
  

  

Abstract—Commercial data has been preserved digitally in 

portable document format (PDF) for its ease of encapsulating 

multiple data formats. In this digitization era, there comes a 

need to capture and store this data in structured format to 

facilitate its access for automated b2b services and business 

intelligence. In this paper, we propose a framework that 

automates discovery and extraction of tabular data 

incorporating both artificial and human intelligence. The 

framework involves clustering and heuristics to group cartesian 

location of text and spaces in a page to determine a table. The 

discovered table is then validated by the user using a 

user-interface designed to moderate the determined boundaries 

and fed back to the layout knowledge repository. The table data 

obtained is extracted as JSON key-value pairs which can then 

be loaded into any database. The framework thus provides 

enhanced accuracy and continuous human assisted learning for 

the automated document digitization process.  The knowledge 

repository is further used to train the machine to generate 

document templates to be used for processing unseen 

documents. However, this paper concentrates on the discovery 

of structured data alone. 

 
Index Terms—Clustering algorithm, spatial analysis, pdf 

table extraction, heuristics, human interaction. 

 

I. INTRODUCTION 

Over the years with the evolution of technology, important 

data once stored in paper is now being stored digitally. PDF is 

looked as the most viable solution as it is independent of any 

hardware and operating system; and can be transported and 

accessed over any channel. [1] Educational institutes, 

government agencies, research centers, construction firms are 

a few major organizations where PDFs have become 

indispensable [2]. 

Due to the high availability of PDF documents, there is a 

huge scope to mine intelligence from them to make better 

business decisions. This necessitates the automation of the 

data-entry process of searching values from individual PDFs 

and storing them into databases. This ensures an error-free 

and speedy process, reducing the burden on the process staff, 

thereby reducing the cost invested by many folds. The data 

generated can directly be consumed to find patterns or 

solutions for many business problems. 

In this paper, we assume that a major chunk of significant 

data would be stored as tables [3], as it is one of the best ways 

to communicate complex details to the human mind. 

Therefore, we focus on automating the extraction of tabular 

data and converting them to key-value pairs which can then 
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be consumed by any application. We also believe that the 

machine would learn better by active learning i.e. with the 

help of little human intervention [4]. Hence, we provide a 

user interface, where the user can verify if the tables detected 

automatically falls within his scope of requirement. 

Otherwise, the user can manually mark his selection and this 

information would be fed back to the machine, for future 

training. 

This framework considers a PDF document as a cartesian 

plane, on which lies the box coordinate of every word of the 

page. We map the human-eye table detection process to 

create rules that define a cluster of coordinates as fa potential 

table. Our algorithm works without considering the 

horizontal and vertical runs, which are usually used to 

identify a table in many of the current solutions. This 

approach also makes the data extraction process independent 

of any language. Thus, our framework also works for 

documents that do not have the horizontal and vertical lines 

bounding a table. Our framework creates templates with a 

large set of similar PDFs. These templates can then be 

accessed directly to extract the desired data from PDF 

documents with similar layout. 

Here we explain the basic working of our system with a 

single PDF document, which personifies any PDF sent into 

the system. 

 

II. RELATED WORK 

Extracting data from tables has been a key topic of 

research. Many researches have made use of algorithms to 

define building blocks and find the tables based on the 

horizontal and vertical lines detection. Yildiz et al. [5] 

developed a heuristic approach for detecting tables in PDF 

files and store the extracted data in a structured data format 

(XML) for reuse. This was also implemented with a GUI that 

gives the user the ability to adjust the detected tables. The 

work shows that purely heuristic-based approaches can 

achieve good results, especially for lucid tables. Davulcu et al. 

[6] proposed a clustering technique where each word is 

considered as tokens and the building blocks are generated 

based on the distance between the clusters and assigning the 

tokens to the respective clusters. Also, the user has to specify 

the header name of the table to extract the table. This method 

doesn’t do great in detecting header less tables. 

Hassan et al. [7] proposed a method for detecting tables in 

PDF files. They group tables into three categories: tables with 

both horizontal and vertical ruling lines, tables which contain 

only horizontal ruling lines, and tables where ruling lines are 

absent. Babatunde et al. [8] proposed an HMM based method 

to recognize table and extract data from the HTML tags. Oro 

et al. [9] proposed a table detection software called 
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Clustering and Human Supervision 
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PDF-TREX. The PDF-TREX system employs a heuristic 

approach (experience based) for table detection and structure 

definition. However, the system has the following limitations: 

1) Only single column documents are supported 2) Ruling 

lines or other visual aids on the page are not considered. 

Our paper attempts to enhance the existing methods by 

using clustering techniques along with our heuristic rules and 

facilitates a feedback mechanism to the system for an 

iterative improvement in the overall system accuracy. 

 

III. SYSTEM ARCHITECTURE 

The system we propose involves recognition of tables by 

grouping the words in the document, represented as 2D 

coordinates on a Cartesian plane. The coordinates of the 

words are generated using a pdf to xml converter. These 

coordinates are then used for detecting and locating tables. 

Fig. 1 depicts the overall architecture of our system and Fig. 2 

explains in detail about the automated table extraction 

process. 

 

 
Fig. 1. Overall architecture. 

 
Fig. 2. Automated extraction flow. 

 

A. Overall Setup 

The Document Corpus we consider for this paper includes 

documents with tabular data published as PDF documents. 
The preliminary step involves figure out the coordinates of 

each word in the PDF by representing them in a 2D Cartesian 

plane. To achieve this, we use the Text and Image Extraction 

Toolkit (TET) [10]. TET gives the text contents of a PDF as 

Unicode strings, detailed color, font information as well as 

the position on the page.  
TET acts as a PDF to XML generator since TET converts 

PDF documents to an XML-based format called TETML 

which contains text, page metadata as well as resource 

information. The XML tags containing the metadata of the 

words, color, glyph and text positions are recorded as part of 

the data for future work. The text positions are captured in 

Points (pts), as the unit of measurement. 
These features are used throughout the table detection 

process, template generation and knowledge extraction. The 

system involves a GUI which shows all the words in the 

document and on clicking the word, will take the user to the 

exact page and highlights for instant visibility. This gives a 

quick access to key words the user might be interested in 

looking at. 

The document for which the data is to be extracted is 

converted to image and displayed to the user along with the 

mapping of the table regions on the image. The GUI also has 

an option where the user is given the ability to adjust the 

tables, we have identified through heuristic clustering and 

classification algorithm. 

We enable the user with two options. The user can choose 

one of these options to select the table regions: 

• Manual table selection 

• Automated table selection 

The manual table Selection gives full control to the users to 

select the table regions by click and drag action. To facilitate 

this, we use a third-party library called Annotorious [11] 

which allows the users to draw rectangular annotations over 

PDF pages or edit an existing rectangular annotation or even 

delete one. Once the right tables are selected by the user, the 

coordinate layout is recorded and is stored as a template 

containing the coordinates for tables of that PDF document. 

Data in the table selected by the user is also extracted and 

stored. The layout knowledge base gets updated with the new 

metadata of tables and the data in the tables is stored as JSON 

key-value pairs in the target database. This facilitates the user 

to simply drag through the table regions and record this data, 

without having to read the document and type. 
The automated table selection method automatically 

identifies the potential table regions in the PDF document 

using the coordinate clustering algorithm and table cluster 

identification process, which are discussed in detail in the 

next section. The identified potential table regions are then 

displayed to the user. 

B. Brief Overview of Automated Table Detection Process 

Once the coordinates of the words are grouped into clusters 

by their distance or density, they are fed into a heuristic 

classification algorithm to find out the potential table clusters 

among all the clusters that have been identified.  
The algorithm considers features that we have defined for a 

potential table like: the alignment of words, repetition of 

words with the same  alignment over successive rows; 

definitive line or column spacings; cartesian distance 

between successive words that distinguishes a paragraph 

from a table. 
With the help of these features, the algorithm gives a 

binary output to decide if the cluster can potentially be a table. 

Once the algorithm finds the possible table clusters, we 

determine its boundary coordinates and display it to the user 

through the GUI to make any adjustments if the table region 

predicted is not accurate. Once the user makes the necessary 

adjustments to the table boundaries, the boundary 

coordinates are stored in the PDF table coordinate DB. The 

data in those table regions are extracted as key-value pairs 

and stored to the knowledge base. 
The key distinguishing feature of our system from other 

existing systems lies in the fact that the user has more control 

in figuring out the right tables by adjusting the tables 

identified through the Automated table selection method. The 

user adjusted table metadata with the corrected coordinates of 

table regions are saved as a new PDF template for that PDF. 

Thus, the existing layout database gets updated with the new 
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metadata of tables. Once the tables are identified, the 

metadata is recorded in the PDF template generation process. 

The generated template contains the following data: PDFId 

of the document, Page Number, ClusterID, Cluster 

coordinates: upper left x and y coordinates, cluster width and 

height for all the clusters that were identified as potential 

tables. 
The layout information of the PDF documents thus 

deduced, are preserved as a function of the documents 

publishing context, represented by document metadata like 

publisher, title, published date, author and copyright 

information, publishing software subject to availability. This 

context metadata is fed forward as features for predicting 

layouts of unseen documents. This process gets repeated for 

every new PDF uploaded for extraction and the algorithm 

auto learns the possible tables. 

 

IV. TABLE DETECTION ALGORITHM 

For detecting tables in every page, we use machine 

learning algorithms along with a set of predefined rules.  

We define the spatial reference of a word-box as {llx, lly, 

urx, ury} where (llx, lly) and (urx, ury) are lower left and 

upper right cartesian coordinates. We compute (midx, midy) 

as the average of the lower and upper box coordinates. We 

also compute the area of a word-box using the cartesian 

formula for a rectangle. Fig. 3 shows a plot of a llx vs lly of a 

single page. This shows that the alignment of the words is 

neatly captured by plotting them using just one set of 

cartesian points. We iterate the below process for every page 

of a PDF using its PDFId and page number. 
 

 
Fig. 3. Cartesian plane with word coordinates. 

 

A. Coordinate Clustering 

In this algorithm, we use existing clustering techniques to 

group the word coordinates as table or paragraph (non-table) 

clusters. Tables that spread across the width of the page, have 

columns that are spaced farther than that of the columns of a 

smaller table. 

K-means algorithm [12] which works using centroid and 

Euclidean distance works good on closely spaced points 

whereas DBSCAN [13] which uses density for clustering 

captures widely spread data points which are spaced 

systematically.  

To encompass accurate table detection from different page 

formats, we use an approach to automate the clustering 

technique selection. We calculate the distance between words 

in a line and look at their distribution spread. When the 

second quartile (50th percentile) and the 3rd quartile (75th 

percentile) are almost the same, we pass the coordinates of 

that page to K-means. When the distribution drastically 

changes, i.e. the 2nd and 3rd quartile vary by a huge margin, 

we use DBSCAN as the clustering technique. This ensures 

that table data are clustered accurately in both single and 

double columned documents. 

We use the Silhouette method to interpret the optimum 

number of clusters to be derived from K-means technique. 

For DBSCAN we set the hyper parameter epsilon to specify 

how close points must be to each other to be considered as a 

part of cluster. We consider that, to define a cluster as a table, 

there must be a minimum of 5 points in it i.e. a table header, 

two column headers and two column text words. Fig. 4 and 

Fig. 5 show a plot of the different clusters identified by 

K-means and DBSCAN respectively. 

With the different sets of clusters obtained, we have to 

classify each of them as  

• A potential table cluster vs a non-table cluster  

• Eliminate embedded clusters 

• Discard non-table data in a cluster identified as a table 

cluster. 

B. Identification of Potential Table Clusters 

For every cluster identified, iterate the below process for 

defining them as a potential table cluster, 
1. Subset the {llx, lly} coordinate of every word-box, and 

arrange both in ascending order. 

2. For every x-coordinate find how many y-coordinates 

exist. 

3. If there are a minimum of 2 y-coordinates for a given 

x-coordinate, we can assume it to be a potential column 

of a table, which is left aligned. 
 

 
Fig. 4. Clusters identified by K-means. 

 

Repeat the same procedure to identify right aligned 

columns using {urx, ury} and centrally aligned columns as 

{Midx, Midy}. If the cluster contains at least 2 columns, we 

can define it as a potential table cluster. 

C. Eliminating Embedded Clusters 

It is possible that clustering algorithms used above, detect 

a small table cluster inside {ulx, uly} a bigger table cluster on 

the outside {ulx, uly} as in Fig 6, and hence there comes a 

need to eliminate the smaller table. For this we iterate the 

below process for every cluster identified: 
if (ulx I > ulxo) &/or (ulyI > ulyo)     
if (widthi < width o ) &/or (heighti < height o) 
mark the table inside {ulx ,uly} as a non-table cluster 
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This eliminates the duplication of data being retrieved. 

D. Discard non-Table Data in a Table Cluster 

Paragraph lines close to a table gets appended to a table 

cluster. These lines are usually at the top or bottom end of the 

clustered rows. So, it is essential that we eliminate these 

non-table rows. Spacing information within these cluster data 

can again be used to discard the paragraph lines.  

 

 
Fig. 5. Clusters identified by DBSCAN. 

 

For every table cluster identified, iterate the below process 

for discarding the non-table lines, 

1. Check if there is any word in every line having llx or ulx 

or Midx, with the identified columns’ llx or ulx or Midx 

respectively. 

2. If not, verify if the distance between two consecutive 

words in the line is within a threshold of the minimum 

word distance in each pdf. If yes, mark it as a non-table 

line and make sure that the line is at the ends of the 

clustered lines before discarding it. 

3. Retain the rest of the lines. 

4. If there is any cluster found with just one line after 

discarding non-table lines, mark that cluster as a 

non-table cluster. 

 

 
Fig. 6. Embedded cluster. 

 

This process also eliminates the NOTE paragraph that is 

often seen below a table. For the table clusters thus identified, 

we calculate the coordinates of the rectangular boundary 

around it. We define {ulx, uly} of this cluster as {minimum 

of ulx, minimum of uly} of all the words in that cluster. {llx, 

lly} of the cluster as {maximum of lrx, maximum of lry}. 

Using these derived coordinates, we then compute the 

cluster’s width, height and total area. The area occupied by 

the word boxes are also computed as a sum of all the box 

areas. 

Further tuning of the table identification algorithm would 

be taken care of, when a user manually adjusts the table 

selection in the UI. 

 

V. EXPERIMENTATION AND DISCUSSION  

Since our algorithm is page specific, we evaluate multiple 

pages of PDFs with different table structures, individually. 

Furthermore, our evaluation is limited to validation of the 

coordinate clustering and table identification algorithm. In 

total, we evaluated 20 pages, with around 25 tables. 

Classification of clusters as tables or non-tables, being a 

binary classification problem, we use the confusion matrix as 

the algorithm evaluation metrics as shown in Fig. 7.  

 
Fig. 7. Algorithm evaluation metrics. 

 

For this dataset, 20 table clusters were classified correctly 

as tables, and 6 non-table clusters were classified as tables. 

The classification algorithm missed to identify 4 tables as 

tables and on the other hand identified 51 non-table clusters 

as non-tables. An accuracy of 89.88% was observed as the 

average success rate across every page. With an average 

Precision of 82.45% our algorithm’ prediction of a table to be 

table is precise 8 out of 10 times. Also, the heuristic 

classification algorithm has an average of 89.47% 

recognition rate of a table cluster, with an average F1 

measure of 83.15 % for detecting tables as in Table I. 
  

TABLE I: EVALUATION METRICS 

Metric Precision Recall F1-measure 

Values (%) 82.45 89.47 83.1  
 

The algorithm fails to identify small tables embedded 

between paragraph lines as tables. Also, images in a page, 

with structured marking of points, are classified as table 

regions. We also came across PDFs having multi-line 

wrapped text in columns of a table. The wrapped text was 

clustered as individual non-table clusters. A rule to merge 

such wrapped text clusters to a single table cluster would 

solve this issue. The difference in the font size of columns 

headers of a table to that of normal text can also be 

capitalized as a feature to mark table clusters, along with the 

spatial information in future work. Also, the area occupied by 

word boxes to that of the total area of the cluster can be used 

as features to enhance the detection process in the future. 

We believe that with human intervention to this algorithm 

using the user interface, the accuracy would improve over 

time. As more PDFs with similar format are added to the 

training corpus, a much higher classification rate can be 

achieved and would facilitate in template creation. 

 

VI. EXTENSION WORK 

A. Identifying Rows and Columns Using Deep Learning 

Once the table boundaries in a document are identified, it 

is essential that we capture the rows and columns information 
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to gather the data in them in a structured format. This is a 

complex problem to solve using traditional heuristic methods 

or feature-based machine learning models. This is because 

there are different layouts to stack the individual rows and 

columns in a tabular structure. Technical documents like 

component datasheets and financial reports have varying 

tables like simple descriptive tables storing key-value pairs 

and pivoted tables having aggregated financial values 

interspersed between every few rows. 

To encompass the various dimensionality of the structure 

of the tables, the latest Deep Learning techniques shall be 

used on the spatial distribution of words between rows and 

columns of boundaries. We can enhance the novel deep 

learning-based approach for table structure detection, 

DeepDeSRT [14], as proposed by Sebastian Schreiber et al. 

The PDF documents can be converted to image format. In 

addition to the preprocessing technique(s) mentioned by 

Sebastian et al., further processing can be done by creating 

Local Binary Patterns (LBP) [15], [16] of the image. An LBP 

image details minute edges, corners and flat pixels of the 

image more accurately, thereby improving the pixel detection 

and classification performance.  

LBP along with the ground truth annotation dataset of 

row-column boundaries of the tables can then be processed 

using Single Shot Multibox Detector (SSD) [17] or a 

Faster-RCNN model [18]. Heuristics on the probabilities 

returned on unseen data can be employed to retain the most 

accurately detected rows and columns. Once the physical 

boundaries of the rows and columns are defined using the 

bounding boxes from the Deep Learning model, we can 

extract the text data in that region from the original TETML 

file. The data derived is now in a structured format which can 

be used for further processing. 

B. Table Classification Using Deep Learning Models 

The structured data derived from various tables should 

then be stored in their respective information systems. Tables 

in a document might or might not have a Table Title to define 

the data it contains. Hence there comes a need to add domain- 

specific knowledge to the derived data corpus. We can assign 

a table title tag to each of the derived tables and perform a 

classification task for predicting table titles in new 

documents. Various Deep Learning based Natural Language 

Processing (NLP) techniques can be employed to facilitate 

this. 

Different Deep Learning models have proven very 

effective in the NLP tasks with advancements in the 

optimized Deep learning architectures (CNN’s, RNN’s, etc.) 

[19]. These models require a good amount of training data for 

accurate predictions. The training data for the modelling can 

be prepared by tagging as many tables as possible in the 

documents using a tagger. This can be done by tagging the 

tables into appropriate categories, with specific tags for 

specific tables. With the tagged training data, the neural 

networks can be trained and then be used to identify distinct 

tags on new unseen tables. Once the new documents are 

tagged by the model, the derived data can be stored in 

information systems. 

 

VII. CONCLUSION 

With an estimated 2.5 trillion PDFs created each year [20], 

the usage of PDFs has only been growing. With such a rich 

pool of digital data, in this analytics age, there is a huge need 

of information to be derived from them for data-oriented 

decision making. But the process has almost always been 

cumbersome, involving a lot of man-hours, making it an 

expensive affair. 

Hence there comes a need to automate the process of 

extracting specific details from these documents and store 

them in a more intelligible format. In this paper, we proposed 

a system to select the required content manually or 

automatically detect the tables. Furthermore, the data from 

these tables are sent back to the user as JSON key-value pairs. 

With larger data corpus we cluster identified tables of a 

page to create PDF template. This facilitates the user to send 

a new document to directly fetch the required knowledge, 

skipping the selection process. 

The automatic table detection process goes through a 

predefined set of rules using the spatial spread of the words, 

which are used to label clusters of words as a table or 

non-table cluster. Thus, future work could focus on 

automating the cluster classification by creating table specific 

features in addition to spatial spread. This can also be 

auto-tuned, as the machine learns with more data in live 

usage.  
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