
  

  

Abstract—Despite many successful efforts have been made in 

one-shot/few-shot learning tasks recently, learning from few 

data remains one of the toughest areas in machine learning. 

Regarding traditional machine learning methods, the more data 

gathered, the more accurate the intelligent system could 

perform. Hence for this kind of tasks, there must be different 

approaches to guarantee systems could learn even with only one 

sample per class but provide the most accurate results. Existing 

solutions are ranged from Bayesian approaches to 

meta-learning approaches. With the advances in Deep learning 

field, meta-learning methods with deep networks could be 

better such as recurrent networks with enhanced external 

memory (Neural Turing Machines - NTM), metric learning 

with Matching Network framework, etc. In our research, we 

propose a metric learning method for few-shot learning tasks by 

taking advantage of NTMs and Matching Network to improve 

few-shot learning task’s learning accuracy on both Omniglot 

dataset and Mini-Imagenet dataset. In addition, a weighted 

prototype is also introduced to improve the overall performance 

of the proposed model, especially on the complicated 

benchmark datasets such as mini-ImageNet.   

 
Index Terms—Few shot learning, matching network, 

memory augmented neural network, prototypical network.  

 

I. INTRODUCTION 

Importance of Artificial Intelligent (AI) in human life has 

been proven. Thanks to the rapid advancement of AI, many 

sectors have started using AI technology to reduce human 

efforts. People gain benefit from them in many areas, from 

virtual assistants to the space industry. Deep learning, which 

is a subfield of machine learning, is one of the most powerful 

and fastest-growing applications of AI. For an image 

classification problem, deep learning methods overcome the 

traditional machine learning methods. It is gaining much 

popularity because of its supremacy in terms of accuracy of 

complicated problems, i.e., Deep Convolutional Neural 

Networks (ConvNets).  

Deep learning occurs through the use of neural networks, 

which are layered to recognize patterns and complex 

relationships in images, and run through lots of iterations of 

stochastic gradient descent and gradually refine the weights 

of the network. However, the state-of-the-art deep learning 

models usually require large dataset with numerous samples 

such as ImageNet, CIFAR10, and mighty computational 

power to implement. This capability is one of the most 

significant limitations of using deep learning in image 

recognition applications. Thus, deep networks are often 
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broken down when they have to learn a new concept on the 

fly or to deal with the problems which information/data is 

insufficient (few or even a single example). These situations 

are very common in the computer vision field, such as 

detecting a new object with only a few available captured 

images. For those purposes, specialists define the 

one-shot/few-shot learning algorithms that could solve a task 

with only one or few known samples (e.g., less than 20 

examples per category).  

One-shot learning/few-shot learning is a challenging 

domain for neural networks since gradient-based learning is 

often too slow to quickly cope with never-before-seen classes, 

and they are evaluated as one of the hardest challenges of AI. 

Recently, some researches have been proposed and bring 

very well results. For examples, the works based on the 

Bayesian approach, such as the works of L. Fei-Fei et al. [1], 

or Hierarchical Nonparametric Bayesian Model by R. 

Salakhutdinov et al. [2], or meta-learning approach with 

Memory Augmented Neural Network introduced by A. 

Santoro et al. [3], Model-Agnostic Meta-Learning (MAML) 

by C.Finn et al. [4], or Metric learning such as Siamese 

Neural Network by G.Koch et al. [5], Matching Network 

(MNet) for one-shot learning by O. Vinyals et al. [6], or 

Prototypical Network by Snell et al. [7]. 

Regarding meta-learning approaches, the Memory 

Augmented Neural Network approach uses the Neural Turing 

Machine (NTM) as recurrent models to achieve one-shot 

learning tasks. Matching Network and Siamese Neural 

Network are metric learning methods that consider a distance 

between training samples, or support samples, and a test 

sample.  

In this paper, the Memory Augmented Matching Network, 

which is based on the Matching Network framework and 

Memory Augmented Neural Network, is introduced. This 

model is a combination of the Matching Network and the 

Memory Augmented Neural Network for one-shot learning 

problems and evaluated on the Mini-ImageNet and the 

Omniglot dataset. We also improve the overall performance 

of this model by taking advantage of a prototypical class, in 

which each class is represented by only one mean sample. 

The main contribution of this work is to successfully 

integrate the NTM units into the old Matching Network 

model, consequently improves the overall results of the 

model in one-shot/few-shot learning tasks. Since this 

approach is a combination of meta-learning method (MANN) 

and metric learning (MNet), in some cases, fine-tuning is 

necessary to improve the performance of the model. Further, 

our approach also introduces a new definition of a 

representative sample based on the distances of all samples in 

the same class. This approach improves better performance 

compared to the original method of the prototypical class. 
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II. RELATED WORKS 

A. Neural Turing Machine 

Introduced by Graves et al. [10], Neural Turing Machine 

(or NTM) is the most cutting edge research at that moment 

that resembles an external working memory. This model is 

constructed according to the Interface–Controller abstraction, 

which consists of two main intimately connected components: 

a controller and an external memory bank. A neural network 

acts as a controller that provides an internal representation of 

the inputs controls the read and write operations of the 

augmented memory component via read/write heads. The 

whole architecture of the NTM is differentiable to compute 

the gradient of output loss regarding the hyper-parameters of 

the model. So it could be viewed as a differentiable version of 

a Turing machine. Regarding memory access mechanism, the 

NTM uses Attention based Memory Access allowing each 

read/write head to generate a normalized softmax attention 

vector to examine all the location in the memory at the same 

time. Then, it could select the most appropriate content 

depending on the memory addressing mechanisms. 

According to the authors, two addressing mechanisms are 

introduced, content-based addressing and location-based 

mechanism. Thanks to these mechanisms as well as the 

external memory component, it could preserve kinds of 

sub-sequence pattern explicitly, generalizing over longer 

sequences than the training sequences, and more effective to 

solve algorithmic tasks than other recurrent models like 

LSTMs. Although this architecture could do some simple 

tasks in practice such as copying, sorting, as well as 

associative recall from input and output, and still suffers from 

some issues, it is described by experts as a promising 

direction for future research. 

B. Meta Learning with Memory Augmented Neural 

Network for One-Shot Learning Task 

Recent works have suggested the Memory Augmented 

Neural Network (MANN) for one-shot learning tasks via 

meta-learning approach. Taking advantage of the Neural 

Turing Machine (NTM), which provides a promising 

approach for meta-learning in deep learning networks, the 

MANN with an ability to rapidly assimilate new data in its 

memory, demonstrates the capability of solving one-shot 

learning tasks in term of short and long term memory 

demands. In models such as the MANN, the input sequences 

and their corresponding labels from the previous step are 

bound together in the same memory locations. These data 

representations will be used to achieve perfect accuracy 

thereafter via a new addressing mechanism called Least 

Recently Used Access (LRUA). This access module replaces 

the two previous memory access types of the NTM for the 

tasks of emphasizing a conjunctive coding of information 

independent of sequence. By writing information into either 

the least used memory location (rarely-used locations) or the 

most recently used memory location (last used location - 

update memory with newer information) of the external 

memory, it makes the model ”the ability to slowly learn an 

abstract method for obtaining useful representations of raw 

data, via gradient descent, and the ability to rapidly bind 

never-before-seen information after a single presentation, 

via an external memory module.” [3]. 

C. Matching Network for One-Shot Learning Tasks 

In addition to the MANN, our works also follow the 

architecture of the Matching Network proposed by O. 

Vinyals et al. [6]. This model is inspired by the work of some 

neural networks with extended memory such as Memory 

networks, Pointer networks, etc. Differ from the MANN, 

which is a meta-learning model using recurrent networks, this 

framework is a nonparametric approach that based on metric 

learning to focus on extracting features and computing a 

distance between these features vectors via an attention 

kernel. Depend on the tasks, the feature extractor functions 

could be varied, such as Deep Convolution Networks, a 

simple form of word embedding function, etc. 

Basically, this model computes output �̂� as follow: 

 

�̂� = ∑ 𝑎(�̂�, 𝑥𝑖)𝑦𝑖
𝑘
𝑖         (1) 

 

The attention function 𝑎(�̂�, 𝑥𝑖) uses the softmax over the 

cosine distance with two embedding functions f and g. 

Moreover, to archive maximum accuracy through the 

classification function described in (1), the full context 

embedding functions are used to modify the way of mapping 

input samples into the memory via attention mechanism. The 

memory caches the common pattern of representation and 

corresponding label of training samples. Then, the model 

predicts label by matching input samples with memory 

caches and generating a weighted sum label (with matching 

distribution) as a final output.  

D. Prototypical Networks 

Snell et al. [7] evolved Siamese networks by aggregating 

information within each support sets. The author takes 

advantage of the use of class mean as prototypes to counter 

the issue of overfitting due to the limitation of the data in 

few-shot learning tasks. Compare to recent approaches for 

few-shot learning, this network shows benefit in limited-data 

situations and achieved excellent results. 

 

III. PROPOSED METHODS – MEMORY AUGMENTED 

MATCHING NETWORK 

A. Matching Network with External Memory 

 

 
Fig. 1. Illustration of embedding learning methods for few-shot learning 

classification tasks. The figure is an excerpt from [6]. 

 

To address a challenge of K-shot N-way classification 

tasks, the proposed model apply embedding learning 

methods that embed x∈X⊆Rd to a smaller embedding space   

z∈Z⊆Rm. Using these new spaces, it is easy to identify 
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similar and dissimilar pairs of support samples and test 

sample. Currently, these methods have three main functions: 

function f(.) embeds sample xtest∈Dtest to Z, function g(.) 

embeds xsupport∈Dsupport to Z and a similarity measure s(.,.) 

calculates the similarities between the output of f(.) and each 

output of g(.) in the new space Z. An overview of this 

architect is illustrated in Fig. 1. 

This proposed model is drew inspiration from architecture 

of the Matching Network model as well as the MANN model 

for one-shot learning tasks. Thus, its strategy is to enhance an 

embedding space with memory components, help 

accordingly recognizing unseen objects based on the content 

located in these memory matrices.  

The whole model is a classifier 𝐶(�̂�) that correctly classify 

a test example �̂� into a corresponding class according to the 

given support samples’ labels. With a support set 

S={(xi,yi)}i=1..k, which contains k samples randomly sampled 

from N unique classes, the predicted output �̂� of an unseen 

sample �̂� with the prior knowledge gained from the support 

set S could be defined as:  
 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1..𝑘𝑃(𝑦𝑖|�̂�, 𝑆)       (2) 
 

where, P(yi |x, �̂�) is the probability of classifying �̂� with the 

class yi conditioned on the support set S. The probability 

function P is parameterized by a neural network, and 

gradually improved through the back-propagation training of 

the neural networks.  

For those purposes above, in this work, the model of 

MAMN consists of 4 modules: a feature embedding module, 

the two full context embedding modules with memory 

augmentation, and an attention kernel for similarity measure 

function, which determine the output �̂�  according to the 

distance of support set and test sample in the new embedding 

space.  

The feature embedding module is used to extract only 

the necessary information from input samples for the feature 

space. This parameterized deep network is shared for both 

support set xi and the test sample �̂�, and guarantees two input 

feature spaces uniform and treated equally for similarity 

measurement functions. In this work, a simple yet powerful 

CNN is used as the embedding function. An output is denoted 

as e(.), used in the following functions. 

The full context embedding module for the support set 

g(.)  

This embedding function utilizes the Neural Turing 

Machine to map embedding features of support samples into 

its external memory. This function follows the 

implementation of MANN [3] for one-shot learning task 

using NTM units with an attentional mechanism called Least 

Recently Used Access mechanism (LRUA). 

Given the input e(xi), the read vector r from the external 

memory and the hidden states (h,c) from the previous 

timestep, a LSTM unit, which act as the controller of NTM, 

produces key vectors (hidden states), then writes them into 

either the least used location or the most recently used 

location of the memory via write head using LRUA 

mechanism. It calculates the write-weight vector 𝑤𝑡
𝑤as (2) 

𝑤𝑡
𝑤 ← 𝜎(𝛼)𝑤𝑡−1

𝑟 + (1 − 𝜎(𝛼))𝑤𝑡−1
𝑙𝑢       (3) 

 

where, σ(α) is a sigmoid function of a scalar parameter α, 

𝑤𝑡−1
𝑟  is a read-weight vector of a previous step, and 𝑤𝑡−1

𝑙𝑢  is 

the least used weight vector, generated from the usage weight 

vector 𝑤𝑡−1
𝑢  that update every step with a decay parameter γ. 

 

𝑤𝑡
𝑢 ← 𝛾𝑤𝑡−1

𝑢 + 𝑤𝑡
𝑢 + 𝑤𝑡

𝑤        (4) 
 

Then, the least-used weight 𝑤𝑡
𝑙𝑢 is defined accordingly: 

 

𝑤𝑡
𝑙𝑢 = {

0, 𝑤𝑡
𝑢(𝑖) > 𝑚(𝑤𝑡

𝑢 , 𝑛)

1, 𝑤𝑡
𝑢(𝑖) ≤ 𝑚(𝑤𝑡

𝑢 , 𝑛)
      (5) 

 

where, the notation 𝑚(𝑤𝑡
𝑢 , 𝑛)  represents the nth smallest 

element of 𝑤𝑡
𝑢 . The memory will be written in accordance 

with this write-weight vector 
 

𝑀𝑡 (𝑖) ← 𝑀𝑡−1(i) + 𝑤𝑡
𝑤(𝑖)𝑘𝑡                       (6) 

 

The read heads compute the read vectors for each sample. 

These read vectors are the convex combination of the 

memory matrix and weighting vector, and are defined as:  
 

𝑟𝑡⃗⃗ ← ∑ 𝑤𝑡
𝑟(𝑖)𝑀𝑡(𝑖)𝑖

                             (7) 
 

where, Mt(i) is a cell ith of the memory used with sample tth in 

the support set. wrt(i) is a read-weight vector of cell i, and is 

produced according to a softmax of the similarity measure K 

between key vector kt and all the memory cell Mt(i): 
 

𝑤𝑡
𝑟(𝑖) ←

exp (𝐾(𝑘𝑡,𝑀𝑡(𝑖))

∑ exp (𝐾(𝑘𝑡,𝑀𝑡(𝑗)))𝑗
                         (8) 

 

The NTM receives a cascade of support samples and 

produces read vectors accordingly, results in a list of 

embedding vectors in the new space. 
 

𝑟𝑡⃗⃗ = 𝑁𝑇𝑀(𝑒(𝑥𝑖), 𝑟𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗, ℎ𝑡−1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑐𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗)                  (9) 

 

𝑔(𝑥𝑖) = 𝑟𝑡⃗⃗ +  𝑒(𝑥𝑖)                               (10) 

 

𝑔(𝑆) = {𝑔(𝑥𝑖)}𝑖∈𝑆                                (11) 
 

The full context embedding module for the test sample 

f(.)  

Similar to the function g(.), another NTM is used to embed 

test sample �̂�  into the same space for similarity measure. 

Beside the LRUA attentional mechanism, this function is also 

take advantage of a sequence to sequence attention 

mechanism by O. Vynial et al. [8]. This mechanism is also 

successfully used in the Matching Network for one-shot 

learning tasks. 
 

𝑟𝑡⃗⃗ , ℎ𝑡
⃗⃗  ⃗, 𝑐𝑡⃗⃗⃗  = 𝑁𝑇𝑀(𝑒(�̂�), 𝑟𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗, ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑐𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗)    (12) 
 

The output of the function 𝑓(�̂�)  is a combination of 

𝑟𝑡⃗⃗  and 𝑒(�̂�). 

𝑓(�̂�) = 𝑟𝑡⃗⃗ +  𝑒(�̂�)        (13) 
 

However, the attention mechanism is continued by 

comparing 𝑓(�̂�) against each row in the output list of g(S). 

The function  𝑎(𝑓(�̂�), 𝑔(𝑥𝑖)) is referred to as content based 

attention. In (14) below, the T represents a transpose of  

𝑓(�̂�) . 
 

𝑎(𝑓(�̂�), 𝑔(𝑥𝑖)) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑇(𝑓(�̂�)), 𝑔(𝑥𝑖))          (14) 
 

𝑓′(�̂�) = 𝑓(�̂�) + ∑ 𝑎(𝑓(�̂�), 𝑔(𝑥𝑖))𝑔(𝑥𝑖)
|𝑆|
𝑖           (15) 
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To fully fit the size of NTM units’ state, the 𝑓′(�̂�) is feed 

through a fully connected neural network before combining 

with the previous state of the NTM as in (16).  

ℎ𝑡
⃗⃗  ⃗ = ℎ𝑡

⃗⃗  ⃗ +  𝐷𝑒𝑛𝑠𝑒 (𝑓′(�̂�))                       (16) 

The final output 𝑓(�̂�)  is given after K times of 

implementing of this attention process. 

The attention kernel An attention function a(.,.) is the 

softmax over the cosine distance c between the two full 

context embedding functions f and g, which map extracted 

features from the output of the feature embedding module 

into the same feature space. It is defined as: 

𝑎(𝑓(�̂�), 𝑔(𝑥𝑖)) =
exp (𝑐(𝑔(𝑥𝑖),𝑓(𝑥)))

∑ exp (𝑐(𝑔(𝑥𝑗),𝑓(𝑥)))𝑗
                (17) 

B. Weighted Prototypical Class 

For the N-way K-shot classification tasks, Snell et al. [7] 

proposed a prototype that computes a representation ck of 

class k (k=1..N) based on an average calculation of instances 

of that class. 

𝑐𝑘 =
1

𝐾
∑ 𝑔(𝑥𝑘,𝑖)

𝐾

𝑖=1
                          (18) 

where, g(xk,i) is an embedding function of sample xi belonged 

to class k.  

In some cases, the class distribution is skewed. That is, 

some samples could locate outside the range of major 

samples in the class. Appling prototype from (18) in such 

situation could lead to a biased mean sample of the class. One 

way to overcome this is to treat those samples unequally 

based on their weights. These weights, which are used to 

determine the relative importance of each data point, are 

considered as the distance of a point to other points in the 

same class. So, the contributions of the points to the 

representative point of their class are proportional to the 

distance between them and the others. We find a new 

representative sample for a class as: 

𝑐𝑘
𝑤 =

1

∑ 𝑤𝑘,𝑖
𝐾
𝑖=1

∑ 𝑤𝑘,𝑖𝑔(𝑥𝑘,𝑖)
𝐾

𝑖=1
                    (19) 

where, wk.i is the weight of sample xk,i, and is the inverse of 

the total distance dk,i from sample i to other samples of class k 

as: 

𝑤𝑘,𝑗 =
1

∑ 𝑑𝑘,𝑖,𝑗
𝐾
𝑗=1,𝑗≠𝑖

                             (20) 

Generally, with an increase of the number of the samples 

per class as well as the unbiased class distribution, the 

difference between the prototype sample and weighted 

prototype sample is not considerable. However, in few-shot 

learning problems, in which the number of labelled sample is 

small, if the class distribution is biased, the weighted 

prototype method could give better results.  

In this paper, we use both prototype and weighted 

prototype vectors of the supporting samples to feed the 

function g(.). In the case of one-shot learning tasks, there is 

no difference between the model using the prototype, 

weighted prototype, and the pure model since there is only 

one support point per class xk = ck.  

IV. EXPERIMENTS 

For the few-shot learning experiments we used two 

benchmark datasets: the Omniglot dataset presented by Lake 

et al. [9] and Mini-ImageNet dataset introduced by Vinyals et 

al. [6] which is a small version of ILSVRC-12 Krizhevsky et 

al. All experiments are based on the N-way k-shot setting, 

and run under the used the same setting for both training and 

testing.  For each run, a set of k labelled examples from each 

of N classes are randomly selected and fed into the model. 

Class labels are randomly chosen for each class from 

epoch-to-epoch. For example, labels are of size N where N is 

the number of unique classes in N-way classification tasks, 

and the inputs are labelled accordingly. The results are also 

compared to the original model as well as other baselines 

models. Each benchmark dataset is split into two disjointed 

sets, one is for training, and another is for testing. Either 5 or 

20 unique classes per epoch task (i.e. 5-way 1- shot, 5-way 

5-shot, 20-way 1 shot respectively) is trained and validated 

within 200 epochs. Subsequently, the best model is evaluated 

with the disjointed set under the same training condition. 

Moreover, the simple CNN is used as the embedding function 

to extract features from the input images. The architecture of 

CNN is varied according to the dataset used for experiments.  

NTM units are set up with LRUA mechanism. The 

parameters are chosen as the followings: 128 memory slots of 

size 40, a controller (LSTM) with 200 hidden units, 4 

memory read-out heads, and usage decay of write weights of 

0.99. 

A. Baselines 

Some one-shot learning models are used as baselines in 

our experiments listed as follow:  

 MANN is one of the most favorite models using Neural 

Turing Machine for one-shot learning tasks. This model 

also plays an important role in our work. According to 

the original paper, this model is conducted with only 

5-way k-shot learning tasks with the Omniglot dataset. 

 Convolutional Siamese Networks (Siamese Nets) 

introduced by G.Koch et al. [5]. This approach is 

supervised metric learning with Siamese Neural 

Networks that consists of twin Convolutional Neural 

Networks. This ensures the input images are recognized 

based on the similarity measurement. 

 Matching Networks (MNets) is the inspiration model 

of our work, and its results are the highest compared to 

the two models above. 

 The Model-Agnostic Meta-Learning (MAML) for 

fast adaptation of Deep Networks introduced by C. Finn 

et al. [4]. This is one of the state-of-the-art approaches 

in one-shot/few-shot learning. It trains a meta-learner to 

provide a good initialization for the parameters of the 

classifier. 

 Prototypical Networks (ProtoNets) introduced by 

Snell et al. [7]. This model is another metric learning 

approach for one-shot/few-shot learning tasks. This can 

be seen as a variation of Matching Networks, and use 

the idea of class prototypes, that is the mean embedded 

vector of the supporting samples within a class. 

 Graph Neural Network for few-shot learning: Utilize 

the Graph Neural Network, V. Garcia [12] constructed a 

framework that bases on the node-labeling framework, 
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which implicitly models the intra-cluster similarity and 

the inter-cluster dissimilarity. 

 RelationNet Sung et al. [13] proposed a Relation 

Network for few-shot learning tasks. This network leans 

to learn a deep distance metric between query samples 

and support samples by computing relation scores. 

 Meta-SGD: is an optimization-based approach to tackle 

one-shot learning problems introduced by Z.Li et al. 

[14]. This approach is an extension to MAML that solve 

the problem of optimization via modifying stochastic 

gradient descent. 

B. Case 1: Omniglot Dataset 

To evaluate the improvement of this model over the 

original, in this experiment, we test our model with Omniglot 

dataset conducted by Lake et al. [9]. This dataset consists of 

50 different alphabets divided into 1623 different classes. 

Each class represents a character drawn online by 20 different 

people to create a set of 20 different black & white 

handwriting styles. Since these images are very small and 

simple, this collection is an ideal dataset for evaluating 

one-shot learning classification tasks. Figure 2 illustrates 

some Japanese Hiragana writing system’s characters 

extracted from this dataset.  

 

 
Fig. 2. Three examples of character classes of Omniglot dataset: letter a, i 

and u in Japanese Hiragana writing system. Each letter is written in 20 

different handwriting styles. 

 
TABLE I: CLASSIFICATION ACCURACIES FOR MAMN AND OTHER 

BASELINES ON THE OMNIGLOT DATASET 

Model 
5-way Acc. 20-way Acc. 

1-shot 5-shot 1-shot 5-shot 

MANN 82.8 % 94.9% - - 

Siamese Net 97.3% 98.4% 88.2% 97.0% 

MNets 98.1% 98.9% 93.8% 98.5% 

MAML 98.7 % 99.9% 95.8% 98.9% 

ProtoNets 98.8 % 99.7% 96.0% 98.9% 

MAMN 98.8% 99.5% 96.1% 98.6% 

MAMN + ProtoClass 98.9% 99.7% 96.3% 98.9% 

MAMN + Weighted 

ProtoClass 
98.8% 99.6% 96.3% 98.8% 

 

The Omniglot dataset is split into 3 subsets: 1200 

characters are used for training, and the rest, which contains 

422 characters, is split in half, one is for validation and the 

other is for evaluation. The inputs are also resized to 28×28, 

and performed data augmentation to overcome overfitting 

problem by randomly rotating by multiples of 90 degrees. We 

also perform fine-tune adjustments for the model using the 

support set sampled from the test dataset.  

Following the embedding architecture from O. Vinyals et al., 

a CNN consists of four stacked blocks of {3×3-convolutional 

layer with 64 filters, batch-normalization, 2×2 max-pooling, 

leaky-relu}. The output is passed through a fully connected 

layer resulting in a 64-dimensional embedding output. The 

results of the experiment on the Omniglot dataset are reported 

in Table I. 

We extract the baseline results from the original paper [6] 

and other researches for comparison. Generally, the results of 

all the one-shot learning tasks (1- shot, 5-shot learning on 5 

and 20 categories respectively) consistently point out that our 

developed model almost achieves remarkable performances 

against the competitive models. Particularly, the accuracies 

of 5-way 1-shot, 5-way 5-shot, and 20-way 1-shot  and 5-shot 

tasks could reach 98.8%, 99.5% and 96.1% and 98.6% 

respectively making a significant improvement over its 

predecessor, the Matching Network. Compare to the two 

state-of-the-art approaches (MAML and Prototypical 

Networks), except the case of 5-way 5-shot that MAML 

model reached the maximum 99.9%, the MAMN model with 

prototypical class is superior although the gaps between it 

and others are not considerable. In contrast, the weighted 

prototypical class does not seem to help much in improving 

accuracy than the normal prototype on this dataset.  

C. Case 2: Mini-Imagenet 

The Mini-ImageNet dataset that O. Vinyals et al. [6] used 

consists of 60,000 color images of size 84×84 with 100 

random classes from the ImageNet dataset [11]. The first 80 

classes are used for training and the rest 20 classes for 

evaluating a model. Compare to the Omniglot dataset, this 

benchmark dataset is more difficult than the Omniglot dataset 

because of greater variations among the images within each 

class.  

In this experiment, we construct CNN by using 5 blocks of 

{3×3-convolutional layer with 64 filters, batch-normalization, 

2×2 max-pooling, leaky-relu} to generate the 64-dimensional 

outputs. 

 
TABLE II: CLASSIFICATION ACCURACIES FOR MAMN AND OTHER 

BASELINES IN 5-WAY K-SHOT TASK ON MINI-IMAGENET 

Model 
5-way Acc. 

1-shot 5-shot 

Matching Net 44.2% 57.0% 

MAML 48.7% 63.1% 

Meta SGD 50.4% 64.0% 

ProtoNets 49.4% 68.2% 

Graph Neural Network 50.3% 66.4% 

RelationNet 50.4% 65.3% 

MAMN 49.9% 63.2% 

MAMN + ProtoClass 49.8% 66.5% 

MAMN + Weighted ProtoClass 49.9% 68.5% 

 

In Table II, we report the classification accuracies of our 

models and the baselines. The results yield higher 

performances of our models than the competitors.  In 1-shot 

tasks, although our rivals such as meta-SGD or RelationNet 

could achieve higher accuracy with around 50.4%, the 

difference with our model (49.9%) is small. When more 

support images are provided in 5-shot tasks, the proposed 

model in combination with the weighted prototypical class 

reaches up to 68.5% accuracy, the highest result among all 

baselines. 

D. Discussion 

The proposed model could recognize specific features of 

support samples better and longer, lead to produce excellent 

accuracy. By observing experiments on the two datasets, our 

model definitely outperforms its originals. While on the 

Omniglot dataset, the improvement is not clear due to very 

high accuracy achieved on both models; on the 
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mini-ImageNet dataset, the gap between models and their 

predecessors could be easily identified. For example, in the 

one-shot task, the MatchingNet produced only 44.2% while 

the improved model could give us 49.9% accuracy. 

Moreover, the weighted prototype class has strongly 

shown its efficiency on such complex dataset as 

mini-ImageNet. Unlike the result of the previous experiment, 

since the features of the images in mini-ImageNet dataset are 

more complex than one of the Omniglot dataset, we could 

evaluate the performance of the model combining with the 

weighted representative samples. As indicated in Table 2, the 

weighted prototypical class considerably improves the 

overall performance of the MAMN model, typical around 5% 

accuracy, and 2% over the model using mean prototypical 

class. It is also noticed that in the one-shot learning task, as 

only one sample is used as support sample, there is 

ineffective to apply prototypical class as well as weighted 

prototypical class. In such situations, they become 

equivalent. 

Further, since this approach is a combination of 

meta-learning method (MANN) and metric learning (MNet), 

in some cases, the overall performance could be improved by 

fine-tuning the features. This is proved by the fine-tuning 

results conducted by O. Vynials et al. with his MatchingNet. 

However, as indicated in the original paper of Matching 

Network [6], one of the drawbacks of this model is that when 

the number of samples in the support set increases, the cost 

for training is also increased.  

 

V. CONCLUSION 

In this paper, we introduced a metric learning method in 

combination with meta-learning for one-shot learning task by 

way of enhancing the memory capacity for the embedding 

networks. It takes advantage of both Matching Network, 

Memory Augmented Neural Network with Least Recently 

Used Access mechanism, and Prototypical Networks for 

one-shot/few-shot learning tasks.  

Moreover, a new prototype is also proposed to overcome 

the problem of biased distribution of class. The weighted 

mean is proportional to the distance between all vectors in the 

same cluster. It helps to improve the overall performance in 

some complicated dataset such as mini-ImageNet. However, 

to fully evaluate the out-performance of this research relative 

to its ancestors, there are still some experiments needed to 

conduct such as with one-shot language tasks or with longer 

input sequences i.e. 50-way k-shot tasks. In these tasks, the 

MANN units could show their advantages in 

one-shot/few-shot learning tasks. Finally, our work also 

introduces another practical application of Memory 

Augmented Neural Networks in one-shot learning challenge, 

suggests a replacement of the traditional RNN models with 

NTM units in one-shot learning models to achieve superior 

performance. 
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