
 
 

 

  
Abstract— The Cerebellar Model Articulation Controller 

(CMAC) neural network is an associative memory that is 
biologically inspired by the cerebellum, which is found in the 
brains of animals. The standard CMAC uses the least mean 
squares algorithm to train the weights. Recently, the recursive 
least squares (RLS) algorithm was proposed as a superior 
algorithm for training the CMAC online as it can converge in 
just one epoch, and does not require tuning of a learning rate. 
However, the RLS algorithm was found to be very 
computationally demanding as its computational complexity is 
dependent on the square of the number of weights required 
which can be huge for the CMAC. Here, we show a more 
efficient RLS algorithm that uses inverse QR decomposition 
and additionally provides a regularized solution, improving 
generalization. However, while the inverse QR decomposition 
based RLS algorithm reduces computation time significantly; it 
is still not fast enough for use in CMACs greater than two 
dimensions. To further improve efficiency we show that by 
using kernel methods the CMAC computational complexity can 
be transformed to become dependent on the number of unique 
training data. Additionally, it is shown how modeling error can 
be improved through use of higher order basis functions. 
 

Index Terms—artificial neural networks, CMAC, kernel 
methods, recursive least squares 

I. INTRODUCTION 

The Cerebellar Model Articulation Controller (CMAC) 
was invented by Albus [1] in 1975. The CMAC is modeled 
after the cerebellum which is the part of the brain responsible 
for fine muscle control in animals. It has been used with 
success extensively in robot motion control problems [2]. In 
the standard CMAC, weights are trained by the least mean 
square (LMS) algorithm. Unfortunately, the LMS algorithm 
requires many training epochs to converge to a solution. In 
addition, a learning rate parameter needs to be carefully tuned 
for optimal convergence. Recently, CMAC-RLS [3] was 
proposed where the recursive least squares (RLS) algorithm is 
used in place of the LMS algorithm. CMAC-RLS is 
advantageous as it does not require tuning of a learning rate, 
and will converge in just one epoch. This is especially 
advantageous in methods such as feed-back error learning [2] 
where online learning is used. In order to achieve such 
advantages, the price paid is an 2( )O n  computational 
complexity, where n is the number of weights required by the 
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CMAC. Unfortunately, the number of weights required by the 
CMAC can be quite large for high dimensional problems. 

However, it is shown in [4] that by using a 
QR-decomposition based RLS algorithm, computation time 
can be reduced by half for a univariate CMAC. In this paper 
we show that the computation time can be further reduced for 
univariate and additionally multivariate CMACs by using an 
inverse QR decomposition RLS (IQR-RLS) algorithm, 
tailoring it for the CMAC and finally parallelizing it for use on 
multi-core CPUs. While the complexity remains 2( )O n , the 
new algorithm is fast enough to solve problems up to two 
dimensions at a reasonable speed. 

For higher dimensional problems the IQR-RLS algorithm 
still falls short in terms of computation as its complexity 
remains 2( )O n . In [5] the kernel CMAC (KCMAC) trained 
with LMS was proposed. An advantage of the KCMAC is that 
it requires significantly fewer weights without the use of 
hashing methods. In the KCMAC at most only dn  weights are 
needed, where dn  is the number of unique quantized training 
points presented. In most situations dn  is significantly less 
than n, and additionally not every training point needs to be 
used. Another advantage to the KCMAC is that the full 
overlay of basis functions can be implemented without 
requiring an unmanageable amount of memory space for the 
weights. In [6] it was shown that the multivariate CMAC is 
not a universal approximator, and can only reproduce 
functions from the additive function set. The work in [5] 
showed that the reason for this is the reduced number of basis 
functions in the multivariate CMAC. When the full overlay of 
basis functions is used the CMAC becomes a universal 
approximator, with improved modeling capabilities. The full 
overlay of basis functions is typically not used as it would 
require a huge memory space. However, with the KCMAC 
the number of weights needed does not depend on the overlay, 
thus allowing the full overlay to be used. In this paper we 
show that the kernel RLS (KRLS) [7] algorithm can be used in 
the CMAC neural network. The proposed CMAC-KRLS 
algorithm combines the one epoch convergence and no 
learning rate selection advantages of the CMAC-RLS 
algorithms, whilst offering a superior computational 
complexity, a smaller memory footprint and better modeling 
capabilities. 

II. BRIEF INTRODUCTION TO THE CMAC 

A. Standard CMAC 
The CMAC can be considered as a mapping 

S M A P→ → → . Where  S M→  is a mapping from an 
yn -dimensional input vector 1 2[ ]

y

T
ny y y=y L  where 
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iy ∈   to a quantized vector 1 2[ ]
y

T
nq q q=q L  where 

iq ∈  . Quantization is performed by the function 

 j j
j j

j j

⎢ ⎥−
= ×⎢ ⎥

−⎢ ⎥⎣ ⎦

i min
q r

max min
 (2.1) 

where j is the dimension, jq  is the quantized value, jr  is the 
desired quantization resolution, ji  is the original real valued 
input, and jmax  and jmin  are the known bounds of ji . 

The mapping M A→   is a non-linear recoding from 
vector q into a higher dimensional binary vector called the 
association vector, 1 2[ ]T

nx x x=x L  where n  is the 
number of weights in the CMAC and {0,1}ix ∈ . The number 
of weights in the CMAC can be large but the association 
vector will only contain m ‘1’s, where m is the number of 
layers in the CMAC. 

In the mapping A P→  the association vector is used to 
select and add together m values from an array of weights 

1 2[ ]T
nw w w=w L  where iw ∈  to form the output. 

This can be viewed as an inner product calculation Tx w.  
Learning in the CMAC corresponds to adjusting the value 

of the weights in order to produce a correct output for an input. 
In the standard CMAC, the LMS algorithm shown in (2.2) is 
used for this purpose, where μ  is the learning rate, td  is the 
desired output for training sample t , and T

oldx w  is the actual 
CMAC output. 

 ( )T T
new old t oldd

m
μ= + −w w x x w  (2.2) 

In Fig 1 a visualization of a two input ( 2yn = ) CMAC is 
shown with current quantized input [4 8]T=q , quantizing 
resolution 13r =  in both dimensions, and 64n = . Here 

4m h= =  layers are used, which correspond to the four 
weight tables on the right of the figure. We can see that the 
input vector slices through the four layers on both axes. The 
sliced letters for each layer activate a certain weight in its 
corresponding weight table. Each individual weight 
corresponds to a hypercube in the input space, which for the 
2D CMAC is simply a square. The activated hypercubes for 
the problem in Fig 1 is shown as four squares diagonally 
arranged in the input space. Here weights Bc, Fg, Jk  and No 
are activated. If put into activation vector form it will appear 
as, 

( ) [0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0]T

Aa Ba Bc Fg Jk No Pp
ϕ= =x q

L L L L L

L L L L L  
where ϕ  is the CMAC addressing function which is not shown 
here but can be found in [11]. We can also sparsely store this 
vector by simply storing the addresses of the activated 
weights, 

 [ ]9 25 41 57activatedAddresses =  (2.3) 

The number of weights required by the CMAC grows 
exponentially with the input dimension and resolution, and 
can thus be very large. The number of weights in a CMAC is 
given by 
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  (2.4) 

 

 
Fig 1. A two-input CMAC with four layers, diagonal overlay and requiring 64 

weights. 

where i
jd  dictates how many quantization grid squares layer i  

in dimension j is displaced and h is the length of a ‘full block’.  
An example of a full block in Fig 1 is letter A which spans the 
maximum 4h =  quantization grid squares. The number of 
layers m is usually given by m h= , however, as is seen in the 
next section this is not always the case.   

1) Overlays 
The displacement/arrangement of the layers/hypercubes 

plays a large role in the modeling performance of the CMAC. 
The standard Albus CMAC uses a diagonal overlay 
arrangement, and this is used in the CMAC example in Fig 1, 
and is also shown in Fig 2b. In [8] the so called ‘uniform’ 
arrangement shown in Fig 2a is found which is an overlay 
yielding improved modeling performance. With the diagonal 
and uniform arrangements, the number of layers required is 
given by m h= . The parameter h is adjusted to control the 
amount of local generalization in the CMAC.  

It is now well known that the multivariate CMAC is not a 
universal approximator. To fix this, the full overlay, shown in 
Fig 2c, should be used where here the number of layers is 
given by ynm h= . Using the full overlay poses a problem 
however, as the number of weights required by the CMAC 
increases dramatically as can be seen by (2.4), and often 
becomes too large to manage for high dimensional problems. 

III. THE INVERSE QR-RLS ALGORITHM FOR THE CMAC 
QR-decomposition is a method for decomposing a matrix into 
two matrices, one orthogonal and the other upper triangular. It 
is useful for solving the linear least squares problem 
recursively [9] in a more numerically stable manner compared 
with standard RLS. Usually, using QR methods will degrade 
computational performance. However, the work in [4] tailors 
the QR-RLS algorithm specifically for the CMAC resulting in 
halving the computation time. Unfortunately, the tailored 
 

 a)  b)  c) 
Fig 2. The a) uniform ( 5m h= = ), b) diagonal ( 5m h= = ) and  

c) full ( 5h = , 25m = ) 2D overlay arrangements. 
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algorithm is only suitable for univariate CMACs as the 
authors assume the association vector uses a method where 
the m  ‘1’s are contiguous, which cannot be the case for 
multivariate CMACs. 

If the weight vector is required to be updated after every 
training sample presented, as it is required in the CMAC, a 
costly matrix back substitution step of 2( )O n  time complexity 
needs to be carried out each time. We can avoid this back 
substitution step entirely by using an inverse QR-RLS 
(IQR-RLS) algorithm, which instead allows the weights to be 
calculated directly. In Algorithm I we present an IQR-RLS 
algorithm that was derived in [10] and uses the Givens 
rotation method to perform the QR-decomposition, but has 
here been tailored for the CMAC in order to increase 
computational speed. 

Where ( )ia k , ( )ijr k  and ( ) ( )i
ju k  are the individual entries of 

( )ka , ( )kR  and ( )ku  respectively. Note that δ  is a constant 
that is usually set between 10 and 10000. Larger values give 
theoretically better results, though it was found that setting δ  
too large causes floating point inaccuracies. A value of 100 
was found to work well.  

A. Optimizations 
There are three speed improvements that are implemented 

in ALGORITHM I. The first improvement involves (3.9). The 
activatedAddresses array contains the array addresses of the m 
‘1’s in the association vector like what is shown in (2.3). This 
array is calculated by function *ϕ  in (3.6) which is a slight 
modification to function ϕ . In (3.9) the address where 
 

ALGORITHM I: IQR-RLS ALGORITHM FOR THE CMAC 

(0) , (0) ,
(0) , ( 1), 0.001T

n nδ δ ρ−
×

= =
= >> <

w 0 x 0
R I   (3.1) 

1, 2... dfor k n=   (3.2) 
 Get new sample: ( , )k kdy   (3.3) 
 Quantize sample: ( )kquant=q y  ( )yO n (3.4) 
 Calculate association vector: ( )ϕ=x q  ( )yO mn (3.5) 
 *( )activatedAddresses ϕ= q  (3.6) 
 ( ) ( 1) ( )Tk k k−= −a R x  ( )O mn  (3.7) 
 

(0)( ) , ( ) 1k kα= =u 0  (1)O  (3.8) 
 1( )start activatedAddresses k= (3.9) 
 :for i start n=  2( )O n (3.10)
  ()givens  (3.11)
 ( ) ( ) ( ) ( 1)Te k d k k k= − −x w  ( )O m  (3.12)

 
( )

( )( )
( )n

e kz k
kα

=  (1)O  (3.13)

 ( ) ( 1) ( ) ( )k k z k k= − −w w u  ( )O n  (3.14)
MACRO: ()givens    

( ( ) ) )iif a k ρ>  

(1)O  

(3.15)

 
2( ) ( 1) 2( ) ( ) ( )i i

ik k a kα α −⎡ ⎤= +⎣ ⎦  (3.16)

 
( )

( )
( )

( )
i

i
a k

s k
kα

−
=  (3.17)

 

( 1)

( )
( )( )

( )

i

i
kc k

k
α
α

−
=  (3.18)

 1:for j i=  

( )O n  
(3.19)

  
( 1)( ) ( ) ( 1) ( ) ( 1)i

ij ij jr k c k r k s k u k−= − − −  (3.20)

  
( ) ( 1)( ) ( ) ( ) ( ) ( 1)i i
j j iju k c k u k s k r k−= + −  (3.21)

the first ‘1’ appears in the association vector is recorded. The 
for loop in (3.10) then begins its computation from this 
address. This is because the ( )ka  vector calculated in (3.7) 
will be zero up until the address of the first ‘1’ in ( )kx , as T−R  
is lower triangular. If ( )ia k  is zero then ( )s k  will equal zero, 
and ( )c k  will equal one resulting in no change for ( )ijr k  and 

( )ju k , rendering any calculation redundant. 
The second improvement follows on from this where the 

calculation of (3.16) – (3.21) is gated by (3.15), and is thus 
only performed if the absolute value of ( )ia k  is greater than ρ  
which is set to a small value just above zero. Values of ( )ia k  
are often zero due to the sparseness of the CMAC input which 
leaves T−R  sparse, and the sparseness of the association vector. 
We set ρ  to be slightly larger than zero because during the 
matrix-vector multiplication in (3.7), values are often added 
and subtracted to form the sum of zero and due to floating 
point inaccuracies the result will not equal exactly zero. 
Furthermore, increasing ρ  beyond the floating point 
inaccuracy boundary acts to decrease the accuracy of the 
solution and increase computation speed. Generally, a value 
for ρ  between 0.000001 and 0.001 worked well.  

Thirdly, a sparse matrix-vector multiplication can be 
performed with (3.7) because ( )kx  or the association vector is 
sparse, and the addresses of the ‘1’s are known from the 
activatedAddresses array. Thus, only m values for each row of 

T−R  need to be added.  
It can be seen from (3.10) that computation time will 

significantly increase with an increase in the number of 
weights required by the CMAC. We can combat this 
disadvantage for larger problems by using hash mapping to 
specify the number of weights to use. 

B. Results 
A two input sinc function was modeled on an Intel i5 CPU 

using the CMAC. Fig 4 shows the computation times recorded 
for a particular number of weights compared against other 
RLS algorithms used in the CMAC. The number of weights 
used by the CMAC was controlled by modifying the 
quantization resolution used. IQR-RLS was found to be the 
fastest of the RLS algorithms. Although it was previously said 
that the QR-RLS algorithm can halve the computation time of 
the standard RLS algorithm, we did not implement those 
speed enhancements from [4] as they would restrict the 
CMAC to a single input only. The QR-RLS algorithm was 
then many times slower than standard RLS as is evidenced in 
Fig 4. 

Compared with the LMS algorithm which requires less 
than one microsecond per iteration, RLS algorithms are much 
slower. However, many epochs are required for the LMS 
algorithm to converge, which is not desirable in online 
learning. 

IV. PARALLELIZED IQR-RLS ALGORITHM 
The QR-RLS algorithm is naturally and optimally 

parallelized on a systolic array as is seen in [4]. The IQR-RLS 
algorithm from ALGORITHM I can also be parallelized in the 
same manner. A systolic array implementation of IQR-RLS is 
shown in Fig 3. In this figure, each circle represents a 
processing element that also stores the values of T−R  ( T−R  is 
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lower triangular). The circles in the left most column 
implement (3.16) – (3.21), and all other circular processing 
elements implement (3.20) and (3.21). The square boxes 
calculate the weights using (3.12) – (3.14). Often access to 
systolic array hardware is not available, and only PCs are 
available.  Parallelization on a PC may be performed by 
emulating the systolic array computation structure with 
threading. However, this would introduce many threading 
overheads, and would potentially perform poorly. Here a 
simpler method is proposed to parallelize the IQR-RLS 
algorithm on a PC with a multi-core CPU by using the systolic 
array visualization.  

In a visual sense, ALGORITHM I sequentially updates the 
( )i
ju  and ijr  values in the systolic array row by row. It is, 

however, equally valid to update the ( )i
ju  and ijr  values column 

by column instead. If the column by column method is used, 
since each column is independent from one another in terms 
of other value dependencies (apart from c and s), it is possible 
to update each column simultaneously and without memory 
sharing bottlenecks. As it is a simple exercise to parallelize 
ALGORITHM I, we do not present the algorithm explicitly, but 
instead describe how it may be parallelized in two steps 
below. 

The first step that needs to be performed is sequential in 
nature. First, realize that the c and s values are constant across 
each row. Thus the values of c and s must first be sequentially 
calculated for each row and stored in an array. The value ( )nα  
is also calculated and stored as a by-product from calculating 
c and s.  

In step two we realize that we can update ( )i
ju  and ijr  

column by column. Since each column is independent of one 
another, each column can be updated in a separate thread. We 
can further optimize by combining computation of shorter 
columns together to equalize thread computation times and by 
skipping calculations on rows where the ia  value is below the 
threshold ρ .  

Additionally, fine grained parallelism on a modern CPU 
can be achieved by using ‘Streaming SIMD Extensions’ 
(SSE). Currently, SSE instructions allow two double precision, 
and four single precision multiplications to be performed 
simultaneously. This is especially useful for the inner loop 
calculations (3.20) and (3.21).  

A. Results 
The algorithm was used to model a two input sinc function 
and was run on a 4-core Intel i5 processor. It was found that 
parallelization slightly slowed down computation for small 
problems due to threading overheads, but decreased 
 

 
Fig 3. Parallel systolic array implementation of the IQR-RLS algorithm 

computation times for larger problems. We can expect for this 
algorithm to become automatically faster as processor core 
counts increase. A computational time comparison between 
the sequential and parallel versions of IQR-RLS is plotted in 
Fig 4. The parallel algorithm implements both threading and 
SSE based parallelization. 

V. REGULARIZED IQR-RLS 
The work in [5, 6, 11, 12] show that the generalization 

error of the CMAC can be significant. In [5] a method called 
‘regularization’ is presented for the LMS algorithm, which 
considerably reduces the generalization error. Regularization 
combats a design flaw in the CMAC by forcing activated 
weights to be similar, thus preventing certain weights 
dominating the contribution to the output calculation. Here we 
apply the same regularization concept but instead to the 
IQR-RLS algorithm. A partial mathematical derivation is 
given below based of the derivations found in [10]. First from 
[5] we use the least squares cost function ( )kε  where k is the 
current training sample iteration, 

 

2

2

1
: ( ) 1

( ) ( ) ( )

( ) ( ) ( )
j

T
k

i j
j x k

d i i k

k d i w k
m

ε
η=

=

⎛ ⎞⎡ ⎤−⎜ ⎟⎣ ⎦
⎜ ⎟= ⎡ ⎤⎜ ⎟+ −⎢ ⎥⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠

∑
∑

x w

 (5.1) 

The first term in (5.1) is the error between the desired and 
actual CMAC output. The second term is the regularization 
term which adds to the cost if the activated weights are 
different to one another in value. The constant η  is used to 
control the amount of regularization and it was found setting it 
to the reciprocal of δ  generally worked well. In order to easily 
minimize (5.1), it must be written in vector-matrix form. 
Define vectors ( )kw , ( )kd , ( )kh  and matrices ( )kX , ( )kΣ  as, 

 [ ]1 2 1
( ) ( ) ( ) ( ) T

n n
k w k w k w k

×
=w L  (5.2) 

 [ ] 1( ) (1) (2) ( ) T
kk d d d k ×=d L   (5.3) 

 [ ] 1( ) (1) (1) (2) (2) ( ) ( ) T
nkk k k ×=h G q G q G qL  (5.4) 

 [ ]( ) (1) (2) ( ) T
k nk k ×=X x x xL  (5.5) 

 [ ]( ) (1) (2) ( ) T
nk nk k ×=Σ G G GL  (5.6) 

where, 

 1

( ) ( ) ( )( )
T

n

d k d k d kk
m m m ×

⎡ ⎤= ⎢ ⎥⎣ ⎦
q L  (5.7) 

 ( )( ) ( )
n n

k diag k
×

⎡ ⎤= ⎣ ⎦G x  (5.8) 

( )( )diag kx  creates an n n×  zero matrix with the entries of 
( )kx  along the main diagonal. Using (5.2) – (5.8) we can 

rewrite the cost function as,  

 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k kε η= − + −d X w h Σ w  (5.9) 

Where T=a a a . Equation (5.9) can be rewritten as a single 
term by defining matrix ( )kA  and vector ( )ky  as 

 
( )

( )
( )

( )
k nk n

k
k

kη
+ ×

⎡ ⎤
= ⎢ ⎥
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X
A

Σ
 (5.10) 
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⎡ ⎤
= ⎢ ⎥
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d
y

h
 (5.11) 

using (5.10) and (5.11) to rewrite ( )kε  then gives, 

 2( ) ( ) ( ) ( )k k k kε = −y A w   (5.12) 

Now from [10] we see that since ( )kA  is ( )k nk n+ × , there 
exists a ( ) ( )k nk k nk+ × +  orthogonal matrix ( )kQ  such that, 

 
( )

( ) ( )
k

k k
⎡ ⎤
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⎣ ⎦

R
Q A

0
  (5.13) 

Where ( )kR  is the n n×  upper triangular Cholesky factor, and 
0 is an (( ) )k nk n n+ − ×  zero matrix. Similarly, 

 
( )

( ) ( )
( )
k

k k
k

⎡ ⎤
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⎣ ⎦

z
Q y

v
 (5.14) 

Where ( )kz  is a 1n×  vector, and ( )kv  is a 
(( ) ) 1k nk n+ − × vector. Since ( )kQ  is orthogonal, 
pre-multiplying each term in (5.12) does not change the value 
of the norm, 

 
2( ) ( ) ( ) ( ) ( ) ( )k k k k k kε = −Q y Q A w  (5.15) 

Substitute (5.13) & (5.14) into (5.15) to get the desired form, 

 
2

( ) ( ) ( )
( )

( )
k k k

k
k

ε
−⎡ ⎤
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⎣ ⎦

z R w
v

 (5.16) 

It can be seen that the norm in (5.16) will be minimized if, 

 ( ) ( ) ( )k k k=R w z  (5.17) 

With (5.17) the weights can be solved for with back 
substitution. Now the problem becomes how to update 

( 1)k −R  to ( )kR  and ( 1)k −z  to ( )kz . First, consider the 
non-regularized solution. In the non-regularized solution, 

( )kA  and ( )ky  in (5.12) are replaced with ( )kX  and ( )kd . 
Now, in [10] it is shown that an ( 1) ( 1)n n+ × +  orthogonal 
matrix ( )kT  exists that will perform the non-regularized 
update by updating using the latest entry of ( )kX  and ( )kd , 
which are ( )kx  and ( )d k  respectively, 
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z z
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However, with regularization, (5.12) uses ( )kA  and ( )ky  
which is a composition of two matrices and two vectors 
respectively, so we must update with the latest entries of ( )kX , 

( )kd  and the latest entries of ( )kΣ , ( )kh  multiplied by η  
which are ( )kηG  and ( ) ( )k kηG q  respectively. There 
must then exist an (2 1) (2 1)n n+ × +  matrix ( )kT  such that, 
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 (5.20) 

and similarly to update ( 1)k −z  to ( )kz , 
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kk kη
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z z
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 (5.21) 

Unfortunately, if (5.20) and (5.21) are used, we cannot 
proceed with the same derivations found in [10] as the 
derivations are suited only to a ( 1) ( 1)n n+ × +  ( )kT  matrix. 
We, however, realize that ( )kR  and ( )kz  may be calculated 
iteratively if we define ( ) ( )n k k≡R R , ( ) ( )n k k≡z z  and write 

( )kG  and ( )kq  row by row as, 

 1 2( ) ( ) ( ) ( ) T
nk k k k= ⎡ ⎤⎣ ⎦G g g gL  (5.22) 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) T
nk k k k k k k k= ⎡ ⎤⎣ ⎦G q g q g q g qL  (5.23) 

then we first update using ( )kx  and ( )d k , 
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secondly, using 1( )kg  to ( )n kg  we iteratively update until we 
have ( )n kR , 

 0 1
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  M  

 1( ) ( )
( )

( )
n n

n T
n

k k
k

kη
−⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

R R
T

g 0
 (5.27) 

and using 1( ) ( )k kg q  to ( ) ( )n k kg q  we iteratively update until 
we have ( )n nz , 

 0 1
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T
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It is now clear that we need not continue with the 
derivation, as (5.26) – (5.29) are in the same form as (5.18) 
and (5.19). Instead we infer that we can simply perform the 
final IQR-RLS update algorithm given in [10] for ( )kx  and 

( )d k  as is done in ALGORITHM I and then perform the 
algorithm n  more times, but by replacing ( )kx  with 1( )kg  to 

( )n kg  and ( )d k  with 1( ) ( )k kg q  to ( ) ( )n k kg q . 
In ALGORITHM II the regularized IQR-RLS algorithm for 

the CMAC is presented. 

A. Optimizations 
Running the IQR-RLS algorithm an extra n times would 

slow the entire algorithm down significantly. However, an 
important observation to make is that only m rows of ( )kG  
will not be the zero vector. The zero vector rows can be 
ignored as they would produce a zero ( )ka  vector. Thus 
instead of running the algorithm an extra n  times for 
regularization, it need only be run m more times, which is 
reflected in the for loop in (5.32). 

Another major optimization performed in ALGORITHM II 
is related to (5.33). Here we realize that we can start loop 
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ALGORITHM II: REGULARIZED IQR-RLS ALGORITHM FOR THE CMAC 

First perform one run of ALGORITHM I, but replace code line 
(3.14) with (5.30) instead. 

( ) ( ) ( )k z k k=Temp u  ( )O n  (5.30)
Then while still inside training sample loop (3.2),

1/η δ=   (5.31)
1:for h m=  

2( )O mn
 

(5.32)
 ( )hp activatedAddresses k=  (5.33)

 ( ) ( ) ( )T
pk k kη −=a R g  (5.34)

 
(0)( ) , ( ) 1k kα= =u 0  (5.35)

 :for i p n=  (5.36)
  ()givens  (5.37)

 ( )

( ) ( ) ( ) ( 1) ( )
( )

( )
p p

n

k k k k k
k

kα

η ⎡ ⎤− −⎣ ⎦+ =
g q g w u

Temp  (5.38)

( ) ( 1) ( )k k k= − −w w Temp   (5.39)

(5.36) from address p of the 'h th  ‘1’ in the association vector. 
This is because ( )p kg  is essentially the association vector with 
every entry, other than the 'p th  entry masked as zero, 
therefore every ( )ia k  value before the 'p th address will be 
zero making performing the givens macro redundant, as was 
explained in section III.A. 

B. Results 
It was found that the regularized RLS algorithm is able to 

compute the regularized weight vector in one epoch. In Fig 5 
we see the output of a non-regularized CMAC on the left, 
modeling a sine function with the IQR-RLS algorithm. The 
CMAC sampled the sine function every 30 degrees, used a 
quantization resolution of 100, and had 10 layers. There is 
severe interpolation/generalization error between training 
samples. The figure on the right shows the CMAC trained on 
the same sine wave, but with regularization turned on.  The 
CMAC output is now almost a perfect sine wave. The 
improvement in total absolute error (TAE) is shown in TABLE 
I. The error was also tested on a 2D sinc plot in which the 
CMAC was trained with three times less points than it was 
tested with in order to test generalization. With regularization, 
training times increase. Fig 4 shows a computation time 
comparison for the regularized IQR-RLS algorithm. 

 
TABLE I: TAE OF REGULARIZED AND NON-REGULARIZED CMAC-IQRRLS 

 Non-Regularized Regularized  
1D Sine Plot 51.8 19.5 
2D Sinc Plot 400 206 

VI. INTRODUCTION TO THE KERNEL CMAC 
In a kernel machine, the input vector is non-linearly 

transformed into a higher dimensional ‘feature vector’ by a 
kernel function.  The work in [5] makes the connection that 
the CMAC is essentially a kernel machine where the M A→  
mapping to the association vector is the non-linear transform 
to a higher dimension where the kernel used is a binary 
b-spline function. Using this knowledge, a common method 
used in kernel machines called the ‘kernel trick’ can be 
applied where the weights are then evaluated in the ‘kernel 
space’ rather than the feature space. Since the dimensionality 
of the kernel space is equal to the size of a dictionary (which 
stores previously admitted feature vectors) where the 
maximum size is the number of unique training data presented 

 
Fig 4. Computation time per training sample vs. number of weights in the 

CMAC for various RLS implementations. The number of weights was 
controlled by altering the quantization resolution. 

to the algorithm rather than n, significantly less memory is 
required for weight storage. Therefore, the number of weights 
used becomes independent of the type of overlay used, so it is 
feasible to use the full CMAC overlay. The size of the 
dictionary is denoted c, and is what controls computational 
complexity. 

VII.  THE KERNEL RLS ALGORITHM FOR THE CMAC 
Although it was shown how the IQR-RLS algorithm can 

be used to speed up CMAC-RLS, it is still not fast enough for 
use on high dimensional problems on a PC. Here we use a 
kernel-RLS (KRLS) algorithm which allows the CMAC-RLS 
to be used for higher dimensional problems. The online 
sparsifying KRLS algorithm is derived and presented in [7]. 
The KRLS algorithm will be a better choice than the RLS 
algorithm for training the CMAC, as the computational 
complexity will be dependent on the number of unique 
training data seen, rather than the number of training data 
possible. Hence, the full overlay of basis functions can be 
used, and computational complexity will no longer be 
dependent on the result of (2.4). With sparsification 
techniques the number of training data required can be 
reduced even further. Here we quote the KRLS algorithm 
from [7] with slight alterations to specialize it for the CMAC. 

ALGORITHM III features an online sparsification technique 
that sparsifies by preventing feature vectors that are 
approximately linearly dependent on the dictionary, X from 
being added. The full concept and derivation behind this 
sparsification method can be found in [7]. Using this method 
the dictionary size can be limited, whilst still making use of 
training points not added to the dictionary. In (6.8) the scalar 
value δ  is calculated which is a measure of how linearly 
dependent x is on the dictionary X. If δ  is greater than some 
threshold v, x will be added to the dictionary as this means that 
it was not approximately linearly dependent on the dictionary. 
Otherwise, if the threshold is not met, the update equations 
(6.16) – (6.18) (shaded) will be used instead. The elements of 
vector a represent a weighting on how linearly dependent a 
vector in the dictionary is to the current feature vector. If the 
current feature vector is already in the 

    
Fig 5. Non-regularized CMAC output (left) and regularized CMAC output 

(right). 
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ALGORITHM III: CMAC-KRLS 
1
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 else   (6.15)

  
1

old
T

old

=
+

P a
q

a P a  
 

2( )O c  
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  T
new old old= −P P qa P   (6.17)
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dictionary, the entries of vector a will be all zero except for a 
single unity entry at the index of the matching dictionary 
point.  

The sparsification threshold should be set to some 
percentage of m . It was found that usually setting it to 
10%-30% of m worked well.  

VIII. AN OPTIMIZED KRLS ALGORITHM FOR THE CMAC 
The CMAC-KRLS algorithm is still fairly 

computationally complex, with major bottlenecks at (6.6), 
(6.7), (6.11), and (6.16) - (6.18). Fortunately, most of these 
bottlenecks can be reduced by some optimizations presented 
below. The optimized discarding CMAC-KRLS algorithm is 
presented as ALGORITHM IV. 

A. Generation of the Kernel Vector 
If the full overlay is used in a high dimensional CMAC, m 

can become extremely large. For example if 20h = , and 
4yn = , then 420 160 000m = = . This causes a computational 

burden as the calculation of the kernel vector given by [5] is 
k = Xx . This requires c m×  comparisons if the first order 
b-spline is used as the kernel function (binary CMAC) and x 
and X are stored sparsely. Although comparisons are efficient, 
if m is very large the computation will still be demanding. 

Here another method to calculate the kernel vector for the 
first order b-spline kernel is shown which is very efficient for 
the full overlay. By realizing that the individual kernel vector 
entries, ik , are actually the number of shared hypercubes 
between dictionary point iQ  (where the dictionary Q  stores 
quantized input vectors instead of association vectors), and 
current quantized input q , we can reduce the number of 
 

ALGORITHM IV: OPTIMIZED DISCARDING CMAC-KRLS 
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NOTE: 1
:,b
−K  indicates the b’th column of 1−K   

calculations required to calculate the kernel vector to yn c× . In 
Fig 6 a snapshot of the kernel function generated by equation 
(7.7) or equivalently (6.6) is shown for a single input CMAC 
( 1yn = ) where 3h = . In reality, this function extends 
continuously from min  to max . Calculating the kernel 
function for a higher dimensional CMAC is simple. Simply 
multiply each kernel value obtained in each dimension 
together. To visualize this further in Fig 7 we see a 2D CMAC 
full overlay, where 3h = , and thus 9m = . We can view this 
figure as having the dictionary point iQ  at the center, and the 
numbers in the surrounding grid squares give the number of 
shared hypercubes for nearby possible values of q. Equation 
(7.7) can be used to calculate number of overlaps ik  for a 
particular quantized dictionary point iQ  and the current 
quantized input q . As an example say [3 4]i =Q  and 

[3 2]=q . In dimension 1j = , ,1 3i =Q  and 1 3=q , and in 
dimension two we have ,2 4i =Q  and 2 2=q . Thus, 

( ) ( )3 3 3 3 4 2 3 1 3i = − − × − − = × =k . We can confirm by 
using Fig 7 where the center point of this snapshot is [3 4]. We 
can then look up point [3 2] and see that it gives 3i =k .  

There is no need to evaluate the association vector using 
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Fig 6: Kernel function where 3h = . Topological view (left) and profile view 

(right). 

this method, since k  is now directly a function of the 
quantized input q rather than association vector x. 

B. Discarding Sparsification 
In any kernel machine used in an online learning 

environment, it is important to keep the dictionary size small 
so that it will be able to provide a response to input data in real 
time. In ALGORITHM III a sparsification technique was used 
which only added data that was not already approximately 
linearly dependent on the dictionary. However, it still made 
use of every training point to adjust the weights, even if it was 
not admitted to the dictionary. 

In what we will call the discarding CMAC-KRLS 
implementation, data not added to the dictionary is simply 
discarded and not made use of. Thus, when performing (6.16) 
– (6.18) we see that the a vector is always all zero except for a 
single unity entry at the index where the matching dictionary 
entry is stored and thus the P matrix remains diagonal. So if 
the dictionary index for input q is known to be b, we only 
need to update scalars bq  (which is simply notated as q in 
ALGORITHM IV) and ,b bP . Thus, equations (6.16) to (6.18) can 
be simplified significantly as can be seen in equations (7.9) – 
(7.12). The disadvantage however is that, in a non-stationary 
environment the CMAC may be slower to adapt, or in a noisy 
environment the CMAC will be slower to converge as only if 
the dictionary points are revisited will the CMAC update. If 
the CMAC must be used in a non-stationary or noisy 
environment, the non discarding ALGORITHM III can be used, 
the sparsification threshold can be reduced, or the 
semi-discarding algorithm presented next in section C can be 
used. 

This algorithm can also be written such that instead of 
performing the computationally demanding approximate 
linear dependence threshold test every iteration, it only need 
be performed if the current input is not a member of  the 
dictionary already. This is because instead of using the test, a 
simple hashtable lookup as seen in (7.8) can be performed to 
see if the current quantized input vector is already a member 
of the dictionary. A hashtable lookup is a very efficient (1)O  
operation. The threshold test will still need to be carried out in 
the case that the current input is not already in the dictionary.  

Furthermore, if a point has been previously discarded and 
thus not added to the dictionary, it will never be added to the 

 
Fig 7. Kernel vector values for a 2D CMAC with Q at the center, and nearby 

possible q. Arrows point to example values mentioned in section VIII.A. 

dictionary in the future. This is because as more points are 
added to the dictionary, the rejected point can only become 
more linearly dependent on the dictionary. This removes the 
need to compute the approximate linear dependence test when 
seeing previously rejected points and is reflected by equations 
(7.13) and (7.23). 

C. Semi-Discarding Sparsification 
If increased noise performance is required, whilst 

retaining some of the good computational properties of the 
discarding method, a semi-discarding method can be used. 
With the semi-discarding method, in the update section of 
ALGORITHM III (shaded) every value in the a  vector is 
forcefully set to zero, except for the largest absolute value, 
which is the most contributing value and indicates the value in 
the dictionary most like the current input.  The update 
algorithm is then performed with the masked a vector. This 
keeps the P  matrix diagonal – the reason for fast 
computational performance. Modifications to get the 
semi-discarding algorithm are shown in ALGORITHM V. 

D. Forgetting Factor 
A forgetting factor is typically used to allow RLS 

algorithms to track better in non-stationary environments. The 
forgetting factor λ  has been integrated into the update 
equations (7.10) and (7.11) in ALGORITHM IV, and also in 
(7.25) and (7.26) in ALGORITHM V. A forgetting factor of 
around 0.98 to 1 is useful. Smaller values give better tracking 
performance, but decreased noise rejection. 

E. Additional Computational Optimizations 
The kernel vector is a sparse vector, and thus equation 

(7.14) can be sped up significantly by performing sparse 
vector matrix multiplication. Also, since the P matrix remains 
diagonal in the discarding and semi-discarding algorithms, it 
can be stored as a vector. Thus expanding P in (7.19) becomes 
an (1)O  operation. 

IX. HIGHER ORDER BASIS FUNCTIONS FOR THE 
CMAC-KRLS 

The standard CMAC, and also the CMAC-KRLS shown 
so far uses a quantized binary kernel function. This 
unfortunately produces a staircase like output. This can be 
resolved by making the CMAC resolution as high as possible. 
In the standard CMAC there is a trade-off as increasing the 
resolution causes an increase in the number of weights 
required. However, in the CMAC-KRLS increasing 
resolution has no adverse affects as the number of weights 
required does not increase. Only the generalization parameter 
 

ALGORITHM V: SEMI-DISCARDING CMAC-KRLS 

Same as ALGORITHM IV but,   
Replace (7.13) with an else statement   
Replace (7.23) with four new lines:   

( ). maxb index= a a  ( )O c  (7.24)

( )
,

2
,

b b b

b b b

q
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=
+

P a

P a
 (1)O  (7.25)

( )1
, , ,b b b b b b bqλ −= −P P P a  (1)O  (7.26)

( )1
:,

T
new old b t oldq d−= + −β β K k β  ( )O c  (7.27)

International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

27



 
 

 

h needs to be made larger to compensate, if the resolution 
doubles, the generalization parameter needs to double too. 
When increasing the resolution, in the limit, the kernel 
function becomes triangular in shape as is seen in Fig 8, rather 
than staircase like, as was shown in Fig 6. We can obtain this 
kernel function either by increasing the resolution to a very 
large value or directly by simply by removing the floor 
operation from (2.2) and storing the non-floored values in the 
dictionary. In the latter case only the ratio between the 
resolution and generalization parameter h becomes important 
in tuning the generalization of the CMAC. 

We can further improve the modeling of the 
CMAC-KRLS by using a b-spline curve as the kernel function. 
This is easily performed by using the equation found in [13] 
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and where the order n for the b-spline is given by 
 2 1n o= +  (8.3) 
where o is the chosen spline order and where δ  is the dilation 
constant which is used to control the width of the spline. The 
dilation constant plays the same role as m when used in the 
CMAC. A profile example of a b-spline kernel function where 

1o =  is shown in Fig 9. 

X. CMAC-KRLS RESULTS 
In the following experiments each CMAC used a 

resolution of 100r =  for each dimension, and a local 
generalization parameter of 10h = . The experiments were run 
on an Intel i5 4-core CPU. The algorithm was written in C# 
and parallelization was applied where possible. The 
algorithms were tested on a two input sinc function, and 
various results are discussed below. 

Algorithms that rely on the kernel trick use as many 
weights as there are unique training points added to the 
dictionary. This number can be controlled if sparsification 
methods are used. In Fig 10 the number of weights used to 
learn the 2D sinc function for any sparsifying CMAC-KRLS 
algorithm is plotted against different sparsification thresholds. 
A total of 1681 unique training points were presented 
sequentially. The number of weights used by a 
CMAC-IQR-RLS algorithm is also plotted for diagonal and 
uniform overlays which are similar. The full overlay cannot be 
used in CMAC-IQR-RLS as it would require 11,881 weights 
which is not computationally feasible. Also note that if the 
problem was a higher dimensional problem, the number of 
weights required for CMAC-IQR-RLS would be much 
 

      
Fig 8. Linear kernel function where 3h = . Topological view (left) and profile 

view (right). 

 
Fig 9: B-Spline Kernel Function where 1o =  

larger even with only the diagonal or uniform overlays.  
In Fig 11 the average time per iteration taken over ten 

epochs for each CMAC-KRLS algorithm with full overlay to 
complete learning of a single training point is plotted for 
various sparsification thresholds which are recorded as a 
percentage of m  between 0 and 90%. Take note of the 
logarithmic scale. Fig 11 shows that the two discarding 
algorithms perform the fastest. This is because after the first 
epoch all the dictionary points have been added, thus the 
discarding algorithms use their very efficient update algorithm 
in subsequent epochs bringing the average down. The 
non-discarding algorithm is the slowest due to its more 
complex update equations. For comparison, the 
CMAC-IQR-RLS algorithm is shown for the same problem. It 
should be noted that although the CMAC-IQR-RLS algorithm 
is competitive with the non-discarding algorithm here, in a 
higher dimensional problem its use would be infeasible 
whereas the CMAC-KRLS would perform at a similar speed 
no matter the dimension given the same number of unique 
training data.  

The total absolute error for modeling a noise free two 
input sinc function was measured for each CMAC-KRLS 
variant with full overlay and recorded in Fig 12. Note that it 
was found that the non-discarding and semi-discarding 
algorithms required additional epochs to fully converge when 
trained sequentially, and thus the algorithm was run for ten 
epochs before measuring the error. The discarding and 
non-discarding CMAC-KRLS algorithms were similar in 
performance up till a sparsification threshold of 0.5. The 
semi-discarding algorithm was only slightly higher in error 
than the non-discarding algorithm. For comparison the errors 
from the CMAC-IQR-RLS algorithm with the diagonal and 
uniform overlays are shown. In Fig 13 a comparison between 
the discarding, semi-discarding and non-discarding 
CMAC-KRLS for noisy data and random training points 
training under a sparsification threshold of 0.2 is shown. The 
non-discarding CMAC-KRLS performs significantly better as 
the number of training data increases due to its ability to make 
use of every data point. The discarding CMAC-KRLS only 
makes use of training points already in the dictionary, so it has 
less ability to average over time. The semi-discarding 

 
Fig 10. Number of weights used for any 2D CMAC-KRLS for different 

sparsification thresholds compared against the 2D CMAC-IQR-RLS. 
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Fig 11. Average time taken per iteration over ten training epochs. 

algorithm has improved performance over the discarding 
algorithm due to its ability to make some use of the discarded 
data.  

In Table II the total absolute error (TAE) results of the 
different basis functions are shown. The sine wave was 
sampled every 30 degrees, while the sinc wave was sampled 
with three times less points that it was tested with. The 
generalization parameter was varied to get the lowest TAE. 
The binary basis function used a resolution of 100. The results 
show that the b-spline produces better results than the linear 
and binary basis functions. The results for the spline basis 
function are better as its smoothness better approximates the 
smooth curves of the sine and sinc waves. It was found that 
using these higher order basis functions introduces almost no 
noticeable increase in computation time. 

XI. CONCLUSIONS 
In this paper two methods for incorporating RLS into the 
CMAC neural network were shown. The first method used the 
IQR-RLS algorithm to simplify and parallelize computation 
resulting in much faster computation times. Additionally, the 
IQR-RLS algorithm was able to be easily regularized resulting 
in greatly improved CMAC generalization, but at the expense 
of computation time. Although IQR-RLS was shown to be 
much faster than standard CMAC-RLS it was still not fast 
enough for CMACs with greater than two inputs. In order to 
overcome this problem the KRLS algorithm was introduced 
which transformed the computational complexity to become 
dependent on the number of training data, rather than the 
number of weights required by the CMAC. The results show 
that the CMAC-KRLS is significantly faster than other 
CMAC-RLS algorithms, and can in fact model better as it can 
use the full overlay of basis functions. Additionally, it was 
shown that higher order basis functions can easily be 

TABLE II: TAE OF HIGHER ORDER BASIS FUNCTIONS 

 Binary  Linear Spline 1o =  
1D Sine Wave 16.3 10.51 3.97 
2D Sinc Wave 277 257 127 

 
Fig 12. Total absolute error for different sparsification thresholds 

 
Fig 13. Comparison with noisy random data between each CMAC-KRLS 

under a sparsification threshold of 0.2. 

implemented into the CMAC-KRLS with little to no increase 
in computational complexity. However, although the 
CMAC-KRLS is faster than the CMAC-IQR-RLS, IQR-RLS 
has an implementation that is highly suitable to parallel 
hardware, and may be a better choice for hardware 
implementation, or highly parallel CPUs. 

XII. FUTURE WORK 
Currently there is no regularization method for the 

CMAC-KRLS, however, this research is currently being 
undertaken. Additionally, other improvements such as CMAC 
eligibility [11] will be implemented into the CMAC-KRLS to 
achieve improved performance in motion control learning 
situations. Also, more investigation needs to be undertaken to 
learn more about the error the semi-discarding method 
introduces.  
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