
  

  

Abstract—Objective of this paper is to propose a new 

semi-automatic, adaptive and optimized triangular mesh 

generation technique for any domain (including free formed 

curves). This new technique is found by merging the generalised 

equations which were proposed in previous works with 

Delaunay triangulation method. The new technique is 

demonstrated for several domains with various boundaries. 

Initial meshes are generated for these domains, which are later 

optimized manually by addition, removal or replacement of 

sampling points. Finalized meshes consist of triangular 

elements with aspect ratio of less than 2 and minimum skewness 

of more than 45 degrees. 

 
Index Terms—Generalised equations, numerical integration, 

Delaunay triangulation, mesh optimization, skewness and 

aspect ratio.  

 

I. INTRODUCTION 

One of the steps involved in Finite Element Method (FEM) 

is the discretization of the problem domain (mesh creation). 

There are various methods proposed to generate triangular 

meshes for FEM. The most commonly used methods are the 

moving front technique also known as advancing front, 

Delaunay based methods and the Octree approach [1]. 

Recently, attempts to mesh domains with curved sides have 

been pursued by using higher order (HO) triangular elements 

[2]-[4]. In these methods, the author proposed HO triangular 

elements with two linear sides and one curved side. The 

single curved side (of the HO triangular element) is 

represented by a polynomial arc of arbitrary order, which is 

used to represent the curved boundaries of the problem 

domain. Later, a fully automated mesh generation code in 

Matlab has been developed for these HO triangular elements 

[5], by merging with triangular mesh generation techniques 

proposed by [6] or [7].  

It is observed that the technique proposed by [5] has 

advantages such as higher accuracy in simulation results with 

lesser number of elements, accurate representation of curved 

sides of problem domain and simpler Matlab code for fully 

automated mesh generation (reduces the time and effort for 

the mesh generation). However, there are limitations in this 
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method. The arbitrary curves of a problem domain should be 

able to be represented by polynomial arcs. Triangular 

element with high aspect ratio and skewness could also be 

generated as seen in Fig. 27- Fig. 29 of the paper [5], which 

can contribute to high stiffness for certain applications such 

as in solid mechanics. Therefore, mesh optimization needs to 

be carried out after the initial mesh generation, in order to 

untangle the flawed elements in the mesh. Several mesh 

improvement or optimization techniques are available in the 

literature and these techniques can be categorised as adaptive, 

smoothing and swapping [8]. 

Adaptive mesh optimization involves generation of high 

number of elements (fine mesh) within a specific region 

while the rest of the domain contains lesser number of 

elements (coarse mesh). This is done by using nested grid 

meshes. This technique does not focus on alteration of the 

element parameters, but rather focuses on improving the 

accuracy of the simulation results at regions in which the rate 

of change of field variables is high. This technique is also 

implemented to improve accuracy in geometry representation 

of a problem domain. 

On the other hand, smoothing involves alteration of 

elements’ shape via relocation of the nodes within the mesh 

without changing the element connectivity. The nodes are 

relocated by arithmetic mean of connected nodes (known as 

Laplacian approach). Another way to relocate the nodes is by 

using certain algorithms to meet the predefined standards that 

are related to mesh quality (known as optimization-based 

approach). Third method to relocate the nodes is by assuming 

that the mesh is a deformable media and forces are applied to 

achieve the optimal element shape (known as physics-based 

approach).  

Swapping is yet another technique to improve mesh 

quality by changing the shape of elements. Alteration of the 

element shape is done through operations such as edge and 

face swapping. This technique changes the element 

connectivity in the mesh. 

In this work, a new semi-automatic approach for triangular 

mesh generation is proposed by merging the generalized 

equations developed in previous works [9]-[11] with 

Delaunay triangulation algorithm in Mathematica. Elements 

in the initial mesh are later optimized by relocation, addition 

and removal of nodes. Advantages of this proposed method 

are that it is applicable for adaptive mesh generation, aspect 

ratio and skewness of the elements are within the desired 

range (attained through manual optimization), applicable for 

any order of triangular element (achieved through 

subparametric mapping), and the meshes can be formed for 

domain with any curves, including free formed curves. 

Disadvantages of this technique are that it requires effort and 

the process is time consuming (especially during the manual 

optimization), free formed curves are approximated by linear 

lines and for this case (in the case of mesh generation for 
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domain with free formed curves), sample boundary points on 

these free formed curves are required. The proposed 

approach is described in the following sections. 

 

II. DETAILS OF THE METHOD  

A. Generalised Equations for Numerical Integration  

Generalised equations were proposed in previous works 

[9]-[11] to enable numerical or exact integration of functions 

over arbitrary domains. The generalized equation for 

numerical integration within two dimensional (2D) domains 

is recalled here, as shown by (1): 
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Equation (1) can be used to perform numerical integration 

within 2D arbitrary domains, by defining the integration 

limits of (1) (constants a and b as well as functions r and s), 

according to the enclosure of the problem domain. Domain to 

be integrated can be enclosed by: 

1) 4 constant lines 

2) 3 constant lines and 1 function (or inclined line) 

3) 2 constant lines and 1 function (or inclined line) 

4) 2 parallel constant lines and 2 functions (or inclined 

line) 

The numerical integration is then performed by converting 

the integration limits (constants a and b as well as functions r 

and s) to a fixed intervals U and L, according to the numerical 

integration scheme of choice [9]-[11]. In this work, (1) is 

used together with Delaunay triangulation algorithm in 

Mathematica to generate triangular meshes. The new 

triangular mesh generation technique is described in 

following sections. 

B. Delaunay Triangulation through Linear Mapping 

Delaunay triangulation generates triangular elements 

based on sample points which are located on the boundaries 

and at the interior of a domain. These sample points are 

connected to each other to form triangles, based on the 

principal that no other points should present within 

circumcircle associated to a particular triangle. Therefore, 

suitable sample points for a domain to be discretized need to 

be generated first. These sample points can be obtained 

through linear mapping described by (1). For this purpose, 

two types of parent rectangular domains (within range of -1 

to 1) with different number of parent sample points (SP) are 

created and denoted as SP13 and SP41, respectively (shown 

in Fig. 1). These parent rectangular domains can be used 

interchangeably to form coarse or/and fine meshes within a 

domain. Details are provided in the upcoming examples 1-4.  
 

   
                         (a)                                                   (b) 

Fig. 1. Parent rectangular domains with sample points (a) SP13 (b) SP41. 

 

C. Mesh Quality 

Among various parameters which represent quality of a 

triangular mesh, aspect ratio and skewness are the most 

important aspects which should be payed attention to. Recent 

attempt to improve quality of triangular meshes based on 

aspect ratio can be seen in [12]. In this work, both aspect ratio 

and skewness are optimized manually, through Mathematica 

platform. Highest aspect ratio among the elements in all the 

optimized meshes considered here is less than 2 and 

minimum skewness angle is greater than 45 degrees. The 

aspect ratio (AR) is calculated based on the formulas (2) and 

(3): 

              AR =                       (2) 

                                  (3) 

a, b, and c represent length of each side of a triangular 

element. The skewness is determined by calculating the 

lowest angle formed by intersection of two lines within the 

triangle. The first line is drawn such a way that it connects 

one of the triangular nodes to the midpoint of opposite side. 

The second line connects midpoints of the other two sides. 

Since there are 3 nodes for a triangular element, therefore 

total of three combinations of such intersection can be 

obtained. These combinations are shown in Fig. 2. Skewness 

for a particular triangular element is represented by the 

smallest angle which is formed by the intersections in the 

three configurations shown in Fig. 2. 

 

 
                              (a)                                              (b) 

 
                                              (c) 

Fig. 2. Three combinations of intersections within a triangular element. 
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       (a)             (b) 

Fig. 3. Coarse triangular meshes for the quadrant of a circle (a) Initial mesh 

(b) Enhanced mesh. 

 

  
   (a)                                            (b) 

Fig. 4. Fine triangular meshes for the quadrant of a circle (a) Initial mesh (b) 

Enhanced mesh. 
 

III. RESULTS AND DISCUSSIONS  

A. Example 1: Quadrant of a Circle 

The technique is demonstrated here for a quadrant of a 

circle which consists of two linear sides and a curve. SP13 

and SP41 are mapped individually to the problem domain by 

letting U = 1, L = -1, r(y) = 0 and s(y) =  into (1). 

Initial triangular meshes are then formed by using the 

Mathematica command Delaunay Triangulation. The initial 

meshes together with the actual domain boundary for both 

coarse (obtained from mapping of SP13) and fine (obtained 

from mapping of SP41) meshes are shown in Fig. 3(a) and 

Fig. 4(a). It is seen that the actual domain boundary is not 

accurately captured in the coarse mesh (node 3 in Fig. 3(a)) 

while the fine mesh consists of elements with high aspect 

ratio and skewness (highlighted in Fig. 4(a)). 

Therefore, the initial meshes need to be enhanced in order 

to ensure that the meshes are suitable for FEM. Aspect ratio 

and skewness of each element are calculated for the initial 

meshes in order to determine regions/elements which are in 

need for enhancement. One of the advantages of Delaunay 

triangulation is that the method allows addition, deletion and 

replacement of sample points within the domain to enhance 

the mesh. Hence, the affected elements/regions are then 

enhanced by manually adding, deleting or replacing nodes. 

The initial coarse mesh is improved by moving node 3 to the 

surface of the domain while the initial fine mesh is improved 

by addition and replacement of nodes at the affected regions. 

The improved meshes for both cases (coarse and fine meshes) 

are shown in Fig. 3(b) and Fig. 4(b). 

B. Example 2: Quadrant of a Hollow Cylinder 

Quadrant of a hollow cylinder with two polynomial curved 

boundaries is meshed by using the proposed method. The 

domain is partitioned into two regions (R1 and R2) as shown 

in Fig. 5, based on the requirements stated previously. R1 and 

R2 are meshed individually and later combined together. 

Initial meshes obtained by mapping the SP13 and SP41 are 

shown in Fig. 6(a) and Fig. 7(a). The initial coarse mesh is 

optimized by moving nodes 13 and 21, and adding node 23. 

The finalized meshes are shown in Fig. 6(b) and Fig. 7(b). 

 

 
Fig. 5. Partitioning of the domain into 2 regions. 

   
(a)                                                 (b)                          

Fig. 6. Coarse triangular meshes for the quadrant of hollow cylinder (a) 

Initial mesh (b) Enhanced mesh.  
 

  
(a)                                   (b) 

Fig. 7. Fine triangular meshes for the quadrant of hollow cylinder (a) Initial 
mesh (b) Enhanced mesh. 

 

 
Fig. 8. Partitioning of a wrench into several regions for adaptive mesh 

creation. 

 

 
Fig. 9. Initial discretization of the socket. 
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Fig. 10. Optimized discretization of the socket. 
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C. Example 3: Adaptive Meshing for a Wrench  

A wrench, consisting of head and socket as shown in Fig. 8 

is taken as an example to demonstrate adaptive meshing by 

using the proposed technique. The tip of the head need to be 

discretized by using high number of small elements in order 

to capture the curved tip accurately, compared to the other 

parts of the wrench. First, the domain is discretized into 

several regions as shown in Fig. 8. SP13 and SP41 are 

interchangeably used to obtain the sample points for these 

regions as well as to obtain the adaptive mesh for the tip of 

the head. Initial and final meshes for the socket and the head 

are shown in Fig. 9-14. 
 

 
Fig. 11. Initial discretization of the head. 

 
Fig. 12. Initial discretization of the tip of the head (close up view). 
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Fig. 13. Optimized discretization of the head. 

 

 
Fig. 14. Optimized discretization of the tip of the head (close up view). 

D. Example 4: Free Formed Curves  

Mesh creation for a domain with free formed curves (Fig. 

15) is demonstrated here. The domain is partitioned into 

several regions (R1-R18) as shown in Fig. 16. Since the free 

formed curves are not represented by any functions, therefore 

these curves are initially approximated as linear lines to 

generate initial meshes. Later, the boundary surfaces (free 

formed curves) are discretized to generate the sample points 

for the optimization of the meshes near the boundaries 

(R1-R14). Discretization of the free formed curves is 

indicated by small circles in the Fig. 16. Initial meshes are 

optimized meshes are shown in Fig. 17 and Fig. 18.  

 
Fig. 15. A domain with free formed curves and a linear boundary. 

 

 
Fig. 16. Partitioning of the domain with free formed and linear boundaries. 

 
Fig. 17. Initial mesh generation for the domain.  
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Fig. 18. Finalized mesh for the domain. 

 

E. Mesh for Higher Order Triangular Elements  

The optimized meshes created in all the examples above 

can be used for HO triangular elements as well, by mapping 

the parent element nodes to the elements in the mesh. Shape 

functions of a 3 nodes triangular element as shown in (1) can 

be used for the mapping (subparametric mapping for HO 

triangular elements). Examples for mapping of 3 nodes, 6 
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nodes and 10 nodes triangular elements are shown in Fig. 

19-21. 

 

1 1 2 2 3 3 1 1 2 2 3 3

1 2 3

;

1

x N x N x N x y N y N y N y

N s N r s N r

= + + = + +

= = − − =

(4) 

 

N1, N2 and N3 represent shape functions of parent 3 nodes 

triangular element in natural coordinate system (in r, s). xi 

and yi (i = 1, 2, 3) represent coordinates of the vertex of the 

elements in global coordinate system (in x, y). 

 

 
Fig. 19. Isoparametric mapping of the nodes for 3 nodes triangular element. 

 

 
Fig. 20. Subparametric mapping of the nodes for 6 nodes quadratic triangular 

element. 

 
Fig. 21. Subparametric mapping of the nodes for 10 nodes cubic triangular 

element. 

 

IV. CONCLUSIONS  

A new technique to generate triangular meshes for 

arbitrary geometry is demonstrated within Mathematica 

platform by coupling the generalized equation (1) with 

Delaunay triangulation. The meshes are later optimized 

manually (by adding, removing or moving nodes) such that 

highest aspect ratio among the elements is less than 2 and 

minimum skewness angle is greater than 45 degrees. The 

method is shown to be applicable for any arbitrary domain, 

and for adaptive mesh. The method can be used for any order 

of triangular element as well, by linear mapping. Future work 

would be to minimize the effort and time spent on the manual 

optimization by incorporating mesh improvement algorithms 

into the execution code. 

APPENDIX 

Mathematica code to generate mesh for hollow cylinder by 

using the proposed technique (example 2) is provided here: 
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