CMAC.
The standard Albus CMAC uses a diagonal overlay
arrangement, and this is used in the CMAC example in Fig 1,
and is also shown in Fig 2b. In [8] the so called ‘uniform’
arrangement shown in Fig 2a is found which is an overlay
yielding improved modeling performance. With the diagonal
and uniform arrangements, the number of layers required is
given by m h= . The parameter h is adjusted to control the
amount of local generalization in the CMAC.

It is now well known that the multivariate CMAC is not a
universal approximator. To fix this, the full overlay, shown in
Fig 2c, should be used where here the number of layers is
given by ynm h= . Using the full overlay poses a problem
however, as the number of weights required by the CMAC
increases dramatically as can be seen by (2.4), and often
becomes too large to manage for high dimensional problems.

III. THE INVERSE QR-RLS ALGORITHM FOR THE CMAC
QR-decomposition is a method for decomposing a matrix into
two matrices, one orthogonal and the other upper triangular. It
is useful for solving the linear least squares problem
recursively [9] in a more numerically stable manner compared
with standard RLS. Usually, using QR methods will degrade
computational performance. However, the work in [4] tailors
the QR-RLS algorithm specifically for the CMAC resulting in
halving the computation time. Unfortunately, the tailored

 a) b) c)
Fig 2. The a) uniform (5m h= =), b) diagonal (5m h= =) and

c) full (5h = , 25m =) 2D overlay arrangements.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

21

algorithm is only suitable for univariate CMACs as the
authors assume the association vector uses a method where
the m ‘1’s are contiguous, which cannot be the case for
multivariate CMACs.

If the weight vector is required to be updated after every
training sample presented, as it is required in the CMAC, a
costly matrix back substitution step of 2()O n time complexity
needs to be carried out each time. We can avoid this back
substitution step entirely by using an inverse QR-RLS
(IQR-RLS) algorithm, which instead allows the weights to be
calculated directly. In Algorithm I we present an IQR-RLS
algorithm that was derived in [10] and uses the Givens
rotation method to perform the QR-decomposition, but has
here been tailored for the CMAC in order to increase
computational speed.

Where ()ia k , ()ijr k and () ()i
ju k are the individual entries of

()ka , ()kR and ()ku respectively. Note that δ is a constant
that is usually set between 10 and 10000. Larger values give
theoretically better results, though it was found that setting δ
too large causes floating point inaccuracies. A value of 100
was found to work well.

A. Optimizations
There are three speed improvements that are implemented

in ALGORITHM I. The first improvement involves (3.9). The
activatedAddresses array contains the array addresses of the m
‘1’s in the association vector like what is shown in (2.3). This
array is calculated by function *ϕ in (3.6) which is a slight
modification to function ϕ . In (3.9) the address where

ALGORITHM I: IQR-RLS ALGORITHM FOR THE CMAC

(0) , (0) ,
(0) , (1), 0.001T

n nδ δ ρ−
×

= =
= >> <

w 0 x 0
R I (3.1)

1, 2... dfor k n= (3.2)
 Get new sample: (,)k kdy (3.3)
 Quantize sample: ()kquant=q y ()yO n (3.4)
 Calculate association vector: ()ϕ=x q ()yO mn (3.5)
 *()activatedAddresses ϕ= q (3.6)
 () (1) ()Tk k k−= −a R x ()O mn (3.7)

(0)() , () 1k kα= =u 0 (1)O (3.8)
 1()start activatedAddresses k= (3.9)
 :for i start n= 2()O n (3.10)
 ()givens (3.11)
 () () () (1)Te k d k k k= − −x w ()O m (3.12)

()

()()
()n

e kz k
kα

= (1)O (3.13)

 () (1) () ()k k z k k= − −w w u ()O n (3.14)
MACRO: ()givens

(()))iif a k ρ>

(1)O

(3.15)

2() (1) 2() () ()i i

ik k a kα α −⎡ ⎤= +⎣ ⎦ (3.16)

()

()
()

()
i

i
a k

s k
kα

−
= (3.17)

(1)

()
()()

()

i

i
kc k

k
α
α

−
= (3.18)

 1:for j i=

()O n
(3.19)

(1)() () (1) () (1)i

ij ij jr k c k r k s k u k−= − − − (3.20)

() (1)() () () () (1)i i
j j iju k c k u k s k r k−= + − (3.21)

the first ‘1’ appears in the association vector is recorded. The
for loop in (3.10) then begins its computation from this
address. This is because the ()ka vector calculated in (3.7)
will be zero up until the address of the first ‘1’ in ()kx , as T−R
is lower triangular. If ()ia k is zero then ()s k will equal zero,
and ()c k will equal one resulting in no change for ()ijr k and

()ju k , rendering any calculation redundant.
The second improvement follows on from this where the

calculation of (3.16) – (3.21) is gated by (3.15), and is thus
only performed if the absolute value of ()ia k is greater than ρ
which is set to a small value just above zero. Values of ()ia k
are often zero due to the sparseness of the CMAC input which
leaves T−R sparse, and the sparseness of the association vector.
We set ρ to be slightly larger than zero because during the
matrix-vector multiplication in (3.7), values are often added
and subtracted to form the sum of zero and due to floating
point inaccuracies the result will not equal exactly zero.
Furthermore, increasing ρ beyond the floating point
inaccuracy boundary acts to decrease the accuracy of the
solution and increase computation speed. Generally, a value
for ρ between 0.000001 and 0.001 worked well.

Thirdly, a sparse matrix-vector multiplication can be
performed with (3.7) because ()kx or the association vector is
sparse, and the addresses of the ‘1’s are known from the
activatedAddresses array. Thus, only m values for each row of

T−R need to be added.
It can be seen from (3.10) that computation time will

significantly increase with an increase in the number of
weights required by the CMAC. We can combat this
disadvantage for larger problems by using hash mapping to
specify the number of weights to use.

B. Results
A two input sinc function was modeled on an Intel i5 CPU

using the CMAC. Fig 4 shows the computation times recorded
for a particular number of weights compared against other
RLS algorithms used in the CMAC. The number of weights
used by the CMAC was controlled by modifying the
quantization resolution used. IQR-RLS was found to be the
fastest of the RLS algorithms. Although it was previously said
that the QR-RLS algorithm can halve the computation time of
the standard RLS algorithm, we did not implement those
speed enhancements from [4] as they would restrict the
CMAC to a single input only. The QR-RLS algorithm was
then many times slower than standard RLS as is evidenced in
Fig 4.

Compared with the LMS algorithm which requires less
than one microsecond per iteration, RLS algorithms are much
slower. However, many epochs are required for the LMS
algorithm to converge, which is not desirable in online
learning.

IV. PARALLELIZED IQR-RLS ALGORITHM
The QR-RLS algorithm is naturally and optimally

parallelized on a systolic array as is seen in [4]. The IQR-RLS
algorithm from ALGORITHM I can also be parallelized in the
same manner. A systolic array implementation of IQR-RLS is
shown in Fig 3. In this figure, each circle represents a
processing element that also stores the values of T−R (T−R is

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

22

lower triangular). The circles in the left most column
implement (3.16) – (3.21), and all other circular processing
elements implement (3.20) and (3.21). The square boxes
calculate the weights using (3.12) – (3.14). Often access to
systolic array hardware is not available, and only PCs are
available. Parallelization on a PC may be performed by
emulating the systolic array computation structure with
threading. However, this would introduce many threading
overheads, and would potentially perform poorly. Here a
simpler method is proposed to parallelize the IQR-RLS
algorithm on a PC with a multi-core CPU by using the systolic
array visualization.

In a visual sense, ALGORITHM I sequentially updates the
()i
ju and ijr values in the systolic array row by row. It is,

however, equally valid to update the ()i
ju and ijr values column

by column instead. If the column by column method is used,
since each column is independent from one another in terms
of other value dependencies (apart from c and s), it is possible
to update each column simultaneously and without memory
sharing bottlenecks. As it is a simple exercise to parallelize
ALGORITHM I, we do not present the algorithm explicitly, but
instead describe how it may be parallelized in two steps
below.

The first step that needs to be performed is sequential in
nature. First, realize that the c and s values are constant across
each row. Thus the values of c and s must first be sequentially
calculated for each row and stored in an array. The value ()nα
is also calculated and stored as a by-product from calculating
c and s.

In step two we realize that we can update ()i
ju and ijr

column by column. Since each column is independent of one
another, each column can be updated in a separate thread. We
can further optimize by combining computation of shorter
columns together to equalize thread computation times and by
skipping calculations on rows where the ia value is below the
threshold ρ .

Additionally, fine grained parallelism on a modern CPU
can be achieved by using ‘Streaming SIMD Extensions’
(SSE). Currently, SSE instructions allow two double precision,
and four single precision multiplications to be performed
simultaneously. This is especially useful for the inner loop
calculations (3.20) and (3.21).

A. Results
The algorithm was used to model a two input sinc function
and was run on a 4-core Intel i5 processor. It was found that
parallelization slightly slowed down computation for small
problems due to threading overheads, but decreased

Fig 3. Parallel systolic array implementation of the IQR-RLS algorithm

computation times for larger problems. We can expect for this
algorithm to become automatically faster as processor core
counts increase. A computational time comparison between
the sequential and parallel versions of IQR-RLS is plotted in
Fig 4. The parallel algorithm implements both threading and
SSE based parallelization.

V. REGULARIZED IQR-RLS
The work in [5, 6, 11, 12] show that the generalization

error of the CMAC can be significant. In [5] a method called
‘regularization’ is presented for the LMS algorithm, which
considerably reduces the generalization error. Regularization
combats a design flaw in the CMAC by forcing activated
weights to be similar, thus preventing certain weights
dominating the contribution to the output calculation. Here we
apply the same regularization concept but instead to the
IQR-RLS algorithm. A partial mathematical derivation is
given below based of the derivations found in [10]. First from
[5] we use the least squares cost function ()kε where k is the
current training sample iteration,

2

2

1
: () 1

() () ()

() () ()
j

T
k

i j
j x k

d i i k

k d i w k
m

ε
η=

=

⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦
⎜ ⎟= ⎡ ⎤⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠

∑
∑

x w

 (5.1)

The first term in (5.1) is the error between the desired and
actual CMAC output. The second term is the regularization
term which adds to the cost if the activated weights are
different to one another in value. The constant η is used to
control the amount of regularization and it was found setting it
to the reciprocal of δ generally worked well. In order to easily
minimize (5.1), it must be written in vector-matrix form.
Define vectors ()kw , ()kd , ()kh and matrices ()kX , ()kΣ as,

 []1 2 1
() () () () T

n n
k w k w k w k

×
=w L (5.2)

 [] 1() (1) (2) () T
kk d d d k ×=d L (5.3)

 [] 1() (1) (1) (2) (2) () () T
nkk k k ×=h G q G q G qL (5.4)

 []() (1) (2) () T
k nk k ×=X x x xL (5.5)

 []() (1) (2) () T
nk nk k ×=Σ G G GL (5.6)

where,

 1

() () ()()
T

n

d k d k d kk
m m m ×

⎡ ⎤= ⎢ ⎥⎣ ⎦
q L (5.7)

 ()() ()
n n

k diag k
×

⎡ ⎤= ⎣ ⎦G x (5.8)

()()diag kx creates an n n× zero matrix with the entries of
()kx along the main diagonal. Using (5.2) – (5.8) we can

rewrite the cost function as,

 2 2() () () () () () ()k k k k k k kε η= − + −d X w h Σ w (5.9)

Where T=a a a . Equation (5.9) can be rewritten as a single
term by defining matrix ()kA and vector ()ky as

()

()
()

()
k nk n

k
k

kη
+ ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

X
A

Σ
 (5.10)

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

23

() 1

()
()

()
k nk

k
k

kη
+ ×

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

d
y

h
 (5.11)

using (5.10) and (5.11) to rewrite ()kε then gives,

 2() () () ()k k k kε = −y A w (5.12)

Now from [10] we see that since ()kA is ()k nk n+ × , there
exists a () ()k nk k nk+ × + orthogonal matrix ()kQ such that,

()

() ()
k

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R
Q A

0
 (5.13)

Where ()kR is the n n× upper triangular Cholesky factor, and
0 is an (())k nk n n+ − × zero matrix. Similarly,

()

() ()
()
k

k k
k

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

z
Q y

v
 (5.14)

Where ()kz is a 1n× vector, and ()kv is a
(()) 1k nk n+ − × vector. Since ()kQ is orthogonal,
pre-multiplying each term in (5.12) does not change the value
of the norm,

2() () () () () ()k k k k k kε = −Q y Q A w (5.15)

Substitute (5.13) & (5.14) into (5.15) to get the desired form,

2

() () ()
()

()
k k k

k
k

ε
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

z R w
v

 (5.16)

It can be seen that the norm in (5.16) will be minimized if,

 () () ()k k k=R w z (5.17)

With (5.17) the weights can be solved for with back
substitution. Now the problem becomes how to update

(1)k −R to ()kR and (1)k −z to ()kz . First, consider the
non-regularized solution. In the non-regularized solution,

()kA and ()ky in (5.12) are replaced with ()kX and ()kd .
Now, in [10] it is shown that an (1) (1)n n+ × + orthogonal
matrix ()kT exists that will perform the non-regularized
update by updating using the latest entry of ()kX and ()kd ,
which are ()kx and ()d k respectively,

(1) ()

()
()T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.18)

(1) ()

()
() ()

k k
k

d k k
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.19)

However, with regularization, (5.12) uses ()kA and ()ky
which is a composition of two matrices and two vectors
respectively, so we must update with the latest entries of ()kX ,

()kd and the latest entries of ()kΣ , ()kh multiplied by η
which are ()kηG and () ()k kηG q respectively. There
must then exist an (2 1) (2 1)n n+ × + matrix ()kT such that,

(1) ()

() ()

()

T T

k k

k k

kη

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

R R

T x 0
0G

 (5.20)

and similarly to update (1)k −z to ()kz ,

(1) ()

() () ()
()() ()

k k
k d k k

kk kη

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

z z
T ζ

φG q

 (5.21)

Unfortunately, if (5.20) and (5.21) are used, we cannot
proceed with the same derivations found in [10] as the
derivations are suited only to a (1) (1)n n+ × + ()kT matrix.
We, however, realize that ()kR and ()kz may be calculated
iteratively if we define () ()n k k≡R R , () ()n k k≡z z and write

()kG and ()kq row by row as,

 1 2() () () () T
nk k k k= ⎡ ⎤⎣ ⎦G g g gL (5.22)

1 2() () () () () () () () T
nk k k k k k k k= ⎡ ⎤⎣ ⎦G q g q g q g qL (5.23)

then we first update using ()kx and ()d k ,

 0
0

(1) ()
()

()T T

k k
k

k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R
T

x 0
 (5.24)

 0
0

(1) ()
()

() ()
k k

k
d k k

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

z z
T

ζ
 (5.25)

secondly, using 1()kg to ()n kg we iteratively update until we
have ()n kR ,

 0 1
1

1

() ()
()

() T

k k
k

kη
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.26)

 M

 1() ()
()

()
n n

n T
n

k k
k

kη
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.27)

and using 1() ()k kg q to () ()n k kg q we iteratively update until
we have ()n nz ,

 0 1
1

11

() ()
()

()() ()

k k
k

kk kη
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.28)

M

 1() ()
()

()() ()
n n

n
nn

k k
k

kk kη
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

z z
T

φg q
 (5.29)

It is now clear that we need not continue with the
derivation, as (5.26) – (5.29) are in the same form as (5.18)
and (5.19). Instead we infer that we can simply perform the
final IQR-RLS update algorithm given in [10] for ()kx and

()d k as is done in ALGORITHM I and then perform the
algorithm n more times, but by replacing ()kx with 1()kg to

()n kg and ()d k with 1() ()k kg q to () ()n k kg q .
In ALGORITHM II the regularized IQR-RLS algorithm for

the CMAC is presented.

A. Optimizations
Running the IQR-RLS algorithm an extra n times would

slow the entire algorithm down significantly. However, an
important observation to make is that only m rows of ()kG
will not be the zero vector. The zero vector rows can be
ignored as they would produce a zero ()ka vector. Thus
instead of running the algorithm an extra n times for
regularization, it need only be run m more times, which is
reflected in the for loop in (5.32).

Another major optimization performed in ALGORITHM II
is related to (5.33). Here we realize that we can start loop

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

24

ALGORITHM II: REGULARIZED IQR-RLS ALGORITHM FOR THE CMAC

First perform one run of ALGORITHM I, but replace code line
(3.14) with (5.30) instead.

() () ()k z k k=Temp u ()O n (5.30)
Then while still inside training sample loop (3.2),

1/η δ= (5.31)
1:for h m=

2()O mn

(5.32)
 ()hp activatedAddresses k= (5.33)

 () () ()T
pk k kη −=a R g (5.34)

(0)() , () 1k kα= =u 0 (5.35)

 :for i p n= (5.36)
 ()givens (5.37)

 ()

() () () (1) ()
()

()
p p

n

k k k k k
k

kα

η ⎡ ⎤− −⎣ ⎦+ =
g q g w u

Temp (5.38)

() (1) ()k k k= − −w w Temp (5.39)

(5.36) from address p of the 'h th ‘1’ in the association vector.
This is because ()p kg is essentially the association vector with
every entry, other than the 'p th entry masked as zero,
therefore every ()ia k value before the 'p th address will be
zero making performing the givens macro redundant, as was
explained in section III.A.

B. Results
It was found that the regularized RLS algorithm is able to

compute the regularized weight vector in one epoch. In Fig 5
we see the output of a non-regularized CMAC on the left,
modeling a sine function with the IQR-RLS algorithm. The
CMAC sampled the sine function every 30 degrees, used a
quantization resolution of 100, and had 10 layers. There is
severe interpolation/generalization error between training
samples. The figure on the right shows the CMAC trained on
the same sine wave, but with regularization turned on. The
CMAC output is now almost a perfect sine wave. The
improvement in total absolute error (TAE) is shown in TABLE
I. The error was also tested on a 2D sinc plot in which the
CMAC was trained with three times less points than it was
tested with in order to test generalization. With regularization,
training times increase. Fig 4 shows a computation time
comparison for the regularized IQR-RLS algorithm.

TABLE I: TAE OF REGULARIZED AND NON-REGULARIZED CMAC-IQRRLS

 Non-Regularized Regularized
1D Sine Plot 51.8 19.5
2D Sinc Plot 400 206

VI. INTRODUCTION TO THE KERNEL CMAC
In a kernel machine, the input vector is non-linearly

transformed into a higher dimensional ‘feature vector’ by a
kernel function. The work in [5] makes the connection that
the CMAC is essentially a kernel machine where the M A→
mapping to the association vector is the non-linear transform
to a higher dimension where the kernel used is a binary
b-spline function. Using this knowledge, a common method
used in kernel machines called the ‘kernel trick’ can be
applied where the weights are then evaluated in the ‘kernel
space’ rather than the feature space. Since the dimensionality
of the kernel space is equal to the size of a dictionary (which
stores previously admitted feature vectors) where the
maximum size is the number of unique training data presented

Fig 4. Computation time per training sample vs. number of weights in the

CMAC for various RLS implementations. The number of weights was
controlled by altering the quantization resolution.

to the algorithm rather than n, significantly less memory is
required for weight storage. Therefore, the number of weights
used becomes independent of the type of overlay used, so it is
feasible to use the full CMAC overlay. The size of the
dictionary is denoted c, and is what controls computational
complexity.

VII. THE KERNEL RLS ALGORITHM FOR THE CMAC
Although it was shown how the IQR-RLS algorithm can

be used to speed up CMAC-RLS, it is still not fast enough for
use on high dimensional problems on a PC. Here we use a
kernel-RLS (KRLS) algorithm which allows the CMAC-RLS
to be used for higher dimensional problems. The online
sparsifying KRLS algorithm is derived and presented in [7].
The KRLS algorithm will be a better choice than the RLS
algorithm for training the CMAC, as the computational
complexity will be dependent on the number of unique
training data seen, rather than the number of training data
possible. Hence, the full overlay of basis functions can be
used, and computational complexity will no longer be
dependent on the result of (2.4). With sparsification
techniques the number of training data required can be
reduced even further. Here we quote the KRLS algorithm
from [7] with slight alterations to specialize it for the CMAC.

ALGORITHM III features an online sparsification technique
that sparsifies by preventing feature vectors that are
approximately linearly dependent on the dictionary, X from
being added. The full concept and derivation behind this
sparsification method can be found in [7]. Using this method
the dictionary size can be limited, whilst still making use of
training points not added to the dictionary. In (6.8) the scalar
value δ is calculated which is a measure of how linearly
dependent x is on the dictionary X. If δ is greater than some
threshold v, x will be added to the dictionary as this means that
it was not approximately linearly dependent on the dictionary.
Otherwise, if the threshold is not met, the update equations
(6.16) – (6.18) (shaded) will be used instead. The elements of
vector a represent a weighting on how linearly dependent a
vector in the dictionary is to the current feature vector. If the
current feature vector is already in the

Fig 5. Non-regularized CMAC output (left) and regularized CMAC output

(right).

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

25

ALGORITHM III: CMAC-KRLS
1

1

1

[1/], [/],
(()), [1], 1

m d m
quant cϕ

− = =
= = =

K β
X y P

 (6.1)

2,3... dfor t n= (6.2)
 Get new sample: (,)t tdy (6.3)
 Quantize sample: ()tquant=q y ()yO n (6.4)
 Calculate association vector: ()ϕ=x q ()yO mn (6.5)
 =k Xx ()O cm (6.6)
 1−=a K k 2()O c (6.7)
 Tmδ = − k a ()O c (6.8)
 if vδ > (1)O (6.9)

TT⎡ ⎤= ⎣ ⎦X X x
(6.10)

1

1 1
1

T
old

new T

δ
δ

−
− ⎡ ⎤+ −

= ⎢ ⎥−⎣ ⎦

K aa a
K

a
 2()O c (6.11)

0

0 1
old

new
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P
P

()O c
(6.12)

 ()1 T
old t old

new T
t old

d

d

δ
δ

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥−⎣ ⎦

β a k β
β

k β
 (6.13)

 1c c= + (6.14)
 else (6.15)

1

old
T

old

=
+

P a
q

a P a

2()O c
(6.16)

 T
new old old= −P P qa P (6.17)

 ()1 T
new old t oldd−= + −β β K q k β

(6.18)

dictionary, the entries of vector a will be all zero except for a
single unity entry at the index of the matching dictionary
point.

The sparsification threshold should be set to some
percentage of m . It was found that usually setting it to
10%-30% of m worked well.

VIII. AN OPTIMIZED KRLS ALGORITHM FOR THE CMAC
The CMAC-KRLS algorithm is still fairly

computationally complex, with major bottlenecks at (6.6),
(6.7), (6.11), and (6.16) - (6.18). Fortunately, most of these
bottlenecks can be reduced by some optimizations presented
below. The optimized discarding CMAC-KRLS algorithm is
presented as ALGORITHM IV.

A. Generation of the Kernel Vector
If the full overlay is used in a high dimensional CMAC, m

can become extremely large. For example if 20h = , and
4yn = , then 420 160 000m = = . This causes a computational

burden as the calculation of the kernel vector given by [5] is
k = Xx . This requires c m× comparisons if the first order
b-spline is used as the kernel function (binary CMAC) and x
and X are stored sparsely. Although comparisons are efficient,
if m is very large the computation will still be demanding.

Here another method to calculate the kernel vector for the
first order b-spline kernel is shown which is very efficient for
the full overlay. By realizing that the individual kernel vector
entries, ik , are actually the number of shared hypercubes
between dictionary point iQ (where the dictionary Q stores
quantized input vectors instead of association vectors), and
current quantized input q , we can reduce the number of

ALGORITHM IV: OPTIMIZED DISCARDING CMAC-KRLS

1
1 1[1 /], [/], (),

[1], 0.98 1, 1,
m d m quant

cλ

− = = =
= ≤ ≤ =

K β Q y
P

 (7.1)

2,3... dfor t n= (7.2)
Get new sample: (,)t tdy (7.3)
Quantize sample: ()tquant=q y ()yO n (7.4)

1:for i c= (7.5)
i= −z Q q ()yO n c (7.6)

1

max ,0
yn

i j
j

h
=

⎡ ⎤= −⎣ ⎦∏k z ()yO n c (7.7)

 (. ())if containsQ q

(1)O

(7.8)
. ()b indexof= Q q (7.9)

 ,

,

b b

b b

q
λ

=
+
P

P
 (7.10)

 ()1
, , ,b b b b b bqλ −= −P P P (7.11)

 ()1
:,

T
new old b t oldq d−= + −β β K k β ()O c (7.12)

 (! . ())elseif rejectDict Contains q (1)O (7.13)
1−=a K k 2()O c (7.14)

Tmδ = − k a ()O c (7.15)
if vδ >

(1)O
(7.16)

TT⎡ ⎤= ⎣ ⎦Q Q q (7.17)

1

1 1
1

T
old

new T

δ
δ

−
− ⎡ ⎤+ −

= ⎢ ⎥−⎣ ⎦

K aa a
K

a
 2()O c (7.18)

0

0 1
old

new
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

P
P (1)O (7.19)

 ()1 T
old t old

new T
t old

d

d

δ
δ

⎡ ⎤− −
= ⎢ ⎥

⎢ ⎥−⎣ ⎦

β a k β
β

k β
 ()O c (7.20)

1c c= + (7.21)
else (7.22)

 T

rejectDict
rejectDict

⎡ ⎤
= ⎢ ⎥
⎣ ⎦q

 (1)O (7.23)

NOTE: 1
:,b
−K indicates the b’th column of 1−K

calculations required to calculate the kernel vector to yn c× . In
Fig 6 a snapshot of the kernel function generated by equation
(7.7) or equivalently (6.6) is shown for a single input CMAC
(1yn =) where 3h = . In reality, this function extends
continuously from min to max . Calculating the kernel
function for a higher dimensional CMAC is simple. Simply
multiply each kernel value obtained in each dimension
together. To visualize this further in Fig 7 we see a 2D CMAC
full overlay, where 3h = , and thus 9m = . We can view this
figure as having the dictionary point iQ at the center, and the
numbers in the surrounding grid squares give the number of
shared hypercubes for nearby possible values of q. Equation
(7.7) can be used to calculate number of overlaps ik for a
particular quantized dictionary point iQ and the current
quantized input q . As an example say [3 4]i =Q and

[3 2]=q . In dimension 1j = , ,1 3i =Q and 1 3=q , and in
dimension two we have ,2 4i =Q and 2 2=q . Thus,

() ()3 3 3 3 4 2 3 1 3i = − − × − − = × =k . We can confirm by
using Fig 7 where the center point of this snapshot is [3 4]. We
can then look up point [3 2] and see that it gives 3i =k .

There is no need to evaluate the association vector using

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

26

Fig 6: Kernel function where 3h = . Topological view (left) and profile view

(right).

this method, since k is now directly a function of the
quantized input q rather than association vector x.

B. Discarding Sparsification
In any kernel machine used in an online learning

environment, it is important to keep the dictionary size small
so that it will be able to provide a response to input data in real
time. In ALGORITHM III a sparsification technique was used
which only added data that was not already approximately
linearly dependent on the dictionary. However, it still made
use of every training point to adjust the weights, even if it was
not admitted to the dictionary.

In what we will call the discarding CMAC-KRLS
implementation, data not added to the dictionary is simply
discarded and not made use of. Thus, when performing (6.16)
– (6.18) we see that the a vector is always all zero except for a
single unity entry at the index where the matching dictionary
entry is stored and thus the P matrix remains diagonal. So if
the dictionary index for input q is known to be b, we only
need to update scalars bq (which is simply notated as q in
ALGORITHM IV) and ,b bP . Thus, equations (6.16) to (6.18) can
be simplified significantly as can be seen in equations (7.9) –
(7.12). The disadvantage however is that, in a non-stationary
environment the CMAC may be slower to adapt, or in a noisy
environment the CMAC will be slower to converge as only if
the dictionary points are revisited will the CMAC update. If
the CMAC must be used in a non-stationary or noisy
environment, the non discarding ALGORITHM III can be used,
the sparsification threshold can be reduced, or the
semi-discarding algorithm presented next in section C can be
used.

This algorithm can also be written such that instead of
performing the computationally demanding approximate
linear dependence threshold test every iteration, it only need
be performed if the current input is not a member of the
dictionary already. This is because instead of using the test, a
simple hashtable lookup as seen in (7.8) can be performed to
see if the current quantized input vector is already a member
of the dictionary. A hashtable lookup is a very efficient (1)O
operation. The threshold test will still need to be carried out in
the case that the current input is not already in the dictionary.

Furthermore, if a point has been previously discarded and
thus not added to the dictionary, it will never be added to the

Fig 7. Kernel vector values for a 2D CMAC with Q at the center, and nearby

possible q. Arrows point to example values mentioned in section VIII.A.

dictionary in the future. This is because as more points are
added to the dictionary, the rejected point can only become
more linearly dependent on the dictionary. This removes the
need to compute the approximate linear dependence test when
seeing previously rejected points and is reflected by equations
(7.13) and (7.23).

C. Semi-Discarding Sparsification
If increased noise performance is required, whilst

retaining some of the good computational properties of the
discarding method, a semi-discarding method can be used.
With the semi-discarding method, in the update section of
ALGORITHM III (shaded) every value in the a vector is
forcefully set to zero, except for the largest absolute value,
which is the most contributing value and indicates the value in
the dictionary most like the current input. The update
algorithm is then performed with the masked a vector. This
keeps the P matrix diagonal – the reason for fast
computational performance. Modifications to get the
semi-discarding algorithm are shown in ALGORITHM V.

D. Forgetting Factor
A forgetting factor is typically used to allow RLS

algorithms to track better in non-stationary environments. The
forgetting factor λ has been integrated into the update
equations (7.10) and (7.11) in ALGORITHM IV, and also in
(7.25) and (7.26) in ALGORITHM V. A forgetting factor of
around 0.98 to 1 is useful. Smaller values give better tracking
performance, but decreased noise rejection.

E. Additional Computational Optimizations
The kernel vector is a sparse vector, and thus equation

(7.14) can be sped up significantly by performing sparse
vector matrix multiplication. Also, since the P matrix remains
diagonal in the discarding and semi-discarding algorithms, it
can be stored as a vector. Thus expanding P in (7.19) becomes
an (1)O operation.

IX. HIGHER ORDER BASIS FUNCTIONS FOR THE
CMAC-KRLS

The standard CMAC, and also the CMAC-KRLS shown
so far uses a quantized binary kernel function. This
unfortunately produces a staircase like output. This can be
resolved by making the CMAC resolution as high as possible.
In the standard CMAC there is a trade-off as increasing the
resolution causes an increase in the number of weights
required. However, in the CMAC-KRLS increasing
resolution has no adverse affects as the number of weights
required does not increase. Only the generalization parameter

ALGORITHM V: SEMI-DISCARDING CMAC-KRLS

Same as ALGORITHM IV but,
Replace (7.13) with an else statement
Replace (7.23) with four new lines:

(). maxb index= a a ()O c (7.24)

()
,

2
,

b b b

b b b

q
λ

=
+

P a

P a
 (1)O (7.25)

()1
, , ,b b b b b b bqλ −= −P P P a (1)O (7.26)

()1
:,

T
new old b t oldq d−= + −β β K k β ()O c (7.27)

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

27

h needs to be made larger to compensate, if the resolution
doubles, the generalization parameter needs to double too.
When increasing the resolution, in the limit, the kernel
function becomes triangular in shape as is seen in Fig 8, rather
than staircase like, as was shown in Fig 6. We can obtain this
kernel function either by increasing the resolution to a very
large value or directly by simply by removing the floor
operation from (2.2) and storing the non-floored values in the
dictionary. In the latter case only the ratio between the
resolution and generalization parameter h becomes important
in tuning the generalization of the CMAC.

We can further improve the modeling of the
CMAC-KRLS by using a b-spline curve as the kernel function.
This is easily performed by using the equation found in [13]

1

11

11 1(1) ()
! 2

yn n
n

i
j

n nx
n

φ

φ
δ φ

φ

+

+
==

⎛ ⎞+⎛ ⎞ += − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑∏k (8.1)

where

, 0

0,

d
d x if x

x
otherwise+

⎧ >⎪= ⎨
⎪⎩

 (8.2)

and where the order n for the b-spline is given by
 2 1n o= + (8.3)
where o is the chosen spline order and where δ is the dilation
constant which is used to control the width of the spline. The
dilation constant plays the same role as m when used in the
CMAC. A profile example of a b-spline kernel function where

1o = is shown in Fig 9.

X. CMAC-KRLS RESULTS
In the following experiments each CMAC used a

resolution of 100r = for each dimension, and a local
generalization parameter of 10h = . The experiments were run
on an Intel i5 4-core CPU. The algorithm was written in C#
and parallelization was applied where possible. The
algorithms were tested on a two input sinc function, and
various results are discussed below.

Algorithms that rely on the kernel trick use as many
weights as there are unique training points added to the
dictionary. This number can be controlled if sparsification
methods are used. In Fig 10 the number of weights used to
learn the 2D sinc function for any sparsifying CMAC-KRLS
algorithm is plotted against different sparsification thresholds.
A total of 1681 unique training points were presented
sequentially. The number of weights used by a
CMAC-IQR-RLS algorithm is also plotted for diagonal and
uniform overlays which are similar. The full overlay cannot be
used in CMAC-IQR-RLS as it would require 11,881 weights
which is not computationally feasible. Also note that if the
problem was a higher dimensional problem, the number of
weights required for CMAC-IQR-RLS would be much

Fig 8. Linear kernel function where 3h = . Topological view (left) and profile

view (right).

Fig 9: B-Spline Kernel Function where 1o =

larger even with only the diagonal or uniform overlays.
In Fig 11 the average time per iteration taken over ten

epochs for each CMAC-KRLS algorithm with full overlay to
complete learning of a single training point is plotted for
various sparsification thresholds which are recorded as a
percentage of m between 0 and 90%. Take note of the
logarithmic scale. Fig 11 shows that the two discarding
algorithms perform the fastest. This is because after the first
epoch all the dictionary points have been added, thus the
discarding algorithms use their very efficient update algorithm
in subsequent epochs bringing the average down. The
non-discarding algorithm is the slowest due to its more
complex update equations. For comparison, the
CMAC-IQR-RLS algorithm is shown for the same problem. It
should be noted that although the CMAC-IQR-RLS algorithm
is competitive with the non-discarding algorithm here, in a
higher dimensional problem its use would be infeasible
whereas the CMAC-KRLS would perform at a similar speed
no matter the dimension given the same number of unique
training data.

The total absolute error for modeling a noise free two
input sinc function was measured for each CMAC-KRLS
variant with full overlay and recorded in Fig 12. Note that it
was found that the non-discarding and semi-discarding
algorithms required additional epochs to fully converge when
trained sequentially, and thus the algorithm was run for ten
epochs before measuring the error. The discarding and
non-discarding CMAC-KRLS algorithms were similar in
performance up till a sparsification threshold of 0.5. The
semi-discarding algorithm was only slightly higher in error
than the non-discarding algorithm. For comparison the errors
from the CMAC-IQR-RLS algorithm with the diagonal and
uniform overlays are shown. In Fig 13 a comparison between
the discarding, semi-discarding and non-discarding
CMAC-KRLS for noisy data and random training points
training under a sparsification threshold of 0.2 is shown. The
non-discarding CMAC-KRLS performs significantly better as
the number of training data increases due to its ability to make
use of every data point. The discarding CMAC-KRLS only
makes use of training points already in the dictionary, so it has
less ability to average over time. The semi-discarding

Fig 10. Number of weights used for any 2D CMAC-KRLS for different

sparsification thresholds compared against the 2D CMAC-IQR-RLS.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

28

Fig 11. Average time taken per iteration over ten training epochs.

algorithm has improved performance over the discarding
algorithm due to its ability to make some use of the discarded
data.

In Table II the total absolute error (TAE) results of the
different basis functions are shown. The sine wave was
sampled every 30 degrees, while the sinc wave was sampled
with three times less points that it was tested with. The
generalization parameter was varied to get the lowest TAE.
The binary basis function used a resolution of 100. The results
show that the b-spline produces better results than the linear
and binary basis functions. The results for the spline basis
function are better as its smoothness better approximates the
smooth curves of the sine and sinc waves. It was found that
using these higher order basis functions introduces almost no
noticeable increase in computation time.

XI. CONCLUSIONS
In this paper two methods for incorporating RLS into the
CMAC neural network were shown. The first method used the
IQR-RLS algorithm to simplify and parallelize computation
resulting in much faster computation times. Additionally, the
IQR-RLS algorithm was able to be easily regularized resulting
in greatly improved CMAC generalization, but at the expense
of computation time. Although IQR-RLS was shown to be
much faster than standard CMAC-RLS it was still not fast
enough for CMACs with greater than two inputs. In order to
overcome this problem the KRLS algorithm was introduced
which transformed the computational complexity to become
dependent on the number of training data, rather than the
number of weights required by the CMAC. The results show
that the CMAC-KRLS is significantly faster than other
CMAC-RLS algorithms, and can in fact model better as it can
use the full overlay of basis functions. Additionally, it was
shown that higher order basis functions can easily be

TABLE II: TAE OF HIGHER ORDER BASIS FUNCTIONS

 Binary Linear Spline 1o =
1D Sine Wave 16.3 10.51 3.97
2D Sinc Wave 277 257 127

Fig 12. Total absolute error for different sparsification thresholds

Fig 13. Comparison with noisy random data between each CMAC-KRLS

under a sparsification threshold of 0.2.

implemented into the CMAC-KRLS with little to no increase
in computational complexity. However, although the
CMAC-KRLS is faster than the CMAC-IQR-RLS, IQR-RLS
has an implementation that is highly suitable to parallel
hardware, and may be a better choice for hardware
implementation, or highly parallel CPUs.

XII. FUTURE WORK
Currently there is no regularization method for the

CMAC-KRLS, however, this research is currently being
undertaken. Additionally, other improvements such as CMAC
eligibility [11] will be implemented into the CMAC-KRLS to
achieve improved performance in motion control learning
situations. Also, more investigation needs to be undertaken to
learn more about the error the semi-discarding method
introduces.

REFERENCES
[1] J. S. Albus, "New Approach to Manipulator Control: The Cerebellar

Model Articulation Controller (CMAC)," Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME, vol. 97 Ser G,
pp. 220-227, 1975.

[2] M. K. Hiroaki Gomi, "Learning Control for a Closed Loop System
using Feedback-Error-Learning," in Proceedings of the 29th
Conference on Decision and Control Honolulu, Hawaii, 1990.

[3] T. Qin, et al., "A Learning Algorithm of CMAC Based on RLS," Neural
Processing Letters, vol. 19, pp. 49-61, 2004.

[4] T. Qin, H. Zhang, Z. Chen, and W. Xiang, "Continuous CMAC-QRLS
and its systolic array," Neural Processing Letters, vol. 22, pp. 1-16,
2005.

[5] G. Horvath and T. Szabo, "Kernel CMAC With Improved Capability,"
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 37, pp. 124-138, 2007.

[6] M. Brown, C. J. Harris, and P. C. Parks, "The interpolation capabilities
of the binary CMAC," Neural Networks, vol. 6, pp. 429-440, 1993.

[7] Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares
algorithm," IEEE Transactions on Signal Processing, vol. 52, pp.
2275-2285, 2004.

[8] P. C. Parks and J. Militzer, "Improved allocation of weights for
associative memory storage in learning control systems," 1st IFAC
symposium on Design Methods of Control Systems, pp. 777-782,
1991.

[9] J. A. Apolinário and M. D. Miranda, "Conventional and Inverse
QRD-RLS Algorithms," in QRD-RLS Adaptive Filtering, J. A.
Apolinário, Ed.: Springer US, 2009, pp. 1-35.

[10] S. T. Alexander and A. L. Ghirnikar, "Method for recursive least
squares filtering based upon an inverse QR decomposition," IEEE
Transactions on Signal Processing, vol. 41, pp. 20-30, 1993.

[11] R. L. Smith, "Intelligent Motion Control with an Artificial
Cerebellum," Doctorate, Electrical and Electronic Engineering,
University of Auckland, Auckland, 1998.

[12] J. Pallotta and L. G. Kraft, "Two dimensional function learning using
CMAC neural network with optimized weight smoothing," in
Proceedings of the American Control Conference, San Diego, CA,
USA, 1999, pp. 373-377.

[13] S. Fomel, "Inverse B-spline interpolation," 2000.

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

29

