
 
 

 

  
Abstract—Artificial immune system (AIS) is one of the 

metaheuristics used for solving combinatorial optimization 
problems. In AIS, clonal selection algorithm (CSA) has good 
global searching capability. However, the CSA convergence and 
accuracy can be improved further because the hypermutation 
in CSA itself cannot always guarantee a better solution. 
Alternatively, Genetic Algorithms (GAs) and Particle Swarm 
Optimization (PSO) have been used efficiently in solving 
complex optimization problems, but they have a tendency to 
converge prematurely. In this study, the CSA is modified using 
the best solutions for each exposure (iteration) namely Single 
Best Remainder (SBR) - CSA. The results show that the 
proposed algorithm is able to improve the conventional CSA in 
terms of accuracy and stability for single and multi objective 
functions. 
 

Index Terms— clonal selection, antibody, antigen, affinity 
maturation, mutation.  
 

I. INTRODUCTION 
Optimization problem has been a challenge to many 

researchers in order to find the best local searching method. 
This problem also leads to a branch of knowledge which is 
the evolutionary computing and is greatly influenced by 
nature. Few decades ago, many methods have been 
developed, for instance, GA, PSO, Ant Colony or Artificial 
Immune System (AIS). In this study, the improved CSA is 
evaluated in comparison to conventional CSA and other 
evolutionary algorithms such as PSO and GA. These 
algorithms are described in the following paragraphs.  

PSO was originally proposed by Kennedy and Eberhart [1] 
and is inspired from social behavior of individual organisms 
living together in groups [2]. Each individual in a group 
imitates other groups that are better, in order to improve its 
own group.  

GA is inspired from a set of chromosome where each 
chromosome represents an individual solution (genes). The 
GA uses a search technique where genes in the population are 
improved across generation through a set of operation. 
During each generation, the genes go through the process of 
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selection, cross-over and mutation [3].  
AIS is greatly reinforced by the immune system of a living 

organism such as human and animal. In humans, the immune 
system is responsible in maintaining stability of the 
physiological system such as protection from pathogens. In 
AIS, CSA is able to improve global searching ability as it 
uses the principle of clonal expansion and affinity maturation 
as the main forces of the evolutionary process [4]. 

Two algorithms based on CSA are proposed in this work to 
improve the performance of diversity and convergence over 
the standard CSA, that are responsible in finding the global 
solution of single objective function. They are half best 
insertion (HBI) CSA and single best remainder (SBR) CSA. 
Similar to CSA, the ease of implementation is sustained in the 
proposed algorithms. 

 

II. PSO, GA AND AIS ALGORITHM 

A. Particle Swarm Optimization 
The PSO algorithm starts with a group of random particles 

that searches for optimum value for each updated generation. 
The ith particle is denoted as Xi = (xi1 , xi2 , xi3, ..., xin). During 
generation updating, each particle is updated by ensuing two 
best values. These values are the best solution (mbest) and the 
global best value (gbest) that has been obtained by particles 
in the population at particular generation. With the inclusion 
and inertia factor ω, the velocity equations are shown in Eqs. 
(1) and (2). 

  
1 1 2() ( ) () ( )i i i i i iv v rnd mbest x rnd gbest xω α α+ = + ⋅ ⋅ − + ⋅ ⋅ −    (1) 

1i i ix x v+ = +                                                                             (2) 
 
Where rnd() is a random number between 0 and 1, α1 and 

α2 are learning factors to control the knowledge and the 
neighbourhood of each individual respectively. The PSO 
algorithm is described in the following steps. 

 
Step Process 

1 
Generate initial random particle swarms assigned with its random    
position and velocity   

2 Compute the fittest value of  N particles  according to fitness function 

3 Update values of the best position of each particle and the swarm 

4 
Update the position and velocity for each particle according to 
equation  
1 and 2. 

5 Repeat steps 3 and 4 until pre-defined stopping condition is achieved
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B. Genetic Algorithm  
As described earlier, GA uses three main processes i.e. 

selection, crossover and mutation to improve genes through 
each generation. The selection process uses the objective 
function to assess the quality of the solution. Then, the fittest 
solutions from each generation are kept. Subsequently, the 
function of crossover generates new solutions given a set of 
selected members of the current population. In the crossover 
process, genetic material between two single chromosome 
parents is exchanged. Then, mutation triggers sudden change 
in the chromosomes unexpectedly. However, the mutation 
process is expected to avoid genes from trapping in local 
minima by adding random variables. The GA algorithm is 
described in the following.  

 
Step Process 

1 Generate initial random population of individuals  

2 
Compute the fittest value of each individual in the current  
population  

3 Select individuals for reproduction 

4 Apply crossover and mutation operators 

5 Compute the fittest value of each individual 

6 Select the best individuals to generate new population 

7 
Repeat steps 3 to 6 until pre-defined stopping condition is 
achieved 

 

C. Artificial Immune System  
In AIS, CSA was inspired from the biological immune 

system, where antibodies (Abs) that are able to recognize 
antigens (Ags) are selected to proliferate. The selected Abs 
then enters the affinity maturation process. The algorithm 
was verified to be able to solve complex problem such as 
multi-modal and combinatorial optimization [5].  

 
Figure 1.  Clonal Selection Principle (de Castro & Von Zuben, 2001a) 

The clonal selection theory describes how Ab detects the 
Ag and proliferates by cloning. As shown in Fig. 1, the 
immune cells will reproduce against the Ags. The new cloned 
cells are then differentiated into plasma cells and memory 
cells. The plasma cells produce Abs and go through mutation 
process to promote genetic variation. The memory cells are 
responsible for future Ags invasion. Finally, the selection 
mechanism keeps the Abs with the best affinity to the Ags in 

the next population [4]. The CSA pseudocode is described in 
the following.  

 
Step Process 

1 Generate an initial random population of antibodies, Abs  

2 Compute the fittest value of each Ab according to fitness function 

3 Generate clones by clonning all cells in the Ab population 

4 Mutate the clone population to produce a mature clone population

5 Evaluate the affinitiy value for each clone population 

6 Select the best Ab to compose the new Ab population 

7 
Repeat steps 2 to 6 until a pre-defined stopping condition is 
achieved 

 

D. Artificial Immune System and Particle Swarm 
Optimization Hybrid  
AIS have the advantage to prevent the population from 

being trapped into local optimum. Besides, PSO has the 
ability to improve itself but tend to converge prematurely [6]. 
Therefore, the combination between AIS and PSO (AIS-PSO) 
is expected to improve the global search ability and avoid 
being trapped in local minima even though the population 
size is relatively small [7]. Hence, The AIS-PSO pseudocode 
is described in the following steps. 

 
Step Process 

1 
Select the best particles from PSO to be half of AIS initial  
population, N1 

2 Generate randomly other half of initial population of Abs, N2  

3 Combine N1 and N2  and compute fittest values of each Ab  

4 Generate clones by cloning all cells in Ab  population 

5 Mutate the clone population to produce a mature clone population 

6 Evaluate the affinity value for each clone in the population 

7 Select the best Ab to compose the new Ab population 

8 Repeat steps 4 to 7 until pre-defined stopping condition is achieved

 

E. Half Best Insertion Artificial Immune System 
In AIS, clonal selection adapt B-cells (and T-cells) to kill 

the invader through affinity maturation by hypermutation. 
However, the adaptation requires B-cells to be cloned many 
times [8, 9], and the hypermutation process cannot always 
guarantee that the next generation will provide better solution. 
The stochastic factor (randomization) at times can even 
produce worse result from previous solution. Therefore, N 
number of the best Abs from the previous generation can be 
combined with the initial random Abs of the next generation 
to compose a new population for that next generation. This 
method known as Half Best Insertion (HBI) is expected to 
improve the convergence of the CSA algorithm. In HBI, half 
of the best antibodies from the previous generation are used 
in the next. 

 
The N number of best Abs can be summarized as 

α ≤ Absbest / 2                 (3) 

where α number of best Abs. 
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Then, the new antibody population Ab’ is 

Ab' Ab  SA= U              (5) 

The HBI algorithm is described in the following steps. 
 

Step Process 

1 Generate an initial random population of antibodies, Abs 

2 Compute the fittest value of each Ab according to fitness function  

3 Generate clones by cloning all cells in the Ab population 

4 Mutate the clone population to produce a mature clone population 

5 Evaluate the affinity value for each clone in the population and select   N 
number of best Abs, α 

6 Generate next generation of initial random Abs and include α 

7 Repeat steps 2 to 6 until pre-defined stopping condition is achieved 

 

F. Figures 
Hypermutation of good Abs in HBI algorithm would tend 

to produce bad solution. Thus, the Single Best Remainder 
(SBR) algorithm tries to avoid hypermutation process on the 
selected good Abs that produce worse solution due to 
stochastic factor. Therefore, the best Abs from previous 
generation is kept in global memory as single best antibody 
which is not affected by the next affinity maturation and 
hypermutation processes. The global single best antibody 
will be updated through generation and used in the next 
generation if the hypermutation result converges prematurely 
in the search space. Therefore, SBR is proposed in order to 
improve the convergence and accuracy of the CSA 
algorithm.  

In SBR, the best antibody obtained for the clonal selection 
process is recorded as global solution, Am. During each 
generation process, the randomize antibodies, Ar, is replaced 
by the best solution. The clone cell result after maturation, Fm, 
is evaluated based on the test function. Then, Fm is compared 
with the result of randomize antibodies (Ar) after the test 
function based evaluation, Fm. If Fm is larger or equal to Ft, 
the clone cell, Cbp, is replaced by Ar. Otherwise, the Cbp is 
maintained. 

 
Cbp = Ar, if Fm ≥ Ft             (6) 
where Ft = testFunction (Ar) 
and    Fm = testFunction (Cbp) 
 

The SBR algorithm is described in the following steps. 
 

Step Process 

1 Generate an initial random population of Abs 

2 Compute the fittest value of each Ab according to fitness function  

3 Generate clones by cloning all cells in the Ab population 

4 Mutate the clone population to produce a mature clone population 

5 Evaluate the affinity value for each clone in the population  

6 Select best Ab, Am, in 5 as global memory and repeat steps 1 to 5 

7 Repeat steps 1 to 5 and compare the best Ab obtained with  Am 

8 The best Ab from 7 is updated as the global memory, Am 

9 Repeat steps 1 to 9 until pre-defined stopping condition is achieved 

 
All methods described above are evaluated using nine 

mathematical test functions. The termination criteria for all 
methods will be met if minimum error value is achieved or 
maximum number of evaluation allowed is exceeded. 

III. EXPERIMENTS ON TEST FUNCTION 
The computing platform used for the experiment is AMD 

Phenom 9600B Quad-Core CPU running at 2.30 GHz, 2GB 
of RAM and Windows Vista Enterprise operating system. 
Each algorithm is evaluated based on 500 iterations, 10 
dimensions and the mean of best fitness is obtained after 10 
runs. The minimum error is set as 1e-25, while the population 
size P0 is set to 20. 

In the HBI, antibodies and memory size of 50% are 
maintained. At first iteration, CSA is used to obtain the first 
solution. Then, for the next iteration, half of the population is 
composed of the half best antibodies after hypermutation and 
the other half is given by randomized Abs. The new 
population then goes through the affinity maturation process 
similar to CSA. 

Then, in SBR, similar to HBI, CSA is used to obtain the 
first solution. Then, for the next iteration, the best antibody, 
Am, is kept as global memory. This Am will never go through 
affinity maturation process, but will be assigned as a 
reference (memory) in case the hypermutation process 
produces worse solution.  

The nine benchmark functions (objective functions) are 
described as follows. 

 
1. Rastrigin’s Function:  

Rastrigin’s function is mathematically defined as follows. 

( )( )2

1
1

( ) 10 cos 2 10
n

i i
i

f x x xπ
=

= − +∑         (7) 

where  5.12 5.12ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
2. De Jong’s Function: 

De Jong’s function is mathematically defined as follows. 

2

2
1

( )
n

i
i

f x x
=

=∑                  (8) 

where  5.12 5.12ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
3. Axis Parallel Hyper-ellipsoid Function: 

Axis parallel hyper-ellipsoid function is mathematically 
defined as follows. 
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where  5.12 5.12ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
4. Rosenbrock’s Function: 

Rosenbrock’s function is mathematically defined as follows. 

( ) ( )
1

4
1

2 22
1( ) 100 1

n

i
i i if x x x x

−

=
+= − + −∑        (10) 

where  2.048 2.048ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
5. Sum of Different Power Function: 

Sum of different power function is mathematically defined as 
follows. 

( )
5

1

1
( )

n

i

i
if x x

=

+
=∑                (11) 

where  1 1ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
6. Rotated Hyper-ellipsoid Function: 

Rotated hyper-ellipsoid function is mathematically defined as 
follows. 

6
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1
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i

j
j

f x x
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=
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∑ ∑              (12) 

where  65.536 65.536ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
7. Moved Axis Parallel Hyper-ellipsoid Function: 

Moved axis parallel hyper-ellipsoid function is 
mathematically defined as follows. 

2

7
1

( ) 5
n

i
i

f x i x
=

=∑                  (13) 

where  5.12 5.12ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
8. Griewangk Function: 

Griewangk’s function is mathematically defined as follows. 
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where  600 600ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its function 
value is zero. 

 
9. Ackley Function: 

Ackley’s function is mathematically defined as follows. 
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where  32.768 32.768ix− ≤ ≤ ,  i = 1. . . , n 
and global minimum is located at the origin and its 

function value is zero. 

IV. RESULT AND DISCUSSION 
The results for the test functions are shown in Fig. 2 to 10 

and Table I. For Rastrigin’s function, Fig. 2 shows that the 
PSO suffers from premature convergence while PSO-AIS is 
less accurate in giving the fitness value. On the other hand, 
SBR gives the best fitness value followed by HBI, CSA and 
GA. 
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Figure 2.  Algorithms evaluation on Rastrigin’s function 

However, for Dejong’s function in Fig. 3, the GA fitness 
value is very close to CSA. The PSO converges rapidly up to 
50 generations but perform no significant improvement 
beyond this which is also similar to Rastrigin’s function. In 
contrast, GA converges very slow but seems to be able to 
perform even after 500 generations since there is no breaking 
point after that. The SBR achieved the best performance and 
is comparable to PSO-AIS and CSA. 
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Figure 3.  Algorithms evaluation on Dejong’s function 

The Axis Parallel Hyper-ellipsoid function in Fig. 4 shows 
that the CSA achieved the best fitness value which is 
comparable to SBR and PSO-AIS. In contrast, there is no 
significant improvement in PSO after 50 generations.  
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Figure 5 shows that PSO and GA perform badly among all 
algorithms. In contrast to Rastrigin’s, Dejong’s and Axis 
Parallel Hyper Ellipsoid, the PSO-AIS outperformed other 
algorithms. However, the fitness value of CSA and SBR are 
comparable. 

Fig. 6 shows similarities to Fig. 3 and Fig. 4. The fitness 
value of CSA, SBR and PSO-AIS are comparable. 
Alternatively, PSO shows the worst performance with a bad 
fitness value.  
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Figure 4.  Algorithms evaluation on Axis Parallel Hyper-ellipsoid function 
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Figure 5.  Algorithms evaluation on Rosenbruck function 
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Figure 6.  Algorithms evaluation on Sum Differential Power function 

The Rotated Hyper-ellipsoid function in Fig. 7 is similar in 
result to the Sum of Differential Power function. However, SBR 
is slightly better in performance than CSA and PSO-AIS.  
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Figure 7.  Algorithms evaluation on Rotated Hyper-ellipsoid function 

The Moved Axis Parallel Hyper-ellipsoid in Fig. 8 show 
similarities to Rotated Hyper-ellipsoid Function. The 
performance of SBR is also slightly better than CSA, followed 
by PSO-AIS.  
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Figure 8.  Algorithms evaluation on Moved Axis Parallel                      
Hyper-ellipsoid function 

The results of Griewangk’s function in Fig. 9 show 
similarities to the Moved Axis Parallel Hyper-ellipsoid result. 
Here, the CSA is slightly better than SBR and PSO-AIS.  

The Ackley’s function in Fig. 10 shows that the GA 
performance outperformed other algorithms followed by CSA 
and HBI. The SBR seems to suffer from premature convergence. 
In contrast to previous results, the SBR is worse than HBI. 
However, the PSO-AIS have the worse performance and this is 
followed by PSO. Both of the algorithms have no significant 
improvement after 100 generations. 
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Figure 9.  Algorithms evaluation on Griewangk function 

Table I shows the mean and standard deviation value for nine 
test functions used to evaluate the algorithms performance. SBR 
method outperformed other algorithms for test function number 
1, 2, 6 and 7. The CSA is the best for test function number 6, 8 
and 11. The PSO-AIS achieved the best test function for number 
7 while GA performed the best for test function number 9.  

 

0 50 100 150 200 250 300 350 400 450 500
10-2

10-1

100

10
1

Number of evaluations

B
es

t F
itn

es
s 

(a
ve

ra
ge

)

Best value : 0.0173093
GA

 

 

 

Figure 10.  Algorithms evaluation on Ackley function 

The most deemed stable algorithms are given by SBR, CSA 
and PSO-AIS, most probably due to the very small standard 
deviation value in between 1e-7 and 1e-6 for most of the test 
functions. The PSO performed badly since most of the standard 
deviation value is large. 

 

TABLE I. MEAN AND STANDARD DEVIATION FOR EACH OF THE ALGORITHM BASED ON THE GIVEN TRANSFER FUNCTION 

Function 
SBR HBI CSA PSO PSO-AIS GA 
Mean  Std Mean  Std Mean  Std Mean  Std Mean  Std Mean  Std 

Eq. 7 1.00609 1.15581 1.61916 0.83718 2.10917 1.51617 12.1057 5.61802 4.8883 1.09404 2.1186 1.18767 

Eq. 8 5.6E-07 3.3E-07 0.00014 3.7E-05 6.1E-07 4.8E-07 0.11565 0.07709 8.2E-07 6.3E-07 0.00019 0.00014 

Eq. 9 7.6E-07 7.2E-07 0.00016 3E-05 5.9E-07 3.9E-07 0.12653 0.0811 6.9E-07 4.6E-07 0.00015 7.1E-05 

Eq. 10 4.21392 0.71981 4.58547 1.8584 4.48752 1.38984 11.414 3.75693 2.29104 1.304 6.05602 2.18913 

Eq. 11 5.6E-07 4.5E-07 0.00013 2.7E-05 4.6E-07 1.5E-07 0.13601 0.08611 7.4E-07 5.4E-07 0.00017 6.6E-05 

Eq. 12 1.6E-05 6.3E-06 0.00333 0.00062 1.8E-05 1.3E-05 1.7223 2.46831 3E-05 3.3E-05 0.00293 0.00165 

Eq. 13 1E-04 0.00012 0.00355 0.00118 0.00011 0.00011 1.9966 1.08895 0.00017 0.00033 0.00239 0.00075 

Eq. 14 2.2E-07 2.4E-07 2E-05 7E-06 2E-07 1.3E-07 0.0194 0.02263 2.6E-07 2.1E-07 2.2E-05 1.6E-05 

Eq. 15 0.40134 0.64744 0.35728 0.55102 0.12283 0.36299 1.33007 0.8346 1.47366 0.85525 0.01731 0.00304 
 

V. CONCLUSION 
In this paper, we proposed two memory-based clonal 

selection AIS strategy using the local memory. They are 
known as SBR and HBI. While PSO is fast in obtaining the 
fitness value, it suffers from premature convergence. 
Alternatively, GA converges slowly to achieve the best 
fitness value. The preliminary simulation work clearly 
showed that the best result is given by SBR. More work 
would be done in tweaking certain parameters in SBR such as 
the memory allocation factor, best memory selection criteria 
or the number of best memory to be taken into consideration, 
in order to improve the performance of the algorithm. 
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