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Efficient Recursive Least Squares Methods for
the CMAC Neural Network

C. Laufer, G. Coghill

Abstract— The Cerebellar Model Articulation Controller
(CMAC) neural network is an associative memory that is
biologically inspired by the cerebellum, which is found in the
brains of animals. The standard CMAC uses the least mean
squares algorithm to train the weights. Recently, the recursive
least squares (RLS) algorithm was proposed as a superior
algorithm for training the CMAC online as it can converge in
just one epoch, and does not require tuning of a learning rate.
However, the RLS algorithm was found to be very
computationally demanding as its computational complexity is
dependent on the square of the number of weights required
which can be huge for the CMAC. Here, we show a more
efficient RLS algorithm that uses inverse QR decomposition
and additionally provides a regularized solution, improving
generalization. However, while the inverse QR decomposition
based RLS algorithm reduces computation time significantly; it
is still not fast enough for use in CMACSs greater than two
dimensions. To further improve efficiency we show that by
using kernel methods the CMAC computational complexity can
be transformed to become dependent on the number of unique
training data. Additionally, it is shown how modeling error can
be improved through use of higher order basis functions.

Index Terms—artificial neural networks, CMAC, Kkernel
methods, recursive least squares

I. INTRODUCTION

The Cerebellar Modd Articulation Controller (CMAC)
was invented by Albus [1] in 1975. The CMAC is modeled
after the cerebellum which is the part of the brain responsible
for fine muscle control in animals. It has been used with
success extensively in robot motion control problems [2]. In
the standard CMAC, weights are trained by the least mean
square (LMS) algorithm. Unfortunately, the LMS agorithm
requires many training epochs to converge to a solution. In
addition, alearning rate parameter needs to be carefully tuned
for optimal convergence. Recently, CMAC-RLS [3] was
proposed where the recursive least squares (RLS) algorithm is
used in place of the LMS agorithm. CMAC-RLS is
advantageous as it does not require tuning of alearning rate,
and will converge in just one epoch. This is especialy
advantageous in methods such as feed-back error learning [2]
where online learning is used. In order to achieve such
advantages, the price paid is an O(n®) computational
complexity, where n is the number of weights required by the
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CMAC. Unfortunately, the number of weights required by the
CMAC can be quitelarge for high dimensional problems.

However, it is shown in [4] that by using a
QR-decomposition based RLS algorithm, computation time
can be reduced by half for a univariate CMAC. In this paper
we show that the computation time can be further reduced for
univariate and additionally multivariate CMACs by using an
inverse QR decomposition RLS (IQR-RLS) agorithm,
tailoring it for the CMAC and finally parallelizing it for use on
multi-core CPUs. While the complexity remains O(n®), the
new algorithm is fast enough to solve problems up to two
dimensions at a reasonable speed.

For higher dimensional problems the IQR-RLS agorithm
still falls short in terms of computation as its complexity
remainsO(n?). In [5] the kernel CMAC (KCMAC) trained
with LM Swas proposed. An advantage of the KCMAC isthat
it requires significantly fewer weights without the use of
hashing methods. In the KCMAC at most only n, weights are
needed, where n, is the number of unique quantized training
points presented. In most situations n, is significantly less
than n, and additionally not every training point needs to be
used. Another advantage to the KCMAC is that the full
overlay of basis functions can be implemented without
requiring an unmanageable amount of memory space for the
weights. In [6] it was shown that the multivariate CMAC is
not a universa approximator, and can only reproduce
functions from the additive function set. The work in [5]
showed that the reason for thisis the reduced number of basis
functionsin the multivariate CMAC. When the full overlay of
basis functions is used the CMAC becomes a universal
approximator, with improved modeling capabilities. The full
overlay of basis functions is typically not used as it would
require a huge memory space. However, with the KCMAC
the number of weights needed does not depend on the overlay,
thus allowing the full overlay to be used. In this paper we
show that thekernel RLS (KRLS) [7] algorithm canbeusedin
the CMAC neura network. The proposed CMAC-KRLS
algorithm combines the one epoch convergence and no
learning rate selection advantages of the CMAC-RLS
algorithms, whilst offering a superior computational
complexity, a smaller memory footprint and better modeling
capabilities.

Il. BRIEF INTRODUCTION TO THE CMAC

A. Sandard CMAC

The CMAC can be considered as a mapping
S—»>M—->A—>P. Where S— M is a mapping from an
n,-dimensional input vector y =[y, v, yny]T where
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y.€ U to a quantized vector q=[q, 0,
g, € [J. Quantization is performed by the function

where j is the dimension, q; is the quantized value, r; is the
desired quantization resolution, i, is the origina rea valued
input, and max; and min, are the known bounds of i .

The mapping M — A is a non-linear recoding from
vector q into a higher dimensional binary vector called the
association vector, x =[x, X, x,]” where n is the
number of weights in the CMAC and x, € {0,1}. The number
of weights in the CMAC can be large but the association
vector will only contain m ‘1's, where m is the number of
layersin the CMAC.

In the mapping A — P the association vector is used to
select and add together i values from an array of weights
w=[w w, w,]" where well to form the output.
This can be viewed as an inner product calculation X W.

Learning in the CMAC corresponds to adjusting the value

G, I' where

ij —minj
. (21)
max; —min,

of theweightsin order to produce a correct output for an input.

In the standard CMAC, the LMS algorithm shown in (2.2) is
used for this purpose, where u is the learning rate, d, is the
desired output for training samplet, and x"w,, is the actual
CMAC output.
Whew = Wold +%XT (dt _XTond) (22

In Fig 1 avisualization of atwo input (n, =2) CMAC is
shown with current quantized input q =[4 8]", quantizing
resolution r =13 in both dimensions, and n=64. Here
m=h=4 layers are used, which correspond to the four
weight tables on the right of the figure. We can see that the
input vector dlices through the four layers on both axes. The
diced letters for each layer activate a certain weight in its
corresponding weight table. Each individua weight
corresponds to a hypercube in the input space, which for the
2D CMAC is simply a square. The activated hypercubes for
the problem in Fig 1 is shown as four sguares diagonally
arranged in the input space. Here weights Be, Fg, Jk and No
are activated. If put into activation vector form it will appear

as,
Aa Ba Bc Fg XKoo

x=p(@)=[0 0 00 1 00 1 0-0 1 0-0

No Pp
1 0-0 Q

where ¢ isthe CMAC addressing function which isnot shown
here but can be found in [11]. We can also sparsely store this
vector by simply storing the addresses of the activated
weights,

activatedAddresses=[9 25 41 57] (23

The number of weights required by the CMAC grows
exponentialy with the input dimension and resolution, and
can thus be very large. The number of weightsina CMAC is
given by

n,

-S|

=1

(2.4)
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Fig 1. A two-input CMAC with four layers, diagonal overlay and requiring 64
weights.

where d} dictates how many quantization grid squares layer i

indimension j isdisplaced and h isthelength of a‘full block’.
An example of afull block in Fig 1isletter A which spansthe
maximum h =4 quantization grid squares. The number of
layersmis usually given by m= h, however, asis seen in the
next section thisis not always the case.

1) Overlays

The displacement/arrangement of the layers/hypercubes
plays alargerole in the modeling performance of the CMAC.
The standard Albus CMAC uses a diagonal overlay
arrangement, and thisis used in the CMAC examplein Fig 1,
and is also shown in Fig 2b. In [8] the so called ‘uniform’
arrangement shown in Fig 2a is found which is an overlay
yielding improved modeling performance. With the diagona
and uniform arrangements, the number of layers required is
given by m=h. The parameter his adjusted to control the
amount of local generalization in the CMAC.

Itisnow well known that the multivariate CMAC is not a
universal approximator. To fix this, the full overlay, shownin
Fig 2c, should be used where here the number of layers is
given by m=h". Using the full overlay poses a problem
however, as the number of weights required by the CMAC
increases dramatically as can be seen by (2.4), and often
becomes too large to manage for high dimensional problems.

1. THEINVERSE QR-RLSALGORITHM FOR THE CMAC

QR-decomposition is amethod for decomposing a matrix into
two matrices, one orthogonal and the other upper triangular. It
is useful for solving the linear least sguares problem
recursively [9] in amore numerically stable manner compared
with standard RLS. Usually, using QR methods will degrade
computational performance. However, the work in [4] tailors
the QR-RL S a gorithm specifically for the CMAC resulting in
halving the computation time. Unfortunately, the tailored

1111
a) b) c)

Fig 2. The @) uniform (m = h = 5), b) diagona (m = h = 5) and
¢) full (h =5, m= 25) 2D overlay arrangements.
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algorithm is only suitable for univariate CMACs as the
authors assume the association vector uses a method where
the r ‘1's are contiguous, which cannot be the case for
multivariate CMACs.

If the weight vector is required to be updated after every
training sample presented, as it is required in the CMAC, a
costly matrix back substitution step of O(n?) time complexity
needs to be carried out each time. We can avoid this back
substitution step entiredly by using an inverse QR-RLS
(IQR-RLS) agorithm, which instead allows the weights to be
calculated directly. In Algorithm | we present an IQR-RLS
algorithm that was derived in [10] and uses the Givens
rotation method to perform the QR-decomposition, but has
here been tailored for the CMAC in order to increase
computational speed.

Where a (k), r; (k) and u® (k) are theindividual entries of
a(k), R(k) and u(k) respectively. Note that ¢ is a constant
that is usually set between 10 and 10000. Larger values give
theoretically better results, though it was found that setting o
too large causes floating point inaccuracies. A value of 100
was found to work well.

A. Optimizations

There are three speed improvements that are implemented
in ALGORITHM |. The first improvement involves (3.9). The
activatedAddresses array containsthe array addresses of the i
‘1'sinthe association vector like what is shown in (2.3). This
array is calculated by function ¢’ in (3.6) which is a slight
modification to function ¢. In (3.9) the address where

ALGORITHM |: IQR-RLS ALGORITHM FOR THE CMAC
w(0)=0, x(0) =0,

RT(0)=6, I,,(5>>1), p<0.001 Gy
for k=1,2...n, (3.2
Get new sample: (y,,d,) (3.3
Quantize sample: q = quant(y, ) Oo(n,)) | (3.4
Calculate association vector: x = ¢(q) o(m.) (3.5
activatedAddresses = ¢ (q) ’71(3.6)
a(k)=R" (k-D)x(k) o(m) | (3.7)
u(k)=0, @ k) =1 o) (3.8)
start = activatedAddresses, (k) (3.9

for_i =gtart:n o) (3.10)

givens() (311)

e(k) = d(k)—x" (K)w(k—1) o(m |(3.12)

k
z(k) = Ofn() (L) o1 | (313
w(k) = w(k—1) — z(K)u(k) o(n) | (314
Macro: givens()
if (& (K))) > p) (3.15)
o (k) = \/[a“-l) (k)]2 +82 (k) (3.16)
—a (k
(k) = af})((k)) oW | @1y
o' (k

o9 =215 ((k)) (3.18)

for j =1:i . (319

f; (K) = c(k)r; (k=1 = s(k)uf ™ (k-1)| o(n) | (3.20)

u® (k) = c(k)u{ ™ (k) + s(k)r; (k-1) (3.21)
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thefirst ‘1’ appearsin the association vector is recorded. The
for loop in (3.10) then begins its computation from this
address. This is because thea(K) vector calculated in (3.7)
will be zero up until the address of thefirst ‘1’ inx(k), asR ™"
is lower triangular. If & (K) is zero then s(k) will equal zero,
and c(k) will equal one resulting in no change for r; (k) and
u; (k), rendering any calculation redundant.

The second improvement follows on from this where the
calculation of (3.16) — (3.21) is gated by (3.15), and is thus
only performed if the absol ute value of & (K) isgreater than p
which is set to a small value just above zero. Values of g (k)
are often zero due to the sparseness of the CMAC input which
leaves R sparse, and the sparseness of the association vector.
We set p to be dightly larger than zero because during the
matrix-vector multiplication in (3.7), values are often added
and subtracted to form the sum of zero and due to floating
point inaccuracies the result will not equal exactly zero.
Furthermore, increasing p beyond the floating point
inaccuracy boundary acts to decrease the accuracy of the
solution and increase computation speed. Generally, a value
for p between 0.000001 and 0.001 worked well.

Thirdly, a sparse matrix-vector multiplication can be
performed with (3.7) because x(k) or the association vector is
sparse, and the addresses of the ‘1's are known from the
activatedAddresses array. Thus, only i valuesfor each row of
R need to be added.

It can be seen from (3.10) that computation time will
significantly increase with an increase in the number of
weights required by the CMAC. We can combat this
disadvantage for larger problems by using hash mapping to
specify the number of weightsto use.

B. Results

A two input sinc function was modeled on an Intel i5 CPU
using the CMAC. Fig 4 showsthe computation timesrecorded
for a particular number of weights compared against other
RLS agorithms used in the CMAC. The number of weights
used by the CMAC was controlled by modifying the
quantization resolution used. IQR-RLS was found to be the
fastest of the RLS algorithms. Although it was previously said
that the QR-RL S a gorithm can halve the computation time of
the standard RLS algorithm, we did not implement those
speed enhancements from [4] as they would restrict the
CMAC to a single input only. The QR-RLS algorithm was
then many times slower than standard RLS as is evidenced in
Fig 4.

Compared with the LMS agorithm which requires less
than one microsecond per iteration, RLS algorithms are much
dower. However, many epochs are required for the LMS
algorithm to converge, which is not desirable in online
learning.

IV. PARALLELIZED IQR-RLSALGORITHM

The QR-RLS agorithm is naturally and optimaly
paralelized on asystolic array asisseenin [4]. The IQR-RLS
algorithm from ALGORITHM | can dso be paralelized in the
same manner. A systolic array implementation of IQR-RLSis
shown in Fig 3. In this figure, each circle represents a
processing element that also stores the values of R (R is
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lower triangular). The circles in the left most column
implement (3.16) — (3.21), and all other circular processing
elements implement (3.20) and (3.21). The sguare boxes
calculate the weights using (3.12) — (3.14). Often access to
systolic array hardware is not available, and only PCs are
available. Pardlelization on a PC may be performed by
emulating the systolic array computation structure with
threading. However, this would introduce many threading
overheads, and would potentialy perform poorly. Here a
simpler method is proposed to paraldize the IQR-RLS
algorithm on a PC with amulti-core CPU by using the systolic
array visuaization.

In avisua sense, ALGORITHM | sequentially updates the
ul’ and r, values in the systolic array row by row. It is,
however, equally valid to update theu!” and r, values column

by column instead. If the column by column method is used,
since each column is independent from one another in terms
of other value dependencies (apart fromc and s), it is possible
to update each column simultaneoudly and without memory
sharing bottlenecks. As it is a simple exercise to paralelize
ALGORITHM |, we do not present the algorithm explicitly, but
instead describe how it may be paralelized in two steps
below.

The first step that needs to be performed is sequential in
nature. First, realize that thec and s values are constant across
each row. Thusthe values of ¢ and s must first be sequentially
calculated for each row and stored in an array. The value o'
isalso calculated and stored as a by-product from calculating
cands.

In step two we redlize that we can update u” and r,

column by column. Since each column is independent of one
another, each column can be updated in a separate thread. We
can further optimize by combining computation of shorter
columns together to equalize thread computation times and by
skipping calculations on rows where the a value is below the
threshold p .

Additionally, fine grained parallelism on a modern CPU
can be achieved by using ‘Streaming SIMD Extensions
(SSE). Currently, SSE instructions allow two double precision,
and four single precision multiplications to be performed
simultaneoudly. This is especially useful for the inner loop
calculations (3.20) and (3.21).

A. Results

The algorithm was used to model a two input sinc function
and was run on a 4-core Intel i5 processor. It was found that
paralelization dightly slowed down computation for small
problems due to threading overheads, but decreased

Fig 3. Parallel systolic array implementation of the IQR-RLS algorithm
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computation timesfor larger problems. We can expect for this
algorithm to become automatically faster as processor core
counts increase. A computational time comparison between
the sequential and paralldl versions of IQR-RLS is plotted in
Fig 4. The parallel agorithm implements both threading and
SSE based parallelization.

V. REGULARIZED IQR-RLS

The work in [5, 6, 11, 12] show that the generalization
error of the CMAC can be significant. In [5] a method called
‘regularization’ is presented for the LMS agorithm, which
considerably reduces the generalization error. Regularization
combats a design flaw in the CMAC by forcing activated
weights to be similar, thus preventing certain weights
dominating the contribution to the output calculation. Here we
apply the same regularization concept but instead to the
IQR-RLS agorithm. A partiadl mathematical derivation is
given below based of the derivations found in [10]. First from
[5] we use the least squares cost function £(k) wherek is the
current training sample iteration,

a0 —x"we |

(k)= i 2
) Z:‘ +n Y. {in:)-wj(k)}

jxj (k)=1

Thefirst termin (5.1) is the error between the desired and
actual CMAC output. The second term is the regularization
term which adds to the cost if the activated weights are
different to one another in value. The constant 7 is used to
control the amount of regularization and it was found setting it
to thereciprocal of ¢ generally worked well. In order to easily
minimize (5.1), it must be written in vector-matrix form.
Define vectors w(k), d(k), h(k) and matrices X(k), £(k) as,

(5.1)

T

w(k) =[w (k) w,(K) w, (K], (5.2)
dk)=[d@®) d@ - dK], (53)
h(k)=[GDa®) G2 - GKaK],, (54
XM =[x@) x@ - x®], (55)
(k) =[G G(2) GK]. (5.6)
where, .
q(k){df:’ 1 df:)Ll 57)
G (k) = diag (x(k))]nxn (5.8)

diag (x(k)) creates annx n zero matrix with the entries of
x(k) along the main diagonal. Using (5.2) — (5.8) we can
rewrite the cost function as,

e(k) = |[d(k) - XK w (k)| +7 (k) - Z(k)w (k)| (5.9)

Where|a|| = va"a. Equation (5.9) can be rewritten asasingle
term by defining matrix A (k) and vector y(k) as

X(K) }
(k+nk)xn

JnE(K)

AK) = { (5.10)
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y(k){ 4 } (5.11)
\/ﬁh(k) (k+nk)x1
using (5.10) and (5.11) to rewrite £(k) then gives,

(k) =[y(k) - A(|<)W(|<)||2 (5.12)

Now from [10] we see that since A(K) is(k+nk)xn, there
exists a(k + nk)x (k+nk) orthogonal matrix Q(k) such that,

R(k)}

0
Where R (k) isthenx n upper triangular Cholesky factor, and
0 isan ((k+ nk) —n)xn zero matrix. Similarly,

Q(k)A(k) = [ (5.13)

_|z(k)
Q(K)y(k) = L(k)} (5.14)
Where z(k) is a nx1 vector, and v(k) is a
((k+nk)—n)x1 vector. Since Q(k) is orthogonal,

pre-multiplying each term in (5.12) does not change the value
of the norm,

£(K) = |QUKY(K) - QI AKIW(K)|°
Substitute (5.13) & (5.14) into (5.15) to get the desired form,

)

It can be seen that the normin (5.16) will be minimized if,

R(K)w(K) = (k) (5.17)

(5.15)

200 -RQw(K)

K) =
£(k) v(K)

(5.16)

With (5.17) the weights can be solved for with back
substitution. Now the problem becomes how to update
R(k-1) to R(k) and z(k-1) to z(k). First, consider the
non-regularized solution. In the non-regularized solution,
A(K) and y(K) in (5.12) are replaced with X(k) and d(k).
Now, in [10] it is shown that an (n+21)x(n+1) orthogonal
matrix T(k) exists that will perform the non-regularized
update by updating using the latest entry of X(k) and d(k),
which are x(K) and d (k) respectively,

R(k-1)7 [R(k

T(k){ x(T(k))}:{ o(T )} (5.18)
2(k-1)] [z(k)

T(k)[ 800 }{C(k)} (5.19)

However, with regularization, (5.12) uses A(k) and y(Kk)
which is a composition of two matrices and two vectors
respectively, so we must update with the latest entries of X(k),
d(k) and the latest entries of £(k), h(k) multiplied by \/
which are \/EG(k) and \/EG(k)q(k) respectively. There
must then exist an (2n+1) x (2n+1) matrix T(k) such that,

R(k-1)] [R(k)
T(K)| x" (k) |=| 0" (5.20)
JnGky| |0

and similarly to update z(k —1) to z(K),

24

z(k-1) z(k)
T dk) |=| 5k (5.21)
G (qk)| Lok

Unfortunately, if (5.20) and (5.21) are used, we cannot
proceed with the same derivations found in [10] as the
derivations are suited only to a(n+1)x(n+1) T(k) matrix.
We, however, realize that R(K) and z(k) may be calculated
iteratively if we defineR,, (k) = R(K), z,,(K) = z(K) and write
G (k) and q(k) row by row as,

G =[mK K — g,®] 2
G(K)q(k) =[g,(K)q(k) g, (K)q(k) gn(k)q(k)]T (5.23)
then we first update using x(k) and d(k),

R(k-1] [Ro(K)
= 5.24
Tm{ xT<k>} {OT } o2
z(k=1) | |zo(K)
To(k)|: dk) :|_|:§(k):| (5.25)

secondly, using g, (K) to g, (K) we iteratively update until we
have R, (K),

Ro() ] [Ry(K)
Tl(k){ \/;gl(k)}_{ i } (5.26)
R0 ] [R,(K)
Tn(k){\/;gn(k)}_{ o } (5.27)

and using g, (K)q(k) to g, (k)q(k) we iteratively update until
we havez, (n),

zo(K) zl(k)}

k = 5.28
il ){ﬁgl(k)g(k)} o] ©®
Zp1(K) {zn(k)}

T, (k = 5.29
(){Jﬁgn(k)q(k)} 0n(K) 629

It is now clear that we need not continue with the
derivation, as (5.26) — (5.29) are in the same form as (5.18)
and (5.19). Instead we infer that we can simply perform the
fina IQR-RLS update agorithm given in [10] for x(k) and
d(k) as is done in ALGORITHM | and then perform the
agorithm n more times, but by replacing x(k) with g, (k) to
g, (k) and d(k) with g, (k)q(k) to g, (K)q(k).

In ALGORITHM Il the regularized IQR-RLS algorithm for
the CMAC is presented.

A. Optimizations

Running the IQR-RLS algorithm an extran times would
dow the entire algorithm down significantly. However, an
important observation to make is that only m rows of G (k)
will not be the zero vector. The zero vector rows can be
ignored as they would produce a zero a(k) vector. Thus
instead of running the algorithm an extra n times for
regularization, it need only be run m more times, which is
reflected in the for loop in (5.32).

Another major optimization performed in ALGORITHM 1
is related to (5.33). Here we redlize that we can start loop
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ALGORITHM Il: REGULARIZED IQR-RLS ALGORITHM FOR THE CMAC

First perform one run of ALcoriTHM I, but replace code line
(3.14) with (5.30) instead.

Temp(K) = z(K)u(k) | O(n) | (5.30)
Then while till inside training sample loop (3.2),
n=1/9 (5.31)
forh=1.mr (5.32)
p = activatedAddresses, (k) (5.33)
a(k) =7R"" (K)g, (K) (5.34)
u(k) =0, @ (k) =1 Oo(mn*)| (5.35)
fori=p:n (5.36)
givens() (5.37)
Femp(+ - 7] 2,(Ka(k) i,;(k)w(k 1 Ju(k) (5.39)
™ (k)
w(k) = w(k—1)— Temp(Kk) (5.39)

(5.36) from address p of theh'th ‘1" inthe association vector.
Thisisbecause g, (k) isessentially the association vector with
every entry, other than the p'th entry masked as zero,
therefore every g, (k) value before the p'th address will be
zero making performing the givens macro redundant, as was
explained in section 111.A.

B. Results

It was found that the regularized RLS algorithm is able to
compute the regularized weight vector in one epoch. In Fig 5
we see the output of a non-regularized CMAC on the left,
modeling a sine function with the IQR-RLS agorithm. The
CMAC sampled the sine function every 30 degrees, used a
guantization resolution of 100, and had 10 layers. There is
severe interpolation/generalization error between training
samples. The figure on the right shows the CMAC trained on
the same sine wave, but with regularization turned on. The
CMAC output is now amost a perfect sine wave. The
improvement in total absolute error (TAE) isshownin TABLE
I. The error was aso tested on a 2D sinc plot in which the
CMAC was trained with three times less points than it was
tested with in order to test generalization. With regularization,
training times increase. Fig 4 shows a computation time
comparison for the regularized IQR-RL S agorithm.

TABLE |: TAE OF REGULARIZED AND NON-REGULARIZED CMAC-IQRRLS

Non-Regularized Regularized
1D Sine Plot 51.8 19.5
2D Sinc Plot 400 206

V1. INTRODUCTION TO THE KERNEL CMAC

In a kernel machine, the input vector is non-linearly
transformed into a higher dimensional ‘feature vector’ by a
kernel function. The work in [5] makes the connection that
the CMAC is essentidly akernd machine wheretheM — A
mapping to the association vector is the non-linear transform
to a higher dimension where the kernel used is a binary
b-spline function. Using this knowledge, a common method
used in kernel machines called the ‘kernd trick’ can be
applied where the weights are then evaluated in the ‘kernel
space’ rather than the feature space. Since the dimensionality
of the kernel space is equal to the size of a dictionary (which
stores previoudy admitted feature vectors) where the
maximum size isthe number of unique training data presented
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Fig 4. Computation time per training sample vs. number of weightsin the
CMAC for various RLS implementations. The number of weights was
controlled by altering the quantization resolution.

to the algorithm rather than n, significantly less memory is
required for weight storage. Therefore, the number of weights
used becomes independent of the type of overlay used, soitis
feasible to use the full CMAC overlay. The size of the
dictionary is denoted c, and is what controls computational
complexity.

VIlI. THEKERNEL RLSALGORITHM FOR THECMAC

Although it was shown how the IQR-RLS algorithm can
be used to speed up CMAC-RLS, it is still not fast enough for
use on high dimensiona problems on a PC. Here we use a
kernel-RLS (KRLS) algorithm which alowsthe CMAC-RLS
to be used for higher dimensional problems. The online
sparsifying KRLS agorithm is derived and presented in [7].
The KRLS agorithm will be a better choice than the RLS
algorithm for training the CMAC, as the computational
complexity will be dependent on the number of unique
training data seen, rather than the number of training data
possible. Hence, the full overlay of basis functions can be
used, and computational complexity will no longer be
dependent on the result of (2.4). With sparsification
techniques the number of training data required can be
reduced even further. Here we quote the KRLS agorithm
from [7] with dlight alterations to speciaize it for the CMAC.

ALGORITHM |11 features an online sparsification technique
that sparsifies by preventing feature vectors that are
approximately linearly dependent on the dictionary, X from
being added. The full concept and derivation behind this
sparsification method can be found in [7]. Using this method
the dictionary size can be limited, whilst still making use of
training points not added to the dictionary. In (6.8) the scalar
value ¢ is calculated which is a measure of how linearly
dependent x is on the dictionary X. If & is greater than some
threshold v, x will be added to the dictionary asthis meansthat
it was not approximately linearly dependent on the dictionary.
Otherwise, if the threshold is not met, the update equations
(6.16) — (6.18) (shaded) will be used instead. The elements of
vector a represent a weighting on how linearly dependent a
vector in the dictionary is to the current feature vector. If the
current  feature  vector is dready in  the

\
\/

\/

Fig 5. Non-regularized CMAC outpuit (left) and regularized CMAC output
(right).




International Journal of Machine Learning and Computing, Vol.1, No. 1, April 2011

ALGORITHM IIl: CMAC-KRLS

K*'=[1/m],g=[d,/m], (6.1)
X = gp(quant(y,)), P=[1],c=1

fort=2,3..n, (6.2)
Get new sample: (y,,d,) (6.3)
Quantize sample: q = quant(y, ) O(n,) | (6.4)
Calculate association vector: x = ¢(q) | O(mn,) | (6.5)
k = Xx O(cm) | (6.6)
a=K'k o(c?) | (6.7)
S=m-k'a O(c) | (6.8)
if 6>v (6.9)

X=[X x' ]T oD | (610)
51 0K, +aa’ -a ) 6.11

KW_O{ “ 1} o(c?) | (6.11)

P = [Po.d 0} (6.12)

B - 1 Boa — a(dt KBy ) (6.13)

g dt - kTBoId

c=c+1 (6.14)

ese (6.15)
= Load 6.16

b 1+a'P a ) (6.16)

O(c9)
P. =P, —qa'P, (6.17)
BHGN = l‘)’old +K71q(dt _kTﬁOId ) (618)

dictionary, the entries of vector a will be al zero except for a
single unity entry at the index of the matching dictionary
point.

The sparsification threshold should be set to some
percentage of m. It was found that usualy sefting it to
10%-30% of m worked well.

VIIl. AN OPTIMIZED KRLS ALGORITHM FOR THE CMAC

The CMAC-KRLS agorithm is dtill  fairly
computationally complex, with major bottlenecks at (6.6),
(6.7), (6.11), and (6.16) - (6.18). Fortunately, most of these
bottlenecks can be reduced by some optimizations presented
below. The optimized discarding CMAC-KRLS agorithm is
presented as ALGORITHM V.

A. Generation of the Kernel Vector

If the full overlay isused in ahigh dimensiona CMAC, m
can become extremely large. For example if h=20, and
n, =4, thenm= 20" =160 000. This causes a computational
burden as the caculation of the kernel vector given by [5] is
k =Xx. This reguires cxm comparisons if the first order
b-spline is used as the kernel function (binary CMAC) and x
and X are stored sparsely. Although comparisons are efficient,
if misvery large the computation will still be demanding.

Here another method to calculate the kernel vector for the
first order b-spline kernel is shown which is very efficient for
the full overlay. By redizing that the individual kernel vector
entries, k;, are actually the number of shared hypercubes
between dictionary point Q, (where the dictionary Q stores
guantized input vectors instead of association vectors), and
current quantized input q, we can reduce the number of

ALGORITHM IV: OPTIMIZED DISCARDING CMAC-KRLS
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K™ =[1/m], p =[d,/m], Q = quant(y,), 7.1)
P=[1,098<4<1c=1 '
fort=2,3..n, (7.2)
Get new sample: (y, ,d,) (7.3)
Quantize sample: q = quant(y, ) oMm,) | (7.4)
fori=1:c (7.5)
= |Q| —(]| O(nyc) (7.6)
k, :]‘y[max[h—zj,o] o(n,c) | (7.7)
j=1
if (Q.contains(q)) (7.8)
b = Q.indexof (q) (7.9
__ P oQ)
4= n (7.10)
P,, =27 (P,, —0P,,) (7.11)
lsns/v = pold +K7§q(dt _kTBOId ) O(C) (712)
elseif (IrgjectDict.Contains(q)) o (7.13)
a=Kk o(c®) | (7.14)
d=m-k'a O(c) | (7.15)
if 6>v (7.16)
T
Q=[Q '] o0 | zay)
L4 _ 10Ky, +aa’ -a ,
K., = 5{ i ) } o(c?) | (7.18)
P _ Pold 0 O 1
1| 6Byq _a(dl —k'Byq )
new = o O] 7.20
' 5{ d —K" By ] 9 |
c=c+1 (7.21)
dse (7.22)
. , rejectDict
rejectDict = { J } 0@ (7.23)
NOTE: K}, indicates theb’th column of K™

calculationsrequired to cal culate the kernel vector to n, xc. In
Fig 6 a snapshot of the kernel function generated by equation
(7.7) or equivalently (6.6) is shown for asingle input CMAC
(n,=1) where h=3. In redlity, this function extends
continuously from min to max . Caculating the kernel
function for a higher dimensional CMAC is simple. Simply
multiply each kernel value obtained in each dimension
together. To visualizethisfurther in Fig 7 we seea2D CMAC
full overlay, whereh =3, and thusm=9. We can view this
figure as having the dictionary point Q, at the center, and the
numbers in the surrounding grid squares give the number of
shared hypercubes for nearby possible values of . Equation
(7.7) can be used to calculate number of overlapsk, for a
particular quantized dictionary point Q, and the current
quantized input q. As an example say Q, =[3 4] and
q=[3 2]. In dimension j=1,Q;,=3and q, =3, and in
dimenson two we have Q ,=4 and q,=2 . Thus,
k, =(3-[3-3)x(3-]4-2|)=3x1=3. We can confirm by
using Fig 7 where the center point of thissnapshotis[34]. We
can then look up point [3 2] and seethat it givesk, = 3.
Thereis no need to evaluate the association vector using
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Fig 6: Kernel function where h = 3. Topological view (left) and profile view
(right).
this method, since k is now directly a function of the
guantized input q rather than association vector x.

B. Discarding Sparsification

In any kernel machine used in an online learning
environment, it is important to keep the dictionary size small
so that it will be ableto provide aresponseto input datain real
time. In ALGORITHM |1l a sparsification technique was used
which only added data that was not aready approximately
linearly dependent on the dictionary. However, it still made
use of every training point to adjust the weights, even if it was
not admitted to the dictionary.

In what we will cal the discarding CMAC-KRLS
implementation, data not added to the dictionary is simply
discarded and not made use of. Thus, when performing (6.16)
—(6.18) we seethat thea vector isalwaysall zero except for a
single unity entry at the index where the matching dictionary
entry is stored and thus the P matrix remains diagonal. So if
the dictionary index for input q is known to beb, we only
need to update scalarsq, (which is simply notated asqin
ALGORITHM IV) and P, .. Thus, equations (6.16) to (6.18) can
be simplified significantly as can be seen in equations (7.9) —
(7.12). The disadvantage however is that, in a non-stationary
environment the CMAC may be slower to adapt, or in anoisy
environment the CMAC will be dower to converge as only if
the dictionary points are revisited will the CMAC update. If
the CMAC must be used in a non-stationary or noisy
environment, the non discarding ALGORITHM 111 can be used,
the gparsification threshold can be reduced, or the
semi-discarding algorithm presented next in section C can be
used.

This algorithm can aso be written such that instead of
performing the computationally demanding approximate
linear dependence threshold test every iteration, it only need
be performed if the current input is not a member of the
dictionary aready. Thisis because instead of using the test, a
simple hashtable lookup as seen in (7.8) can be performed to
see if the current quantized input vector is already a member
of the dictionary. A hashtable lookup is a very efficient O(2)
operation. Thethreshold test will still need to be carried out in
the case that the current input is not aready in the dictionary.

Furthermore, if a point has been previously discarded and
thus not added to the dictionary, it will never be added to the

t s[1]2]3]2]1

D 4|2]alel4[2] q
[3 6] 94673
q}224642
B ABAL
23458
Da—==

Fig 7. Kernel vector values for a2D CMAC with Q at the center, and nearby
possible q. Arrows point to example values mentioned in section VIIILA.
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dictionary in the future. This is because as more points are
added to the dictionary, the rejected point can only become
more linearly dependent on the dictionary. This removes the
need to compute the approximate linear dependence test when
seeing previously rejected points and is reflected by equations
(7.13) and (7.23).

C. Semi-Discarding Sparsification

If increased noise performance is required, whilst
retaining some of the good computationa properties of the
discarding method, a semi-discarding method can be used.
With the semi-discarding method, in the update section of
ALGORITHM Il (shaded) every value in the a vector is
forcefully set to zero, except for the largest absolute value,
which isthe most contributing value and indicatesthe value in
the dictionary most like the current input. The update
algorithm is then performed with the masked a vector. This
keeps the P matrix diagona — the reason for fast
computational performance. Modifications to get the
semi-discarding algorithm are shown in ALGORITHM V.

D. Forgetting Factor

A forgetting factor is typicaly used to alow RLS
algorithmsto track better in non-stationary environments. The
forgetting factor 4 has been integrated into the update
equations (7.10) and (7.11) in ALGORITHM IV, and aso in
(7.25) and (7.26) in ALGORITHM V. A forgetting factor of
around 0.98 to 1 isuseful. Smaller values give better tracking
performance, but decreased noise regjection.

E. Additional Computational Optimizations

The kernel vector is a sparse vector, and thus equation
(7.14) can be sped up significantly by performing sparse
vector matrix multiplication. Also, since the P matrix remains
diagonal in the discarding and semi-discarding algorithms, it
can be stored asavector. Thusexpanding P in (7.19) becomes
an O(1) operation.

IX. HIGHER ORDER BASIS FUNCTIONS FOR THE
CMAC-KRLS

The standard CMAC, and also the CMAC-KRLS shown
so far uses a quantized binary kernel function. This
unfortunately produces a staircase like output. This can be
resolved by making the CMAC resolution as high as possible.
In the standard CMAC there is a trade-off as increasing the
resolution causes an increase in the number of weights
required. However, in the CMAC-KRLS increasing
resolution has no adverse affects as the number of weights
required does not increase. Only the generalization parameter

ALGORITHM V: SEMI-DISCARDING CMAC-KRLS

Same as ALGORITHM |V but,

Replace (7.13) with an else statement

Replace (7.23) with four new lines:

b = aindex(max|a| ) o(c) | (7.29)

g=—e oWn |(7.25
/1+(Pb'baf)) O | 729

P, = ™ (Pb,b —-qP,,a, ) 0@ (7.26)

Brev = Bod +K:|§Q(dt —k By ) O(c) | (7.27)
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h needs to be made larger to compensate, if the resolution
doubles, the generalization parameter needs to double too.
When increasing the resolution, in the limit, the kernel
function becomestriangular in shape asisseen in Fig 8, rather
than staircase like, as was shown in Fig 6. We can obtain this
kernel function either by increasing the resolution to a very
large value or directly by simply by removing the floor
operation from (2.2) and storing the non-floored valuesin the
dictionary. In the latter case only the ratio between the
resolution and generalization parameter h becomes important
in tuning the generalization of the CMAC.

We can further improve the modeling of the

CMAC-KRLS by using ab-spline curve asthe kernel function.

Thisis easily performed by using the equation found in [13]

ki=ﬂ[%"z”(””j(—1>¢(5x+”7”—¢):] ®1)

j=1 p=1 ¢
where
xd:{xd’ if X?O ©2)
0, otherwise
and where the order n for the b-splineis given by
n=20+1 (8.3)

where o is the chosen spline order and where o isthe dilation
constant which is used to control the width of the spline. The
dilation constant plays the same role as mwhen used in the
CMAC. A profile example of ab-spline kernel function where
o=1lisshowninFig9.

X. CMAC-KRLSRESULTS

In the following experiments each CMAC used a
resolution of r =100 for each dimension, and a local
generalization parameter of h =10. The experiments were run
on an Intel i5 4-core CPU. The algorithm was written in C#
and pardlelization was applied where possible. The
algorithms were tested on a two input sinc function, and
various results are discussed below.

Algorithms that rely on the kernel trick use as many
weights as there are unique training points added to the
dictionary. This number can be controlled if sparsification
methods are used. In Fig 10 the number of weights used to
learn the 2D sinc function for any sparsifying CMAC-KRLS
algorithm is plotted against different sparsification thresholds.
A total of 1681 unique training points were presented
sequentially. The number of weights used by a
CMAC-IQR-RLS dgorithm is aso plotted for diagona and
uniform overlayswhich aresimilar. Thefull overlay cannot be
used in CMAC-IQR-RLS as it would require 11,881 weights
which is not computationally feasible. Also note that if the
problem was a higher dimensiona problem, the number of
weights required for CMAC-IQR-RLS would be much

Fig 8. Linear kernel function whereh = 3. Topological view (left) and profile
view (right).

Fig 9: B-Spline Kernel Function whereo =1

larger even with only the diagonal or uniform overlays.

In Fig 11 the average time per iteration taken over ten
epochs for each CMAC-KRLS algorithm with full overlay to
complete learning of a single training point is plotted for
various sparsification thresholds which are recorded as a
percentage of m between O and 90%. Take note of the
logarithmic scale. Fig 11 shows that the two discarding
algorithms perform the fastest. This is because after the first
epoch al the dictionary points have been added, thus the
discarding algorithms use their very efficient update algorithm
in subsequent epochs bringing the average down. The
non-discarding algorithm is the slowest due to its more
complex update eguations. For comparison, the
CMAC-I1QR-RLS agorithmisshown for the same problem. It
should be noted that although the CMAC-IQR-RL S algorithm
is competitive with the non-discarding algorithm here, in a
higher dimensional problem its use would be infeasible
whereas the CMAC-KRLS would perform at a similar speed
no matter the dimension given the same number of unique
training data.

The total absolute error for modeling a noise free two
input sinc function was measured for esch CMAC-KRLS
variant with full overlay and recorded in Fig 12. Note that it
was found that the non-discarding and semi-discarding
algorithms required additional epochsto fully converge when
trained sequentially, and thus the algorithm was run for ten
epochs before measuring the error. The discarding and
non-discarding CMAC-KRLS algorithms were similar in
performance up till a sparsification threshold of 0.5. The
semi-discarding algorithm was only dlightly higher in error
than the non-discarding algorithm. For comparison the errors
from the CMAC-IQR-RLS agorithm with the diagonal and
uniform overlays are shown. In Fig 13 a comparison between
the discarding, semi-discarding and non-discarding
CMAC-KRLS for noisy data and random training points
training under a sparsification threshold of 0.2 is shown. The
non-discarding CMAC-KRL S performs significantly better as
the number of training dataincreases dueto its ability to make
use of every data point. The discarding CMAC-KRLS only
makes use of training points already in the dictionary, so it has
less ability to average over time. The semi-discarding
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Fig 10. Number of weights used for any 2D CMAC-KRLSfor different
sparsification thresholds compared against the 2D CMAC-IQR-RLS.
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Fig 11. Average time taken per iteration over ten training epochs.

algorithm has improved performance over the discarding
algorithm due to its ability to make some use of the discarded
data.

In Table Il the tota absolute error (TAE) results of the
different basis functions are shown. The sine wave was
sampled every 30 degrees, while the sinc wave was sampled
with three times less points that it was tested with. The
generalization parameter was varied to get the lowest TAE.
Thebinary basisfunction used aresolution of 100. The results
show that the b-spline produces better results than the linear
and binary basis functions. The results for the spline basis
function are better as its smoothness better approximates the
smooth curves of the sine and sinc waves. It was found that
using these higher order basis functions introduces almost no
noticeable increase in computation time.

XI. CONCLUSIONS

In this paper two methods for incorporating RLS into the
CMAC neural network were shown. Thefirst method used the
IQR-RLS agorithm to simplify and parallelize computation
resulting in much faster computation times. Additionaly, the
IQR-RLS agorithmwas ableto be easily regularized resulting
in greatly improved CMAC generalization, but at the expense
of computation time. Although IQR-RLS was shown to be
much faster than standard CMAC-RLS it was still not fast
enough for CMACs with greater than two inputs. In order to
overcome this problem the KRLS algorithm was introduced
which transformed the computational complexity to become
dependent on the number of training data, rather than the
number of weights required by the CMAC. The results show
that the CMAC-KRLS is dgnificantly faster than other
CMAC-RLS dgorithms, and can in fact model better asit can
use the full overlay of basis functions. Additionaly, it was
shown that higher order basis functions can easily be

TABLE II: TAE OF HIGHER ORDER BASIS FUNCTIONS

Binary Linear Splineo=1
1D Sine Wave 16.3 10.51 3.97
2D Sinc Wave 277 257 127
a0 T — iscarding CMAC-KRLS
450 - = we wlon-Discarding CMAC-KRLS
00 e Semi-Discarding CMAC-KRLS

wemes CMACIQRRLS-DIAG
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Fig 12. Total absolute error for different sparsification thresholds

800 T - we wTon-Discarding UMAC-KRLS
)5 car ding CMAC-KRLS
= 700
[} »wwwe Semi-Discarding CMAC-KRLS
=
S 600 -
500 - “ ‘e,
§ “ -'-;.--.-
T w0 ~ Teere,
; \‘--‘ '!.-.o---,..‘.
- ‘---ﬁ
00 - -,
00 } ¢ +
o S000 10000 15000
Number of Tralning Data

Fig 13. Comparison with noisy random data between each CMAC-KRLS
under a sparsification threshold of 0.2.

implemented into the CMAC-KRLS with little to no increase
in computational complexity. However, dthough the
CMAC-KRLS isfaster than the CMAC-IQR-RLS, IQR-RLS
has an implementation that is highly suitable to parallel
hardware, and may be a better choice for hardware
implementation, or highly paralel CPUs.

XIl. FUTURE WORK

Currently there is no regularization method for the
CMAC-KRLS, however, this research is currently being
undertaken. Additionally, other improvements suchas CMAC
digibility [11] will be implemented into the CMAC-KRLS to
achieve improved performance in motion control learning
situations. Also, more investigation needs to be undertaken to
learn more about the error the semi-discarding method
introduces.
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