Abstract—With the development of e-commerce, credit card
fraud is also increasing. At the same time, the way of credit card
fraud is also constantly innovating. Support Vector Machine,
Logical Regression, Random Forest, Naive Bayes and other
algorithms are often used in credit card fraud identification.
However, the current fraud detection technology is not accurate,
and may cause significant economic losses to cardholders and
banks. This paper will introduce an innovative method to
optimize the support vector machine by cuckoo search
algorithm to improve its ability of identifying credit card fraud.
Cuckoo search algorithm improves classification performance
by optimizing the parameters of support vector machine kernel
function (C, g). The results demonstrate that CS-SVM is
superior to SVM in Accuracy, Precision, Recall, F1-score, AUC,
and superior to Logistic. Regression, Random Forest, Decision
Tree, Naive Bayes, whose accuracy is 98%.
Index Terms—Credit card fraud, fraud detection technique,
SVM, CS.
Chenglong Li and Yiming zhai were with the School of Criminal
Investigation and Forensic Science, People's Public Security University of
China, China (e-mail: chenglong_li666@163.com,
yiming_zhai@126.com).
Ning Ding is with the School of Criminal Investigation and Forensic
Science, People's Public Security University of China, China
(Corresponding author; e-mail: dingning_thu@126.com).
Haoyun Dong was with the School of Law and Criminology, People's
Public Security University of China, China (e-mail: 541054114@ qq.com).
Cite: Chenglong Li, Ning Ding, Haoyun Dong, and Yiming Zhai, "Application of Credit Card Fraud Detection Based on CS-SVM," International Journal of Machine Learning and Computing vol. 11, no. 1, pp. 34-39, 2021.
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).