

Abstract—Particle Swarm Optimization (PSO) algorithm is

an intelligent optimization algorithm originating in bird

predation behavior, which is widely used in functional

optimization, neural network training, pattern classification,

system control and related field. Although the Particle Swarm

Optimization algorithm’s convergence speed is very fast, it is

easy to cause premature convergence and poor performance in

multi-peak problems. In order to solve these shortcomings, this

paper proposed a Cooperative Particle Swarm Optimization

algorithm based on normal Cloud Model with cloud mutation

operator, and improved it in three aspects. Firstly, the normal

cloud mutation operator was added in the process of particles

update, which improved the search performance of Particle

Swarm Optimization algorithm on multi-peak problems.

Second, this paper used the Huffman tree's construction process

to divide the particles into different sub-populations, and this

method ensured the diversity of the population. Thirdly, the

whole encoding process was saved and transmitted by using the

paradigm Huffman coding, which reduced the spatial

complexity of the algorithm. At the same time, the inertia

weight in the algorithm was optimized by the method of

adaptive inertia weight and stochastic inertia weight, which

balanced the local and global search ability of the particles and

ensured the synergy of the algorithm. In this paper, we used the

simulation experiment method to conduct 50 independent

experiments on four common functions. By comparing the

mean of optimal solution, variance, average convergence time,

average convergence generation and other indicators of PSO,

CH-PSO, HC-PSO and CH-HC-PSO algorithms, a

phenomenon was found that the cooperative Particle Swarm

Optimization algorithm with cloud mutation operator based on

normal Cloud Model is better than the other three algorithms in

performance, which effectively solves the problems of

premature convergence and multi-peak optimization

performance. This algorithm was applied to solve the

high-dimensional problems effectively.

Index Terms—Cloud model, cloud mutation operator,

paradigm Huffman coding, particle swarm optimization.

I. INTRODUCTION

Originating in the simulation of bird predation behavior,

the Particle Swarm Optimization (PSO) algorithms an

intelligent optimization algorithm which was proposed by

Kennedy and Eberhart in 1995 [1]. There are many

advantages of this algorithm, such as fast convergence speed,

few adjustment parameters and simple structure and so on.

Hence, it is widely used in functional optimization, neural

Manuscript received May 13, 2019; accepted August 7, 2019. This work

was supported by Science and Technology Projects of Guangdong Province,
China, under Grant Nos. 2016B010127001.

J. Luo and Y. Gao are with the School of Computer Science and

Education Software, Guangzhou University, 510006 China (Corresponding
author: Y. Gao; e-mail: 2111706006@e.gzhu.edu.com;

gaoying_gzhu@outlook.com).

network training, pattern classification, system control and

related field [2], [3]. There is no doubt that the Particle

Swarm Optimization algorithm has the advantage of fast

convergence speed. However, there are still many problems

in the execution of the algorithm. For instance, since all the

particles are close to the global optimal direction, the

particles lose diversity in the process of evolution, which are

easy to cause premature convergence [4]. Since the particles

learn each other, constructing neighborhood in the entire

D-dimensional space, a "dimension disaster" would be

formed when the search space dimension is high.

The Cloud Model (CM) algorithm is an uncertainty

conversion model between qualitative concept and

quantitative representations, expressed by linguistic values

and proposed by Dr. Li Deyi from the basic principles of

species evolution in nature [5], [6]. These methods revealed

the randomness and fuzziness between linguistic values and

deterministic exact values.

At present, many scholars at home and abroad combined

Cloud Model algorithms with other intelligent optimization

algorithms and proposed many new algorithms. For example,

the genetic algorithm and Cloud Model algorithm were

combined to propose an evolutionary algorithm based on

Cloud Model in [7]. And a cloud generator was used to

replace the crossover and mutation operators of genetic

algorithms and a cloud genetic algorithm was proposed in [8].

Whereas the Cloud Model algorithm was introduced into the

evolution mechanism of Particle Swarm Optimization

algorithm in [9] and [10], and these methods improved

effectively the optimization ability of Particle Swarm

Optimization algorithm.

Through the improvement of the above algorithm, the

particles were validly prevented from falling into the local

optimal solution, and the diversity of the population was

enhanced, and the good result was obtained in the function

optimization. However, the above research results will still

cause premature convergence, and there is still room for

improvement in the optimization of multi-peak problems.

Aiming at the shortcomings of the standard Particle Swarm

Optimization algorithm which is easy to cause premature

convergence and its poor performance in multi-peak

problems, this paper proposed a cooperative Particle Swarm

Optimization algorithm based on normal Cloud Model with

cloud mutation operator. The algorithm absorbs the

advantages of the above research results, and it made related

improvements in three aspects. First, the randomness and

fuzziness of the Cloud Model algorithm were used to

improve the search performance of the Particle Swarm

Optimization algorithm on multi-peak problems. Second, the

method in [11] was improved and applied in this paper. And

the Huffman tree's construction process was used to divide

Cooperative Particle Swarm Optimization Algorithm with

Cloud Mutation Operator Based on Normal Cloud Model

Jiahui Luo and Ying Gao

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

554doi: 10.18178/ijmlc.2019.9.5.839

the subpopulation of the Particle Swarm Optimization

algorithm, the tree was divided two children of the same

parent node into different subpopulations. In the middle, the

diversity of the population was guaranteed. Thirdly, the

paradigm Huffman coding was used to save and transmit the

entire encoding processing the process of encoding with

Huffman tree. Through the improvement of this algorithm,

the space complexity of the algorithm and the waste of

storage space were reduced by these methods. By using the

Cloud Model algorithm and Huffman coding to optimize the

Particle Swarm Optimization algorithm, the particles are

largely prevented from falling into the local optimal solution,

which achieves the goal of limiting the premature

convergence of the particles.

II. PARTICLE SWARM OPTIMIZATION ALGORITHM

The Particle Swarm Optimization algorithm is an

intelligent optimization algorithm proposed by Kennedy and

Eberhart in 1995 [1]. In the Particle Swarm Optimization

algorithm, the potential solution for each optimization

problem is a particle in the search space. There are many

parameter of each particle, including the fitness value defined

by the optimized function, the velocity, direction and

distance of flight.

The basic principle of the Particle Swarm Optimization

algorithm generates a group of random particles during

initialization, and then it generates an optimal solution by

iteration. In the process of iteration, the particles update

themselves by tracking individual optimality and population

optimality. Finally, the optimal solutions in the optimization

problems are found.

If the population size of the particles is M and the target

search spaces’ dimensional is D, the evolution process of

each particle’s learning are as follow:

)()(2211

1 k

idgd

k

idid

k

id

k

id XPrcXPrcVV −+−+=+ (1)

11 ++ += k

id

k

id

k

id VXX (2)

In this formula, the parameter k

idX represents the position

of the ith (i=1, 2… M) particles after the kth iteration in the dth

search space. The parameter 1+k

idV represents the position of

the ith particle after the (k+1)th iteration in the d-dimensional

search space. The parameter k

idV represents the velocity of the

ith particle after the kth iteration in the d-dimensional search

space. The parameter 1+k

idV represents the velocity of the ith

particle after the (k+1)th iteration in the d-dimensional search

space. The parameters 1c and
2c are learning factors, they

are greater than zero, which are called acceleration

coefficients. Generally, they equal 2. The parameters 1r and

2r are random numbers on [0, 1]. The parameter idP

represents the optimal position of the ith particle in the

d-dimensional search space. The parameter gdP represents

the optimal position of the group in the d-dimensional search

space.

On the basis of the basic Particle Swarm Optimization

algorithm, Shi et al. published a paper at the 1998

International Conference on Evolutionary Computation [12],

which modified the Particle Swarm Optimization algorithm

and introduced the inertia weight . It improve to formula

(1), the new formula is as follows:

)()(2211

1 k

idgd

k

idid

k

id

k

id XPrcXPrcVV −+−+=+ (3)

The formula consists of three parts. The first part is the

“inertia” or “momentum” part, which reflects the habit of

particle motion. The second part is the “cognitive” part,

which reflects the memory of particle motion for its own

experience. The third part is the “social” part, which reflects

the ability of particles to share historical experience through

group cooperation.

Although the Particle Swarm Optimization algorithm has a

simple structure and a fast running speed, when searching in

the solution space, some particles would be happen an

"oscillation" phenomenon near the optimal solution, which

affects the accuracy of the result. In order to improve the

global search ability of the algorithm, the parameters of the

Particle Swarm Optimization algorithm need to be tuned.

According to formula (2) and formula (3), the parameters

affecting the Particle Swarm Optimization algorithm mainly

include inertia weight and acceleration factors
1c and

2c .

Inertia weight is a very important parameter in the Particle

Swarm Optimization algorithm. It describes the degree of

influence of historical factors on current factors in the itera-

tive process. Larger is beneficial to improve the global

search ability of the algorithm, whereas smaller can en-

hance the local search ability of the algorithm.

In most Particle Swarm Optimization algorithm

improvements, in order to maintain the search ability and

convergence of the algorithm, the common methods include

linear decrease weight method, adaptive inertia weight

method and stochastic inertia weight method.

A. Linear Decrease Weight Method

The first method is using linear decrease weight method to

control inertia weight’s parameter settings. The formula is as

follows:

max

minmax
max *

t
t

−
−= (4)

In formula (4), the parameter
max is the maximum value

of the inertia weight ; the parameter
min is the minimum

value of the inertia weight . The parameter t is the current

iteration number of the population, and the parameter maxt is

the maximum number of iterations that the population can

reach. By adjusting the inertia weight , the synergy of the

algorithm is guaranteed.

B. Adaptive Inertia Weight Method

The second method is using adaptive inertia weight

method to control inertia weight’s parameter settings. The

formula is as follows:

max min min

max min

(-)*(),

,{ avgf f f f

f f

−

= (5)

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

555

In the formula (5), the parameter
max is the maximum

value of the inertia weight ; the parameter
min is the

minimum value of the inertia weight . The parameter f

represents the current objective function value of the particle.

The parameter
avgf represents the average target value of all

the current particles, and the parameter minf represents the

minimum target value of all the current particles. Since the

inertia weight changes as the objective function value of the

particle changes, it is called an adaptive weight. By adjusting

the inertia weight , the global search ability and local

search ability of the Particle Swarm Optimization algorithm

are effectively balanced.

C. Stochastic Inertia Weight Method

The third method is using stochastic inertia weight method

to control inertia weight’s parameter settings. The inertia

weight is set to a random number obeying the Gaussian

distribution. And the inertia weight is continuously and

dynamically adjusted by the influence of the random factor to

eliminate the local premature convergence, the search

performance of the algorithm was improved in the global. In

the early stage of the algorithm search, the random inertia

weight was used to ensure that has the opportunity to take

smaller values, thus t the convergence speed of this algorithm

was accelerated. In the later stage of the algorithm search, the

random inertia weight was used to ensure that has the

opportunity to take larger values, thus the convergence

accuracy of this algorithm was improved. The optimization

parameter is setting by using random inertia weight. The

formulas are as follow:

* (0,1)N = + (6)

 *)(minmaxmin −+= (7)

In the formula (6), N (0, 1) represents a random number of

a standard normal distribution, and the parameter

represents a random number between 0 and 1. Since the

selected inertia weight is random, the influence of historical

speed on the current speed is also random. So the method can

balance the global search ability and the local search ability,

and also it can overcome the shortcomings of linear decrease

inertia weight.

D. Parameter Adjustment

The above three methods are widely used in various

optimization problems, but in the solution of many

optimization problems, using the linear decrease weight

method to reduce the inertia weight cannot be well matched

with the optimization process. So we need to compare the

latter two methods, and we would choice the methods to

finish this experiment.

III. CLOUD MODEL ALGORITHM

The Cloud Model is a mathematical model that

quantitatively transforms deterministic knowledge,

portraying the randomness and ambiguity of people's objects

in the objective world [5], [6]. It combines qualitative

analysis with quantitative analysis to provide mathematical

methods for the processing and analysis of objective things.

The definition of the Cloud Model is shown in Definition 1.

Definition 1 [6], [13]: U is assumed to a quantitative

neighborhood expressed by exact values, and C is the

corresponding qualitative concept on U. If any element x in

the neighborhood U has a random number with a stable

tendency, the distribution of x on the neighborhood U is

called a Cloud Model (Cloud), and this metric is denoted as

C(x). Each x is called a cloud drop. When C(x) obeys a

Gaussian distribution, it is called a normal Cloud Model.

The characteristics of the Cloud Model are characterized

by the mathematical expectation Ex, entropy En and super

entropy He [13]. These three variables reflect the overall

quantitative characteristics of the Cloud Model qualitative

concept C. Mathematical expectation Ex is a typical sample

of conceptual quantification, which is the point in the

neighborhood space that it can represent the qualitative

concept C. Entropy En refers to the range of cloud drop

groups that it can be accepted by the qualitative concept C in

the neighborhood space. It reflects the uncertainty of the

qualitative concept and describes the fuzziness of the Cloud

Model. The larger the value of entropy En, the greater the

fuzziness and randomness. The super-entropy He is a

measure of uncertainty, which represents the degree of

condensation of cloud droplets, which is the entropy of

entropy. The larger the super-entropy He, the greater the

uncertainty. The algorithm for generating cloud drops is

called a cloud generator. Among them, the normal cloud

generator is a special cloud generator, and the algorithm is

executed as shown in Algorithm 1.

Algorithm 1: Basic Normal Cloud Generator [14]:

INPUT: {Ex, En, He}, n

OUTPUT: {(x1, μ1), (x2, μ2)… (xn, μn)}

for i = 1 to n

' RAND(,)En En He= // generate a normal random

number with an expected value of En and a variance of He

RAND(, ')ix Ex En=

2

2

()

2(')

i

ix Ex

Ene

− −

=

drop(ix , i) / / generate the ith cloud drop

IV. COOPERATIVE PARTICLE SWARM OPTIMIZATION

ALGORITHM

Through the optimization of the inertia weight , the

speed of particle flight is effectively controlled, and the

global and local search ability of the particle is balanced. In

order to improve the convergence speed and optimization

performance of the algorithm whereas ensuring particle

diversity, a cooperative Particle Swarm Optimization

algorithm with cloud mutation operator based on normal

Cloud Model is proposed in this paper.

In this algorithm, the co-evolution of each particle is

implemented based on the Huffman tree. The Huffman tree

refers to the tree with the smallest weighted path. The

weighted path formula is:

1

WPL W
n

k k

k

l
=

= (8)

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

556

In this formula, the parameter kl is the path length from

the root to the kth node. The parameter
kW is the weight of

the kth node. The parameter n is the sum of the points, and

when the WPL is the minimum, the tree is a Huffman tree,

and the relative path of the weight is the shortest.

After the Huffman tree is successfully constructed, the

Huffman tree can be encoded. Among them, the left child

uses "0" to indicate encoding, whereas the right child uses "1"

to indicate encoding. And the root encoding from the root

node to the leaf node is called Huffman encoding.

In this paper, the construction process of Huffman tree is

applied to the Particle Swarm Optimization algorithm. The

individual optimal solutions of the particle are used as the

weight of each node. By comparing the weights, a complete

Huffman tree is constructed step by step. According to the

principle of Huffman coding, Huffman coding is performed

on the individual optimal solutions of each particle.

Since the optimal values of the two children of the same

parent node in the Huffman tree are the closest, in order to

avoid the algorithm falling into local optimum and leading to

premature convergence, these nodes were divided the left and

right child nodes of the same parent node into two

sub-populations in this paper. In this way, the diversity of the

population is guaranteed and the performance of the

algorithm is improved. Since the Huffman tree is a binary tree,

the population can be divided into a left subgroup and a right

subgroup when the population was divided. In the initial

stage, we are using the construction process of the Huffman

tree to construct the population, it is not necessary to define

the number of populations, and the particles is divided by the

left subgroup and the right subgroup of the binary tree. This

method balances the global and local search capabilities of

the entire population. In the search process, the left subgroup

and the right subgroup are searched independently, and the

local optimal solution and the global optimal solution of the

particle are searched in the left subgroup and the right

subgroup respectively. Finally, the evolutionary information

is shared by the information version to achieve the purpose of

co-evolution.

However, since the Huffman tree needs to know the

structure of the Huffman tree during the encoding process.

And the encoder saves and transmits the Huffman tree for the

decoder. This process results in waste of storage space and

increased overhead. Therefore, the Huffman trees need to be

improved to reduce unnecessary waste. The paradigm

Huffman coding was originally proposed by Schwartz [1964],

which is a subset of Huffman coding [15]. The structure of

the Huffman coding tree can be reconstructed with very little

data using some mandatory rules. Paradigm Huffman coding

requires that code word of the same length be binary

representations of consecutive integers, whereas the first

code with the smallest length of the agreed code word starts at

0. It is calculated as follows:

() 2 (1) 1)f i f i= − +（ (9)

It can be seen from the above formula that the decoder can

recover the structure of the entire Huffman coding tree

according to the length of each code word, without saving

and transmitting the entire encoding process, so the waste of

storage space can be reduced by this method.

V. COOPERATIVE PARTICLE SWARM OPTIMIZATION

ALGORITHM WITH CLOUD MUTATION OPERATOR BASED ON

NORMAL CLOUD MODEL

This paper proposed a cooperative Particle Swarm

Optimization algorithm based on normal Cloud Model with

cloud mutation operator. It combines the advantages of Cloud

Model and cooperative Particle Swarm Optimization

algorithm, which not only it improves the fuzziness and

randomness of the algorithm, but also it ensures the diversity

of the population and increases convergence speed.

When the cooperative Particle Swarm Optimization

algorithm with Cloud Mutation Operator based on normal

Cloud Model is used to find the extreme value, it is necessary

to set the metric to determine whether the particle falls into

the local optimal solution. The method of judgment is shown

in Definition 2.

Definition 2: Given the thresholds N and K in advance,

when the global extreme value has not evolved for N

consecutive generations or the evolutionary path amplitude is

less than K, the particles can be considered to be locally

optimal, and all particles are passed through the normal cloud

according to the global extreme value. Finally, the generator

performs the mutation operation.

When searching for the optimal solution, if the current

solution has a large fitness, the current value is very close to

the optimal solution. In this case, it should be searched in a

small range to improve the convergence speed of the

algorithm. Instead, you need to expand your search to prevent

premature convergence. According to this basic principle, the

CH-PSO algorithm is improved and the CH-HC-PSO

algorithm is designed. The implementation steps of the

algorithm are as follows:

Step 1: Setting the parameter values such as the number of

particle groups, the number of dimensions, and the maximum

number of iterations;

Step 2: Setting the parameter values of the initialization

inertia weight and the acceleration factor;

Step 3: Randomly initializing the position and velocity of

the particles in the population;

Step 4: Calculating the fitness value of the particle under

the constraint condition;

Step 5: Calculating the individual extreme value Pibest and

the global extreme value Pgbest;

Step 6: Constructing a Huffman tree according to the

individual extreme value Pibest, and generating a paradigm

Huffman coding of the Huffman tree;

Step 7: The population is divided into two sub-populations,

with the last bit of the Huffman coding as the division

criterion. The left child uses "0" to indicate encoding,

whereas the right child uses "1" to indicate encoding.

Step 8: The two sub-populations calculate the fitness value

of the particle separately, and obtaining the individual

optimal solution and the global optimal solution. The

individual extreme value of the left sub-population is

recorded as Plibest, and the global extreme value of the left

sub-population is recorded as Plgbest. The individual extreme

value of the right sub-population is recorded as Pribest, and the

global extreme value of the right subpopulation is recorded as

Prgbest.

Step 9: Comparing the global extreme value Plgbest of the

left subpopulation, the global extreme value Prgbest of the

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

557

right subpopulation, and the global extreme value Pgbest of

the population, and the results are shared into the information

board;

Step 10: Taking the maximum value to update the global

optimal solution Pgbest of the population;

Step 11: determines whether the variation threshold N is

reached. If it is reached, each particle is mutated according to

definition 2. Otherwise, the inertia weight is adjusted by

using formula (5) or formula (6);

Fig. 1. Algorithm running process.

Step 12: The velocity and the position of the particle are

updated by using formula (1) and formula (2);

Step 13: Determine whether the maximum number of it-

erations has been reached, if the condition is met, step 14 is

performed, and if the condition is not met, step 4 is returned;

Step 14: The optimization operation is terminated and the

particle optimal position is outputted.

The above algorithm combines the cloud model and the

particle swarm optimization algorithm to effectively prevent

premature convergence.

The algorithm flow diagram is shown in Fig. 1.

VI. SIMULATION AND RESULTS ANALYSIS

This experiment used four fitness functions to test. The

expressions of the fitness functions are shown in Table I. The

experimental dimension is 10 and the number of iterations is

2000. In these experiments, the fitness ranges are [-20, 20].

In order to optimize the inertia weight of the algorithm, we

conducted 50 experiments and compared the above four

methods of inertia weight processing. The comparison results

are shown in Table II and Table III.

Fig. 2. Adaptive evolution curve of Rosenbrock function.

Fig. 3. Adaptive evolution curve of Rastrigin function.

Fig. 4. Adaptive evolution curve of Griewank function.

From the analysis of Table II and Table III, the adaptive

inertia weight method runs more time, and its spatial

complexity is larger than other methods. However, from the

mean of the optimal solution of the four fitness functions, the

adaptive inertia weight method can get the most excellent

solution, so we choices the adaptive inertia weight method

for experiments. A comparison of the four methods of inertia

weight adjustment can be seen from Fig. 2 to Fig. 5.

In order to prove the effectiveness of the algorithm, we

compared four algorithms to test their performance. The

algorithms included the basic Particle Swarm Optimization

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

558

algorithm (BPSO), the Cloud Hyper mutation Particle Swarm

Optimization algorithm (CH-PSO), the Huffman-based

Cooperative Particle Swarm Optimization algorithm

(HC-PSO), Cooperative Particle Swarm Optimization

algorithm with Cloud Mutation Operator Based on Normal

Cloud Model (CH-HC-PSO). The specific results of the

comparative experiment are shown in Table IV and Table V.

Fig. 5. Adaptive evolution curve of Ackley function.

TABLE I: FITNESS FUNCTION LIST

Function Expression Range

Rosen-

brock

=

+ −+−=
n

1i

222
11)1()(100)(f iii xxxx

 X∈ [-2. 048,2.

048]

Rastrigin
=

+=
n

1i
i

2
2)10）x2cos（10-()(f ixx

X∈ [-5. 12,5. 12]

Griewank
=

+=
n

1i

n

i

2
3 1)(cos-*

4000

1
)(f

i

x
xx i
i

X∈[-600,600]

Ackley eeex
n

i ii x
n

x
n ++

−−=

=
−

20*20)(f
1

2
)2cos(

1
*

1
*2.0

4

 X∈[-32,32]

TABLE II: COMPARISON OF FOUR INERTIA WEIGHT PROCESSING METHODS

(A)
Function Method Worst Best Mean

Rosenbrock

Common -1. 7613e+07 -1. 7633e+07 -1. 7624e+07

LinearDec -1. 7603e+07 -1. 7634e+07 -1. 7618e+07

RandWeight -1. 7617e+07 -1. 7630e+07 -1. 7623e+07

AdaWeight -1. 7623e+07 -1. 7633e+07 -1. 7629e+07

Rastrigin

Common -3. 5335e+03 -3. 8098e+03 -3. 6871e+03

LinearDec -3. 3329e+03 -3. 6315e+03 -3. 4593e+03

RandWeight -3. 4798e+03 -3. 8615e+03 -3. 6268e+03

AdaWeight -3. 4790e+03 -3. 7647e+03 -3. 6594e+03

Griewank

Common -2. 4060 -2. 5049 -2. 4678

LinearDec -2. 2832 -2. 3687 -2. 3295

RandWeight -2. 3436 -2. 3935 -2. 3603

AdaWeight -2. 4191 -2. 5088 -2. 4735

Ackley

Common -21. 6584 -21. 7131 -21. 6852

LinearDec -21. 6106 -21. 7239 -21. 6806

RandWeight -21. 4792 -21. 6555 -21. 5964

AdaWeight -21. 6790 -21. 7725 -21. 7146

From the analysis of Table IV and Table V, the

Cooperative Particle Swarm Optimization algorithm with

Cloud Mutation Operator Based on Normal Cloud Model

runs more time, but the number of iterations about it are

smaller than the other three algorithms. However, it can be

seen from the average of the four algorithms compared that

the Cooperative Particle Swarm Optimization algorithm with

Cloud Mutation Operator Based on Normal Cloud Model has

the smallest fitness value. Therefore, the algorithm is better

than the other three algorithms in solving the optimization

problem.

TABLE III: COMPARISON OF FOUR INERTIA WEIGHT PROCESSING METHODS

(B)

Function Method Average running time

Rosenbrock

Common 1. 057

LinearDec 1. 117

RandWeight 1. 081
AdaWeight 1. 532

Rastrigin

Common 1. 413

LinearDec 1. 482
RandWeight 1. 478

AdaWeight 2. 272

Griewank

Common 1. 816
LinearDec 1. 857

RandWeight 1. 995

AdaWeight 3. 096

Ackley

Common 1. 929

LinearDec 2. 038

RandWeight 3. 389
AdaWeight 2. 239

TABLE IV: COMPARISON OF FOUR ALGORITHMS (A)

Function Algorithm Worst Best Mean

Rosenbrock

PSO 7. 313E+01 1. 926E+01 2. 911E+01

CH-PSO 7. 678E+01 2. 405E-01 2. 701E+01

HC-PSO 7. 857E+01 2. 373E-01 2. 207E+01
CH-HC-PSO 7. 278E+01 2. 178E-01 2. 133E+01

Rastrigin

PSO 8. 127E+01 1. 531E+01 4. 234E+01

CH-PSO 1. 291E+02 1. 496E+01 4. 295E+01

HC-PSO 1. 229E+02 1. 990E+01 4. 478E+01

CH-HC-PSO 1. 319E+02 1. 982E+01 4. 235E+01

Griewank

PSO 9. 408E-01 6. 207E-03 7. 676E-02

CH-PSO 4. 505E-01 6. 505E-16 4. 919E-02

HC-PSO 4. 490E-01 6. 661E-16 4. 649E-02

CH-HC-PSO 5. 648E-01 6. 419E-16 4. 549E-02

Ackley

PSO 8. 611E+00 3. 271E-01 4. 164E+00

CH-PSO 5. 394E-04 8. 963E-09 1. 202E-05
HC-PSO 4. 332E-04 8. 516E-09 1. 105E-05

CH-HC-PSO 4. 371E-04 8. 497E-09 1. 109E-05

TABLE V: COMPARISON OF FOUR ALGORITHMS (B)

Function Algorithm
Average running

time

Average number

of iterations

Rosenbrock

BPSO 0. 345 23

CH-PSO 0. 305 23

HC-PSO 0. 323 21
CH-HC-PSO 0. 411 20

Rastrigin

BPSO 0. 202 23

CH-PSO 0. 234 22
HC-PSO 0. 239 20

CH-HC-PSO 0. 379 18

Griewank

BPSO 0. 353 40
CH-PSO 0. 305 36

HC-PSO 0. 324 38

CH-HC-PSO 0. 387 26

Ackley

BPSO 0. 302 23

CH-PSO 0. 367 21

HC-PSO 0. 387 20
CH-HC-PSO 0. 479 16

VII. CONCLUSION

In this paper, a Cooperative Particle Swarm Optimization

algorithm with Cloud Mutation Operator Based on Normal

Cloud Model is proposed. The traditional Particle Swarm

Optimization algorithm is improved. The two children with

non-leaf nodes in the Huffman tree are closely related. In

principle, a large population is divided into two independent

sub-populations, and the evolution of the particles was

carried out independently, and the Huffman Cloud Model

algorithm was used to achieve rapid convergence, which

ensures the diversity of the population and avoids the

premature convergence. In terms of parameter control, this

paper uses the adaptive inertia weight strategy to make the

inertia weight continuously and dynamically adjusted by the

influence of current environment’s factors, so as to eliminate

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

559

the local premature convergence and improve the search

performance of the algorithm in the whole. Through the

combination of Cloud Model, Huffman coding and particle

swarm optimization, the algorithm achieves better

performance in both macro and micro, and reduces storage

space and improves storage utilization through the paradigm

Huffman coding.

ACKNOWLEDGMENT

We gratefully acknowledge the valuable cooperation of the

members of my laboratory in preparing this paper.

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.

the IEEE International Conference on Neural Networks, Piscataway,
NJ: IEEE Service Center, 1995, pp. 1942-1948.

[2] D. L. Donoho, “De-noising by soft-hresholding,” IEEE Trans. Inform

Theory, vol. 41, no. 3, pp. 613-627, 1995.

[3] D. X. Zhang, Z. H. Guan, and X. Z. Liu, “An adaptive particle swarm

optimization algorithm for dynamically changing inertia weight,”

Control and Decision, vol. 11, pp. 1253-1257, 2008.
[4] Y. G. Li, W. H. Gui, C. H. Yang, and Z. S. Chen, “An elastic particle

swarm optimization algorithm,” Control and Decision, vol. 01, pp.

95-98, 2008.
[5] D. Y. Li, H. J. Meng, and X. M. Shi, “Affiliated cloud and subordinate

cloud generator,” Computer Research and Development, vol. 6, pp.

15-20, 1995.
[6] C. Z. Liu et al., “Statistical analysis of normal cloud model,”

Information and Control, vol. 34, no. 2, pp. 236-239, 2005.

[7] G. W. Zhang et al., “Evolutionary algorithm based on cloud model,”
Chinese Journal of Computers, vol. 31, no. 7, pp. 1082-1091, 2009.

[8] Z. H. Dai et al., “Cloud genetic algorithm and its application,” Chinese
Journal of Electronics, vol. 35, no. 7, pp. 1419-1424, 2006.

[9] Y. J. Zhang, N. F. Shao et al., “A cloud-based particle swarm

optimization algorithm based on cloud model,” Pattern Recognition
and Artificial Intelligence, vol. 24, no. 1, pp. 90-96, 2011.

[10] H. Y. Xu, Y. B. Tian, and T. A. Huang, “Cloud adaptive particle swarm

optimization algorithm based on cloud variation,” Computer
Simulation, vol. 29, no. 11, pp. 251-255, 2012.

[11] J. J. Wang, “Huffman coding synergy particle swarm optimization

algorithm,” Computer and Modernization, vol. 6, pp. 82-85, 2015.
[12] Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,”

in Proc. the IEEE International Conference on Evolutionary

Computation, Piscataway, 1998, pp. 69-73.
[13] D. Y. Li, C. W. Liu, and W. Du, “Uncertainty artificial intelligence,”

Journal of Software, vol. 15, no. 11, pp. 1583- 1594, 2004.

[14] G. H. Liu et al., “Software implementation of cloud generator,”
Journal of Computer Applications, vol. 24, no. 1, pp. 46-48, 2007.

[15] T. Z. Shao and D. J. Shang, “An improvement of huffman coding

application — paradigm Huffman coding,” Science & Technology
Innovation Review, vol. 21, pp. 29-31, 2008.

Jiahui Luo received the B. S. degree from Guangzhou

University, Guangzhou, China, in 2015.

He is currently pursuing the M. S. degree with

Guangzhou University, Guangzhou, China. His main

research interests include data mining, pattern

recognition and intelligent optimization algorithms.

Ying Gao received the Ph. D. degree from the South

China University of Technology, Guangzhou, China,

in 2002.
He is currently a professor with the School of

Computer Science and Educational Software,

Guangzhou University, Guangzhou. His main research
interests include intelligent optimization algorithms,

pattern recognition and signal processing.

International Journal of Machine Learning and Computing, Vol. 9, No. 5, October 2019

560

