

Abstract—Commercial data has been preserved digitally in

portable document format (PDF) for its ease of encapsulating

multiple data formats. In this digitization era, there comes a

need to capture and store this data in structured format to

facilitate its access for automated b2b services and business

intelligence. In this paper, we propose a framework that

automates discovery and extraction of tabular data

incorporating both artificial and human intelligence. The

framework involves clustering and heuristics to group cartesian

location of text and spaces in a page to determine a table. The

discovered table is then validated by the user using a

user-interface designed to moderate the determined boundaries

and fed back to the layout knowledge repository. The table data

obtained is extracted as JSON key-value pairs which can then

be loaded into any database. The framework thus provides

enhanced accuracy and continuous human assisted learning for

the automated document digitization process. The knowledge

repository is further used to train the machine to generate

document templates to be used for processing unseen

documents. However, this paper concentrates on the discovery

of structured data alone.

Index Terms—Clustering algorithm, spatial analysis, pdf

table extraction, heuristics, human interaction.

I. INTRODUCTION

Over the years with the evolution of technology, important

data once stored in paper is now being stored digitally. PDF is

looked as the most viable solution as it is independent of any

hardware and operating system; and can be transported and

accessed over any channel. [1] Educational institutes,

government agencies, research centers, construction firms are

a few major organizations where PDFs have become

indispensable [2].

Due to the high availability of PDF documents, there is a

huge scope to mine intelligence from them to make better

business decisions. This necessitates the automation of the

data-entry process of searching values from individual PDFs

and storing them into databases. This ensures an error-free

and speedy process, reducing the burden on the process staff,

thereby reducing the cost invested by many folds. The data

generated can directly be consumed to find patterns or

solutions for many business problems.

In this paper, we assume that a major chunk of significant

data would be stored as tables [3], as it is one of the best ways

to communicate complex details to the human mind.

Therefore, we focus on automating the extraction of tabular

data and converting them to key-value pairs which can then

Manuscript received May 23, 2019; revised July 3, 2019.

The authors are with CloudIX Inc, Suite 301, 15446, Bel Red Road,
Redmond, WA 94052 USA (e-mail: {nikhitha, ganeshl, abinayas, anandks,

rajs}@cloudix.io).

be consumed by any application. We also believe that the

machine would learn better by active learning i.e. with the

help of little human intervention [4]. Hence, we provide a

user interface, where the user can verify if the tables detected

automatically falls within his scope of requirement.

Otherwise, the user can manually mark his selection and this

information would be fed back to the machine, for future

training.

This framework considers a PDF document as a cartesian

plane, on which lies the box coordinate of every word of the

page. We map the human-eye table detection process to

create rules that define a cluster of coordinates as fa potential

table. Our algorithm works without considering the

horizontal and vertical runs, which are usually used to

identify a table in many of the current solutions. This

approach also makes the data extraction process independent

of any language. Thus, our framework also works for

documents that do not have the horizontal and vertical lines

bounding a table. Our framework creates templates with a

large set of similar PDFs. These templates can then be

accessed directly to extract the desired data from PDF

documents with similar layout.

Here we explain the basic working of our system with a

single PDF document, which personifies any PDF sent into

the system.

II. RELATED WORK

Extracting data from tables has been a key topic of

research. Many researches have made use of algorithms to

define building blocks and find the tables based on the

horizontal and vertical lines detection. Yildiz et al. [5]

developed a heuristic approach for detecting tables in PDF

files and store the extracted data in a structured data format

(XML) for reuse. This was also implemented with a GUI that

gives the user the ability to adjust the detected tables. The

work shows that purely heuristic-based approaches can

achieve good results, especially for lucid tables. Davulcu et al.

[6] proposed a clustering technique where each word is

considered as tokens and the building blocks are generated

based on the distance between the clusters and assigning the

tokens to the respective clusters. Also, the user has to specify

the header name of the table to extract the table. This method

doesn’t do great in detecting header less tables.

Hassan et al. [7] proposed a method for detecting tables in

PDF files. They group tables into three categories: tables with

both horizontal and vertical ruling lines, tables which contain

only horizontal ruling lines, and tables where ruling lines are

absent. Babatunde et al. [8] proposed an HMM based method

to recognize table and extract data from the HTML tags. Oro

et al. [9] proposed a table detection software called

Discovery of Structured Data Using Unsupervised Spatial

Clustering and Human Supervision

Nikitha Rachapudi, Lakshmipathy Ganesh, Abinaya Sekar, Anand KS, and Rajkumar Sakthibalan

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

586doi: 10.18178/ijmlc.2019.9.5.844

PDF-TREX. The PDF-TREX system employs a heuristic

approach (experience based) for table detection and structure

definition. However, the system has the following limitations:

1) Only single column documents are supported 2) Ruling

lines or other visual aids on the page are not considered.

Our paper attempts to enhance the existing methods by

using clustering techniques along with our heuristic rules and

facilitates a feedback mechanism to the system for an

iterative improvement in the overall system accuracy.

III. SYSTEM ARCHITECTURE

The system we propose involves recognition of tables by

grouping the words in the document, represented as 2D

coordinates on a Cartesian plane. The coordinates of the

words are generated using a pdf to xml converter. These

coordinates are then used for detecting and locating tables.

Fig. 1 depicts the overall architecture of our system and Fig. 2

explains in detail about the automated table extraction

process.

Fig. 1. Overall architecture.

Fig. 2. Automated extraction flow.

A. Overall Setup

The Document Corpus we consider for this paper includes

documents with tabular data published as PDF documents.
The preliminary step involves figure out the coordinates of

each word in the PDF by representing them in a 2D Cartesian

plane. To achieve this, we use the Text and Image Extraction

Toolkit (TET) [10]. TET gives the text contents of a PDF as

Unicode strings, detailed color, font information as well as

the position on the page.
TET acts as a PDF to XML generator since TET converts

PDF documents to an XML-based format called TETML

which contains text, page metadata as well as resource

information. The XML tags containing the metadata of the

words, color, glyph and text positions are recorded as part of

the data for future work. The text positions are captured in

Points (pts), as the unit of measurement.
These features are used throughout the table detection

process, template generation and knowledge extraction. The

system involves a GUI which shows all the words in the

document and on clicking the word, will take the user to the

exact page and highlights for instant visibility. This gives a

quick access to key words the user might be interested in

looking at.

The document for which the data is to be extracted is

converted to image and displayed to the user along with the

mapping of the table regions on the image. The GUI also has

an option where the user is given the ability to adjust the

tables, we have identified through heuristic clustering and

classification algorithm.

We enable the user with two options. The user can choose

one of these options to select the table regions:

• Manual table selection

• Automated table selection

The manual table Selection gives full control to the users to

select the table regions by click and drag action. To facilitate

this, we use a third-party library called Annotorious [11]

which allows the users to draw rectangular annotations over

PDF pages or edit an existing rectangular annotation or even

delete one. Once the right tables are selected by the user, the

coordinate layout is recorded and is stored as a template

containing the coordinates for tables of that PDF document.

Data in the table selected by the user is also extracted and

stored. The layout knowledge base gets updated with the new

metadata of tables and the data in the tables is stored as JSON

key-value pairs in the target database. This facilitates the user

to simply drag through the table regions and record this data,

without having to read the document and type.
The automated table selection method automatically

identifies the potential table regions in the PDF document

using the coordinate clustering algorithm and table cluster

identification process, which are discussed in detail in the

next section. The identified potential table regions are then

displayed to the user.

B. Brief Overview of Automated Table Detection Process

Once the coordinates of the words are grouped into clusters

by their distance or density, they are fed into a heuristic

classification algorithm to find out the potential table clusters

among all the clusters that have been identified.
The algorithm considers features that we have defined for a

potential table like: the alignment of words, repetition of

words with the same alignment over successive rows;

definitive line or column spacings; cartesian distance

between successive words that distinguishes a paragraph

from a table.
With the help of these features, the algorithm gives a

binary output to decide if the cluster can potentially be a table.

Once the algorithm finds the possible table clusters, we

determine its boundary coordinates and display it to the user

through the GUI to make any adjustments if the table region

predicted is not accurate. Once the user makes the necessary

adjustments to the table boundaries, the boundary

coordinates are stored in the PDF table coordinate DB. The

data in those table regions are extracted as key-value pairs

and stored to the knowledge base.
The key distinguishing feature of our system from other

existing systems lies in the fact that the user has more control

in figuring out the right tables by adjusting the tables

identified through the Automated table selection method. The

user adjusted table metadata with the corrected coordinates of

table regions are saved as a new PDF template for that PDF.

Thus, the existing layout database gets updated with the new

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

587

metadata of tables. Once the tables are identified, the

metadata is recorded in the PDF template generation process.

The generated template contains the following data: PDFId

of the document, Page Number, ClusterID, Cluster

coordinates: upper left x and y coordinates, cluster width and

height for all the clusters that were identified as potential

tables.
The layout information of the PDF documents thus

deduced, are preserved as a function of the documents

publishing context, represented by document metadata like

publisher, title, published date, author and copyright

information, publishing software subject to availability. This

context metadata is fed forward as features for predicting

layouts of unseen documents. This process gets repeated for

every new PDF uploaded for extraction and the algorithm

auto learns the possible tables.

IV. TABLE DETECTION ALGORITHM

For detecting tables in every page, we use machine

learning algorithms along with a set of predefined rules.

We define the spatial reference of a word-box as {llx, lly,

urx, ury} where (llx, lly) and (urx, ury) are lower left and

upper right cartesian coordinates. We compute (midx, midy)

as the average of the lower and upper box coordinates. We

also compute the area of a word-box using the cartesian

formula for a rectangle. Fig. 3 shows a plot of a llx vs lly of a

single page. This shows that the alignment of the words is

neatly captured by plotting them using just one set of

cartesian points. We iterate the below process for every page

of a PDF using its PDFId and page number.

Fig. 3. Cartesian plane with word coordinates.

A. Coordinate Clustering

In this algorithm, we use existing clustering techniques to

group the word coordinates as table or paragraph (non-table)

clusters. Tables that spread across the width of the page, have

columns that are spaced farther than that of the columns of a

smaller table.

K-means algorithm [12] which works using centroid and

Euclidean distance works good on closely spaced points

whereas DBSCAN [13] which uses density for clustering

captures widely spread data points which are spaced

systematically.

To encompass accurate table detection from different page

formats, we use an approach to automate the clustering

technique selection. We calculate the distance between words

in a line and look at their distribution spread. When the

second quartile (50th percentile) and the 3rd quartile (75th

percentile) are almost the same, we pass the coordinates of

that page to K-means. When the distribution drastically

changes, i.e. the 2nd and 3rd quartile vary by a huge margin,

we use DBSCAN as the clustering technique. This ensures

that table data are clustered accurately in both single and

double columned documents.

We use the Silhouette method to interpret the optimum

number of clusters to be derived from K-means technique.

For DBSCAN we set the hyper parameter epsilon to specify

how close points must be to each other to be considered as a

part of cluster. We consider that, to define a cluster as a table,

there must be a minimum of 5 points in it i.e. a table header,

two column headers and two column text words. Fig. 4 and

Fig. 5 show a plot of the different clusters identified by

K-means and DBSCAN respectively.

With the different sets of clusters obtained, we have to

classify each of them as

• A potential table cluster vs a non-table cluster

• Eliminate embedded clusters

• Discard non-table data in a cluster identified as a table

cluster.

B. Identification of Potential Table Clusters

For every cluster identified, iterate the below process for

defining them as a potential table cluster,
1. Subset the {llx, lly} coordinate of every word-box, and

arrange both in ascending order.

2. For every x-coordinate find how many y-coordinates

exist.

3. If there are a minimum of 2 y-coordinates for a given

x-coordinate, we can assume it to be a potential column

of a table, which is left aligned.

Fig. 4. Clusters identified by K-means.

Repeat the same procedure to identify right aligned

columns using {urx, ury} and centrally aligned columns as

{Midx, Midy}. If the cluster contains at least 2 columns, we

can define it as a potential table cluster.

C. Eliminating Embedded Clusters

It is possible that clustering algorithms used above, detect

a small table cluster inside {ulx, uly} a bigger table cluster on

the outside {ulx, uly} as in Fig 6, and hence there comes a

need to eliminate the smaller table. For this we iterate the

below process for every cluster identified:
if (ulx I > ulxo) &/or (ulyI > ulyo)
if (widthi < width o) &/or (heighti < height o)
mark the table inside {ulx ,uly} as a non-table cluster

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

588

This eliminates the duplication of data being retrieved.

D. Discard non-Table Data in a Table Cluster

Paragraph lines close to a table gets appended to a table

cluster. These lines are usually at the top or bottom end of the

clustered rows. So, it is essential that we eliminate these

non-table rows. Spacing information within these cluster data

can again be used to discard the paragraph lines.

Fig. 5. Clusters identified by DBSCAN.

For every table cluster identified, iterate the below process

for discarding the non-table lines,

1. Check if there is any word in every line having llx or ulx

or Midx, with the identified columns’ llx or ulx or Midx

respectively.

2. If not, verify if the distance between two consecutive

words in the line is within a threshold of the minimum

word distance in each pdf. If yes, mark it as a non-table

line and make sure that the line is at the ends of the

clustered lines before discarding it.

3. Retain the rest of the lines.

4. If there is any cluster found with just one line after

discarding non-table lines, mark that cluster as a

non-table cluster.

Fig. 6. Embedded cluster.

This process also eliminates the NOTE paragraph that is

often seen below a table. For the table clusters thus identified,

we calculate the coordinates of the rectangular boundary

around it. We define {ulx, uly} of this cluster as {minimum

of ulx, minimum of uly} of all the words in that cluster. {llx,

lly} of the cluster as {maximum of lrx, maximum of lry}.

Using these derived coordinates, we then compute the

cluster’s width, height and total area. The area occupied by

the word boxes are also computed as a sum of all the box

areas.

Further tuning of the table identification algorithm would

be taken care of, when a user manually adjusts the table

selection in the UI.

V. EXPERIMENTATION AND DISCUSSION

Since our algorithm is page specific, we evaluate multiple

pages of PDFs with different table structures, individually.

Furthermore, our evaluation is limited to validation of the

coordinate clustering and table identification algorithm. In

total, we evaluated 20 pages, with around 25 tables.

Classification of clusters as tables or non-tables, being a

binary classification problem, we use the confusion matrix as

the algorithm evaluation metrics as shown in Fig. 7.

Fig. 7. Algorithm evaluation metrics.

For this dataset, 20 table clusters were classified correctly

as tables, and 6 non-table clusters were classified as tables.

The classification algorithm missed to identify 4 tables as

tables and on the other hand identified 51 non-table clusters

as non-tables. An accuracy of 89.88% was observed as the

average success rate across every page. With an average

Precision of 82.45% our algorithm’ prediction of a table to be

table is precise 8 out of 10 times. Also, the heuristic

classification algorithm has an average of 89.47%

recognition rate of a table cluster, with an average F1

measure of 83.15 % for detecting tables as in Table I.

TABLE I: EVALUATION METRICS

Metric Precision Recall F1-measure

Values (%) 82.45 89.47 83.1

The algorithm fails to identify small tables embedded

between paragraph lines as tables. Also, images in a page,

with structured marking of points, are classified as table

regions. We also came across PDFs having multi-line

wrapped text in columns of a table. The wrapped text was

clustered as individual non-table clusters. A rule to merge

such wrapped text clusters to a single table cluster would

solve this issue. The difference in the font size of columns

headers of a table to that of normal text can also be

capitalized as a feature to mark table clusters, along with the

spatial information in future work. Also, the area occupied by

word boxes to that of the total area of the cluster can be used

as features to enhance the detection process in the future.

We believe that with human intervention to this algorithm

using the user interface, the accuracy would improve over

time. As more PDFs with similar format are added to the

training corpus, a much higher classification rate can be

achieved and would facilitate in template creation.

VI. EXTENSION WORK

A. Identifying Rows and Columns Using Deep Learning

Once the table boundaries in a document are identified, it

is essential that we capture the rows and columns information

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

589

to gather the data in them in a structured format. This is a

complex problem to solve using traditional heuristic methods

or feature-based machine learning models. This is because

there are different layouts to stack the individual rows and

columns in a tabular structure. Technical documents like

component datasheets and financial reports have varying

tables like simple descriptive tables storing key-value pairs

and pivoted tables having aggregated financial values

interspersed between every few rows.

To encompass the various dimensionality of the structure

of the tables, the latest Deep Learning techniques shall be

used on the spatial distribution of words between rows and

columns of boundaries. We can enhance the novel deep

learning-based approach for table structure detection,

DeepDeSRT [14], as proposed by Sebastian Schreiber et al.

The PDF documents can be converted to image format. In

addition to the preprocessing technique(s) mentioned by

Sebastian et al., further processing can be done by creating

Local Binary Patterns (LBP) [15], [16] of the image. An LBP

image details minute edges, corners and flat pixels of the

image more accurately, thereby improving the pixel detection

and classification performance.

LBP along with the ground truth annotation dataset of

row-column boundaries of the tables can then be processed

using Single Shot Multibox Detector (SSD) [17] or a

Faster-RCNN model [18]. Heuristics on the probabilities

returned on unseen data can be employed to retain the most

accurately detected rows and columns. Once the physical

boundaries of the rows and columns are defined using the

bounding boxes from the Deep Learning model, we can

extract the text data in that region from the original TETML

file. The data derived is now in a structured format which can

be used for further processing.

B. Table Classification Using Deep Learning Models

The structured data derived from various tables should

then be stored in their respective information systems. Tables

in a document might or might not have a Table Title to define

the data it contains. Hence there comes a need to add domain-

specific knowledge to the derived data corpus. We can assign

a table title tag to each of the derived tables and perform a

classification task for predicting table titles in new

documents. Various Deep Learning based Natural Language

Processing (NLP) techniques can be employed to facilitate

this.

Different Deep Learning models have proven very

effective in the NLP tasks with advancements in the

optimized Deep learning architectures (CNN’s, RNN’s, etc.)

[19]. These models require a good amount of training data for

accurate predictions. The training data for the modelling can

be prepared by tagging as many tables as possible in the

documents using a tagger. This can be done by tagging the

tables into appropriate categories, with specific tags for

specific tables. With the tagged training data, the neural

networks can be trained and then be used to identify distinct

tags on new unseen tables. Once the new documents are

tagged by the model, the derived data can be stored in

information systems.

VII. CONCLUSION

With an estimated 2.5 trillion PDFs created each year [20],

the usage of PDFs has only been growing. With such a rich

pool of digital data, in this analytics age, there is a huge need

of information to be derived from them for data-oriented

decision making. But the process has almost always been

cumbersome, involving a lot of man-hours, making it an

expensive affair.

Hence there comes a need to automate the process of

extracting specific details from these documents and store

them in a more intelligible format. In this paper, we proposed

a system to select the required content manually or

automatically detect the tables. Furthermore, the data from

these tables are sent back to the user as JSON key-value pairs.

With larger data corpus we cluster identified tables of a

page to create PDF template. This facilitates the user to send

a new document to directly fetch the required knowledge,

skipping the selection process.

The automatic table detection process goes through a

predefined set of rules using the spatial spread of the words,

which are used to label clusters of words as a table or

non-table cluster. Thus, future work could focus on

automating the cluster classification by creating table specific

features in addition to spatial spread. This can also be

auto-tuned, as the machine learns with more data in live

usage.

REFERENCES

[1] PDF file format accessibility features combined with Adobe®

Acrobat® and Adobe Reader® allow universal access to documents.
[Online]. Available:

https://www.adobe.com/accessibility/pdf/pdf-accessibility-overview.h
tml

[2] Adobe PDF and printing. [Online]. Available:

https://web.archive.org/web/20160404222250/https://www.adobe.co

m/products/postscript/pdf.html

[3] pdf2table: A Method to Extract Table Information from PDF Files.
[Online]. Available:

http://ieg.ifs.tuwien.ac.at/pub/yildiz_iicai_2005.pdf

[4] Active Learning Literature Survey. [Online]. Available:
http://burrsettles.com/pub/settles.activelearning.pdf

[5] B. Yildiz, K. Kaiser, and S. Miksch, “pdf2table: A method to extract
table information from PDF files,” in Proc. the 2nd Indian

International Conference on Artificial Intelligence, Pune, December

20-22, 2005, pp. 1773-1785.
[6] H. Davulcu, S. Mukherjee, and I. V. Ramakrishnan, “A clustering

technique for mining data from text tables,” in Proc. the 2002 SIAM
International Conference on Data Mining, 2002, pp. 315-332.

[7] T. Hassan and R. Baumgartner, “Table recognition and understanding

from pdf files,” in Proc. ICDAR, 2007, pp. 1143-1147.
[8] F. F. Babatunde, B. A. Ojokoh, and S. A. Oluwadare, “Automatic table

recognition and extraction from heterogeneous documents,” Journal of
Computer and Communications, vol. 3. pp. 100-110, 2015.

[9] E. Oro and M. Ruffolo, “PDF-TREX: An approach for recognizing and

extracting tables from PDF documents,” in Proc. ICDAR 2009, 2009,
pp. 906-910.

[10] TET. [Online]. Available: https://www.pdflib.com/products/tet/
[11] Annotorious. [Online]. Available: https://annotorious.github.io/

[12] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R. Silverman, and

A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 24, pp. 881-892, 2002.
[13] M. Ester, H. P. Krieger, J. Sander, and X. Xu, “A density-based

algorithm for discovering clusters in large spatial databases with

noise,” in Proc. the 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, 1996, pp.

226-231.
[14] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed,

“DeepDeSRT: Deep Learning for Detection and Structure Recognition

of Tables in Document Images,” in Proc. 14th IAPR International
Conference on Document Analysis and Recognition.

[15] T. Ojala, M. Pietikäinen, and D. Harwood, “Performance evaluation of
texture measures with classification based on Kullback discrimination

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

590

http://ieg.ifs.tuwien.ac.at/pub/yildiz_iicai_2005.pdf

of distributions,” in Proc. the 12th IAPR International Conference on

Pattern Recognition, 1994, vol. 1, pp. 582-585.
[16] T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of

texture measures with classification based on feature distributions,”

Pattern Recognition, vol. 29, pp. 51-59, 1996.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and

A. C. Berg, “SSD: Single shot multibox detector,” Ser. Lecture Notes
in Computer Science, vol. 9905, pp. 21–37, 2016.

[18] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster RCNN: Towards
real-time object detection with region proposal networks,” Microsoft

Research, Tech. Rep., 2015.

[19] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in
deep learning based natural language processing”, IEEE

Computational Intelligence Magazine, vol. 13, no. 3, pp. 55-75,
August 2018.

[20] PDF in 2016: Broader, deeper, richer. [Online]. Available:

https://www.pdfa.org/pdf-in-2016-broader-deeper-richer

Nikitha Rachapudi is a data scientist at CloudIX.

She holds a post graduate degree in business

analytics, and a bachelor’s degree from Anna
University, Chennai. She has worked on proving

analytics solutions for multiple domains including
insurance, telecommunication and manufacturing.

She is an algorithm enthusiast who has keen interest

for research in the areas of deep learning and
artificial intelligence.

Lakshmipathy Ganesh is a data scientist at
CloudIX. He holds a bachelor’s degree from Anna

University, Chennai, India. He has worked with
healthcare, manufacturing and operations domains

with strong foundations in big data, analytics and

operations research. His interest lies in building
conversational bots, AI and deep learning.

Abinaya Sekar is a software developer for CloudIX.

She holds a bachelor’s degree from Anna University,
Chennai. She specializes in application development,

client/server and NoSQL database modeling. She is

particularly interested in cognitive services, BOT

technology and cloud services. She is always keen to

be part of challenging projects.

Anand KS is a UI developer, at CloudIX. He holds a

bachelor’s degree from Anna University. He is a

passionate UI developer who enjoys turning complex
problems into simple, beautiful and intuitive interface

designs. He has 3 years of commercial experience as a
UI developer, providing responsive and interactive

front-end development, and has specialized in

HTML, CSS, react JS, JavaScript and react native.

Rajkumar Sakthibalan is a strategic technology

research and digital transformation consultant at
CloudIX. He holds a post graduate diploma in

bioinformatics from Institute of Genomics and
Integrative Biology, Delhi, India and a bachelor’s

degree from University of Madras, Chennai, India.

He provides digital transformation consulting,
technology road mapping, research consulting in the

areas of industry 4.0, bots and AI.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

591

https://www.pdfa.org/pdf-in-2016-broader-deeper-richer

