
  

  

Abstract—Particle Swarm Optimization (PSO) algorithm is 

an intelligent optimization algorithm originating in bird 

predation behavior, which is widely used in functional 

optimization, neural network training, pattern classification, 

system control and related field. Although the Particle Swarm 

Optimization algorithm’s convergence speed is very fast, it is 

easy to cause premature convergence and poor performance in 

multi-peak problems. In order to solve these shortcomings, this 

paper proposed a Cooperative Particle Swarm Optimization 

algorithm based on normal Cloud Model with cloud mutation 

operator, and improved it in three aspects. Firstly, the normal 

cloud mutation operator was added in the process of particles 

update, which improved the search performance of Particle 

Swarm Optimization algorithm on multi-peak problems. 

Second, this paper used the Huffman tree's construction process 

to divide the particles into different sub-populations, and this 

method ensured the diversity of the population. Thirdly, the 

whole encoding process was saved and transmitted by using the 

paradigm Huffman coding, which reduced the spatial 

complexity of the algorithm. At the same time, the inertia 

weight in the algorithm was optimized by the method of 

adaptive inertia weight and stochastic inertia weight, which 

balanced the local and global search ability of the particles and 

ensured the synergy of the algorithm. In this paper, we used the 

simulation experiment method to conduct 50 independent 

experiments on four common functions. By comparing the 

mean of optimal solution, variance, average convergence time, 

average convergence generation and other indicators of PSO, 

CH-PSO, HC-PSO and CH-HC-PSO algorithms, a 

phenomenon was found that the cooperative Particle Swarm 

Optimization algorithm with cloud mutation operator based on 

normal Cloud Model is better than the other three algorithms in 

performance, which effectively solves the problems of 

premature convergence and multi-peak optimization 

performance. This algorithm was applied to solve the 

high-dimensional problems effectively.  

 
Index Terms—Cloud model, cloud mutation operator, 

paradigm Huffman coding, particle swarm optimization. 

 

I. INTRODUCTION 

Originating in the simulation of bird predation behavior, 

the Particle Swarm Optimization (PSO) algorithms an 

intelligent optimization algorithm which was proposed by 

Kennedy and Eberhart in 1995 [1]. There are many 

advantages of this algorithm, such as fast convergence speed, 

few adjustment parameters and simple structure and so on. 

Hence, it is widely used in functional optimization, neural 
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network training, pattern classification, system control and 

related field [2], [3]. There is no doubt that the Particle 

Swarm Optimization algorithm has the advantage of fast 

convergence speed. However, there are still many problems 

in the execution of the algorithm. For instance, since all the 

particles are close to the global optimal direction, the 

particles lose diversity in the process of evolution, which are 

easy to cause premature convergence [4]. Since the particles 

learn each other, constructing neighborhood in the entire 

D-dimensional space, a "dimension disaster" would be 

formed when the search space dimension is high.  

The Cloud Model (CM) algorithm is an uncertainty 

conversion model between qualitative concept and 

quantitative representations, expressed by linguistic values 

and proposed by Dr. Li Deyi from the basic principles of 

species evolution in nature [5], [6]. These methods revealed 

the randomness and fuzziness between linguistic values and 

deterministic exact values.  

At present, many scholars at home and abroad combined 

Cloud Model algorithms with other intelligent optimization 

algorithms and proposed many new algorithms. For example, 

the genetic algorithm and Cloud Model algorithm were 

combined to propose an evolutionary algorithm based on 

Cloud Model in [7]. And a cloud generator was used to 

replace the crossover and mutation operators of genetic 

algorithms and a cloud genetic algorithm was proposed in [8]. 

Whereas the Cloud Model algorithm was introduced into the 

evolution mechanism of Particle Swarm Optimization 

algorithm in [9] and [10], and these methods improved 

effectively the optimization ability of Particle Swarm 

Optimization algorithm.  

Through the improvement of the above algorithm, the 

particles were validly prevented from falling into the local 

optimal solution, and the diversity of the population was 

enhanced, and the good result was obtained in the function 

optimization. However, the above research results will still 

cause premature convergence, and there is still room for 

improvement in the optimization of multi-peak problems.  

Aiming at the shortcomings of the standard Particle Swarm 

Optimization algorithm which is easy to cause premature 

convergence and its poor performance in multi-peak 

problems, this paper proposed a cooperative Particle Swarm 

Optimization algorithm based on normal Cloud Model with 

cloud mutation operator. The algorithm absorbs the 

advantages of the above research results, and it made related 

improvements in three aspects. First, the randomness and 

fuzziness of the Cloud Model algorithm were used to 

improve the search performance of the Particle Swarm 

Optimization algorithm on multi-peak problems. Second, the 

method in [11] was improved and applied in this paper. And 

the Huffman tree's construction process was used to divide 
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the subpopulation of the Particle Swarm Optimization 

algorithm, the tree was divided two children of the same 

parent node into different subpopulations. In the middle, the 

diversity of the population was guaranteed. Thirdly, the 

paradigm Huffman coding was used to save and transmit the 

entire encoding processing the process of encoding with 

Huffman tree. Through the improvement of this algorithm, 

the space complexity of the algorithm and the waste of 

storage space were reduced by these methods. By using the 

Cloud Model algorithm and Huffman coding to optimize the 

Particle Swarm Optimization algorithm, the particles are 

largely prevented from falling into the local optimal solution, 

which achieves the goal of limiting the premature 

convergence of the particles.  

 

II. PARTICLE SWARM OPTIMIZATION ALGORITHM 

The Particle Swarm Optimization algorithm is an 

intelligent optimization algorithm proposed by Kennedy and 

Eberhart in 1995 [1]. In the Particle Swarm Optimization 

algorithm, the potential solution for each optimization 

problem is a particle in the search space. There are many 

parameter of each particle, including the fitness value defined 

by the optimized function, the velocity, direction and 

distance of flight.  

The basic principle of the Particle Swarm Optimization 

algorithm generates a group of random particles during 

initialization, and then it generates an optimal solution by 

iteration. In the process of iteration, the particles update 

themselves by tracking individual optimality and population 

optimality. Finally, the optimal solutions in the optimization 

problems are found.  

If the population size of the particles is M and the target 

search spaces’ dimensional is D, the evolution process of 

each particle’s learning are as follow:  

)()( 2211

1 k

idgd

k

idid

k

id

k

id XPrcXPrcVV −+−+=+        (1) 

11 ++ += k

id

k

id

k

id VXX                             (2) 

In this formula, the parameter k

idX  represents the position 

of the ith (i=1, 2… M)  particles after the kth iteration in the dth 

search space. The parameter 1+k

idV  represents the position of 

the ith particle after the (k+1)th iteration in the d-dimensional 

search space. The parameter k

idV  represents the velocity of the 

ith particle after the kth iteration in the d-dimensional search 

space. The parameter 1+k

idV  represents the velocity of the ith 

particle after the (k+1)th iteration in the d-dimensional search 

space. The parameters 1c  and 
2c  are learning factors, they 

are greater than zero, which are called acceleration 

coefficients. Generally, they equal 2. The parameters 1r  and 

2r  are random numbers on [0, 1]. The parameter idP  

represents the optimal position of the ith particle in the 

d-dimensional search space. The parameter gdP  represents 

the optimal position of the group in the d-dimensional search 

space.  

On the basis of the basic Particle Swarm Optimization 

algorithm, Shi et al. published a paper at the 1998 

International Conference on Evolutionary Computation [12], 

which modified the Particle Swarm Optimization algorithm 

and introduced the inertia weight . It improve to formula 

(1), the new formula is as follows:  
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The formula consists of three parts. The first part is the 

“inertia” or “momentum” part, which reflects the habit of 

particle motion. The second part is the “cognitive” part, 

which reflects the memory of particle motion for its own 

experience. The third part is the “social” part, which reflects 

the ability of particles to share historical experience through 

group cooperation.  

Although the Particle Swarm Optimization algorithm has a 

simple structure and a fast running speed, when searching in 

the solution space, some particles would be happen an 

"oscillation" phenomenon near the optimal solution, which 

affects the accuracy of the result. In order to improve the 

global search ability of the algorithm, the parameters of the 

Particle Swarm Optimization algorithm need to be tuned.  

According to formula (2) and formula (3), the parameters 

affecting the Particle Swarm Optimization algorithm mainly 

include inertia weight   and acceleration factors 
1c  and 

2c .  

Inertia weight is a very important parameter in the Particle 

Swarm Optimization algorithm. It describes the degree of 

influence of historical factors on current factors in the itera-

tive process. Larger   is beneficial to improve the global 

search ability of the algorithm, whereas smaller   can en-

hance the local search ability of the algorithm.  

In most Particle Swarm Optimization algorithm 

improvements, in order to maintain the search ability and 

convergence of the algorithm, the common methods include 

linear decrease weight method, adaptive inertia weight 

method and stochastic inertia weight method.  

A. Linear Decrease Weight Method 

The first method is using linear decrease weight method to 

control inertia weight’s parameter settings. The formula is as 

follows:  
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t
t




−
−=                      (4) 

In formula (4), the parameter 
max  is the maximum value 

of the inertia weight  ; the parameter 
min  is the minimum 

value of the inertia weight  . The parameter t  is the current 

iteration number of the population, and the parameter maxt  is 

the maximum number of iterations that the population can 

reach. By adjusting the inertia weight  , the synergy of the 

algorithm is guaranteed.  

B. Adaptive Inertia Weight Method 

The second method is using adaptive inertia weight 

method to control inertia weight’s parameter settings. The 

formula is as follows:  
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In the formula (5), the parameter 
max  is the maximum 

value of the inertia weight  ; the parameter 
min  is the 

minimum value of the inertia weight  . The parameter f  

represents the current objective function value of the particle. 

The parameter 
avgf  represents the average target value of all 

the current particles, and the parameter minf  represents the 

minimum target value of all the current particles. Since the 

inertia weight changes as the objective function value of the 

particle changes, it is called an adaptive weight. By adjusting 

the inertia weight  , the global search ability and local 

search ability of the Particle Swarm Optimization algorithm 

are effectively balanced.  

C. Stochastic Inertia Weight Method 

The third method is using stochastic inertia weight method 

to control inertia weight’s parameter settings. The inertia 

weight is set to a random number obeying the Gaussian 

distribution. And the inertia weight is continuously and 

dynamically adjusted by the influence of the random factor to 

eliminate the local premature convergence, the search 

performance of the algorithm was improved in the global. In 

the early stage of the algorithm search, the random inertia 

weight was used to ensure that   has the opportunity to take 

smaller values, thus t the convergence speed of this algorithm 

was accelerated. In the later stage of the algorithm search, the 

random inertia weight was used to ensure that   has the 

opportunity to take larger values, thus the convergence 

accuracy of this algorithm was improved. The optimization 

parameter is setting by using random inertia weight. The 

formulas are as follow:  

* (0,1)N  = +                                 (6) 
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In the formula (6), N (0, 1) represents a random number of 

a standard normal distribution, and the parameter    

represents a random number between 0 and 1. Since the 

selected inertia weight is random, the influence of historical 

speed on the current speed is also random. So the method can 

balance the global search ability and the local search ability, 

and also it can overcome the shortcomings of linear decrease 

inertia weight.  

D. Parameter Adjustment 

The above three methods are widely used in various 

optimization problems, but in the solution of many 

optimization problems, using the linear decrease weight 

method to reduce the inertia weight cannot be well matched 

with the optimization process. So we need to compare the 

latter two methods, and we would choice the methods to 

finish this experiment.  

 

III. CLOUD MODEL ALGORITHM 

The Cloud Model is a mathematical model that 

quantitatively transforms deterministic knowledge, 

portraying the randomness and ambiguity of people's objects 

in the objective world [5], [6]. It combines qualitative 

analysis with quantitative analysis to provide mathematical 

methods for the processing and analysis of objective things. 

The definition of the Cloud Model is shown in Definition 1.  

Definition 1 [6], [13]: U is assumed to a quantitative 

neighborhood expressed by exact values, and C is the 

corresponding qualitative concept on U. If any element x in 

the neighborhood U has a random number with a stable 

tendency, the distribution of x on the neighborhood U is 

called a Cloud Model (Cloud), and this metric is denoted as 

C(x). Each x is called a cloud drop. When C(x) obeys a 

Gaussian distribution, it is called a normal Cloud Model.  

The characteristics of the Cloud Model are characterized 

by the mathematical expectation Ex, entropy En and super 

entropy He [13]. These three variables reflect the overall 

quantitative characteristics of the Cloud Model qualitative 

concept C. Mathematical expectation Ex is a typical sample 

of conceptual quantification, which is the point in the 

neighborhood space that it can represent the qualitative 

concept C. Entropy En refers to the range of cloud drop 

groups that it can be accepted by the qualitative concept C in 

the neighborhood space. It reflects the uncertainty of the 

qualitative concept and describes the fuzziness of the Cloud 

Model. The larger the value of entropy En, the greater the 

fuzziness and randomness. The super-entropy He is a 

measure of uncertainty, which represents the degree of 

condensation of cloud droplets, which is the entropy of 

entropy. The larger the super-entropy He, the greater the 

uncertainty. The algorithm for generating cloud drops is 

called a cloud generator. Among them, the normal cloud 

generator is a special cloud generator, and the algorithm is 

executed as shown in Algorithm 1.  

Algorithm 1: Basic Normal Cloud Generator [14]:  

INPUT: {Ex, En, He}, n 

OUTPUT: {(x1, μ1), (x2, μ2)… (xn, μn)} 

for i = 1 to n 

' RAND( , )En En He= // generate a normal random 

number with an expected value of En and a variance of He 

RAND( , ')ix Ex En=  

2

2

( )

2( ')

i

ix Ex

Ene

− −

=  

drop( ix , i ) / / generate the ith cloud drop 

 

IV. COOPERATIVE PARTICLE SWARM OPTIMIZATION 

ALGORITHM 

Through the optimization of the inertia weight  , the 

speed of particle flight is effectively controlled, and the 

global and local search ability of the particle is balanced. In 

order to improve the convergence speed and optimization 

performance of the algorithm whereas ensuring particle 

diversity, a cooperative Particle Swarm Optimization 

algorithm with cloud mutation operator based on normal 

Cloud Model is proposed in this paper.  

In this algorithm, the co-evolution of each particle is 

implemented based on the Huffman tree. The Huffman tree 

refers to the tree with the smallest weighted path. The 

weighted path formula is:  

1
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In this formula, the parameter kl  is the path length from 

the root to the kth node. The parameter 
kW  is the weight of 

the kth node. The parameter n is the sum of the points, and 

when the WPL is the minimum, the tree is a Huffman tree, 

and the relative path of the weight is the shortest.  

After the Huffman tree is successfully constructed, the 

Huffman tree can be encoded. Among them, the left child 

uses "0" to indicate encoding, whereas the right child uses "1" 

to indicate encoding. And the root encoding from the root 

node to the leaf node is called Huffman encoding.  

In this paper, the construction process of Huffman tree is 

applied to the Particle Swarm Optimization algorithm. The 

individual optimal solutions of the particle are used as the 

weight of each node. By comparing the weights, a complete 

Huffman tree is constructed step by step. According to the 

principle of Huffman coding, Huffman coding is performed 

on the individual optimal solutions of each particle.  

Since the optimal values of the two children of the same 

parent node in the Huffman tree are the closest, in order to 

avoid the algorithm falling into local optimum and leading to 

premature convergence, these nodes were divided the left and 

right child nodes of the same parent node into two 

sub-populations in this paper. In this way, the diversity of the 

population is guaranteed and the performance of the 

algorithm is improved. Since the Huffman tree is a binary tree, 

the population can be divided into a left subgroup and a right 

subgroup when the population was divided. In the initial 

stage, we are using the construction process of the Huffman 

tree to construct the population, it is not necessary to define 

the number of populations, and the particles is divided by the 

left subgroup and the right subgroup of the binary tree. This 

method balances the global and local search capabilities of 

the entire population. In the search process, the left subgroup 

and the right subgroup are searched independently, and the 

local optimal solution and the global optimal solution of the 

particle are searched in the left subgroup and the right 

subgroup respectively. Finally, the evolutionary information 

is shared by the information version to achieve the purpose of 

co-evolution.  

However, since the Huffman tree needs to know the 

structure of the Huffman tree during the encoding process. 

And the encoder saves and transmits the Huffman tree for the 

decoder. This process results in waste of storage space and 

increased overhead. Therefore, the Huffman trees need to be 

improved to reduce unnecessary waste. The paradigm 

Huffman coding was originally proposed by Schwartz [1964], 

which is a subset of Huffman coding [15]. The structure of 

the Huffman coding tree can be reconstructed with very little 

data using some mandatory rules. Paradigm Huffman coding 

requires that code word of the same length be binary 

representations of consecutive integers, whereas the first 

code with the smallest length of the agreed code word starts at 

0. It is calculated as follows:  

( ) 2 ( 1) 1)f i f i= − +（                         (9) 

It can be seen from the above formula that the decoder can 

recover the structure of the entire Huffman coding tree 

according to the length of each code word, without saving 

and transmitting the entire encoding process, so the waste of 

storage space can be reduced by this method.  

V. COOPERATIVE PARTICLE SWARM OPTIMIZATION 

ALGORITHM WITH CLOUD MUTATION OPERATOR BASED ON 

NORMAL CLOUD MODEL 

This paper proposed a cooperative Particle Swarm 

Optimization algorithm based on normal Cloud Model with 

cloud mutation operator. It combines the advantages of Cloud 

Model and cooperative Particle Swarm Optimization 

algorithm, which not only it improves the fuzziness and 

randomness of the algorithm, but also it ensures the diversity 

of the population and increases convergence speed.  

When the cooperative Particle Swarm Optimization 

algorithm with Cloud Mutation Operator based on normal 

Cloud Model is used to find the extreme value, it is necessary 

to set the metric to determine whether the particle falls into 

the local optimal solution. The method of judgment is shown 

in Definition 2.  

Definition 2: Given the thresholds N and K in advance, 

when the global extreme value has not evolved for N 

consecutive generations or the evolutionary path amplitude is 

less than K, the particles can be considered to be locally 

optimal, and all particles are passed through the normal cloud 

according to the global extreme value. Finally, the generator 

performs the mutation operation.  

When searching for the optimal solution, if the current 

solution has a large fitness, the current value is very close to 

the optimal solution. In this case, it should be searched in a 

small range to improve the convergence speed of the 

algorithm. Instead, you need to expand your search to prevent 

premature convergence. According to this basic principle, the 

CH-PSO algorithm is improved and the CH-HC-PSO 

algorithm is designed. The implementation steps of the 

algorithm are as follows:  

Step 1: Setting the parameter values such as the number of 

particle groups, the number of dimensions, and the maximum 

number of iterations; 

Step 2: Setting the parameter values of the initialization 

inertia weight and the acceleration factor; 

Step 3: Randomly initializing the position and velocity of 

the particles in the population; 

Step 4: Calculating the fitness value of the particle under 

the constraint condition; 

Step 5: Calculating the individual extreme value Pibest and 

the global extreme value Pgbest; 

Step 6: Constructing a Huffman tree according to the 

individual extreme value Pibest, and generating a paradigm 

Huffman coding of the Huffman tree; 

Step 7: The population is divided into two sub-populations, 

with the last bit of the Huffman coding as the division 

criterion. The left child uses "0" to indicate encoding, 

whereas the right child uses "1" to indicate encoding.  

Step 8: The two sub-populations calculate the fitness value 

of the particle separately, and obtaining the individual 

optimal solution and the global optimal solution. The 

individual extreme value of the left sub-population is 

recorded as Plibest, and the global extreme value of the left 

sub-population is recorded as Plgbest. The individual extreme 

value of the right sub-population is recorded as Pribest, and the 

global extreme value of the right subpopulation is recorded as 

Prgbest.  

Step 9: Comparing the global extreme value Plgbest of the 

left subpopulation, the global extreme value Prgbest of the 
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right subpopulation, and the global extreme value Pgbest of 

the population, and the results are shared into the information 

board; 

Step 10: Taking the maximum value to update the global 

optimal solution Pgbest of the population; 

Step 11: determines whether the variation threshold N is 

reached. If it is reached, each particle is mutated according to 

definition 2. Otherwise, the inertia weight is adjusted by 

using formula (5) or formula (6); 

 

 
Fig. 1. Algorithm running process.  

 

Step 12: The velocity and the position of the particle are 

updated by using formula (1) and formula (2); 

Step 13: Determine whether the maximum number of it-

erations has been reached, if the condition is met, step 14 is 

performed, and if the condition is not met, step 4 is returned; 

Step 14: The optimization operation is terminated and the 

particle optimal position is outputted.  

The above algorithm combines the cloud model and the 

particle swarm optimization algorithm to effectively prevent 

premature convergence.  

The algorithm flow diagram is shown in Fig. 1.  

 

VI. SIMULATION AND RESULTS ANALYSIS 

This experiment used four fitness functions to test. The 

expressions of the fitness functions are shown in Table I. The 

experimental dimension is 10 and the number of iterations is 

2000. In these experiments, the fitness ranges are [-20, 20].  

In order to optimize the inertia weight of the algorithm, we 

conducted 50 experiments and compared the above four 

methods of inertia weight processing. The comparison results 

are shown in Table II and Table III.  

 

 
Fig. 2. Adaptive evolution curve of Rosenbrock function. 

 

 
Fig. 3. Adaptive evolution curve of Rastrigin function. 

 

 
Fig. 4. Adaptive evolution curve of Griewank function.  

From the analysis of Table II and Table III, the adaptive 

inertia weight method runs more time, and its spatial 

complexity is larger than other methods. However, from the 

mean of the optimal solution of the four fitness functions, the 

adaptive inertia weight method can get the most excellent 

solution, so we choices the adaptive inertia weight method 

for experiments. A comparison of the four methods of inertia 

weight adjustment can be seen from Fig. 2 to Fig. 5.  

In order to prove the effectiveness of the algorithm, we 

compared four algorithms to test their performance. The 

algorithms included the basic Particle Swarm Optimization 
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algorithm (BPSO), the Cloud Hyper mutation Particle Swarm 

Optimization algorithm (CH-PSO), the Huffman-based 

Cooperative Particle Swarm Optimization algorithm 

(HC-PSO), Cooperative Particle Swarm Optimization 

algorithm with Cloud Mutation Operator Based on Normal 

Cloud Model (CH-HC-PSO). The specific results of the 

comparative experiment are shown in Table IV and Table V. 

 

 
Fig. 5. Adaptive evolution curve of Ackley function.  

TABLE I: FITNESS FUNCTION LIST 
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TABLE II: COMPARISON OF FOUR INERTIA WEIGHT PROCESSING METHODS 

(A) 
Function Method Worst Best Mean 

Rosenbrock 

Common -1. 7613e+07  -1. 7633e+07  -1. 7624e+07  

LinearDec -1. 7603e+07  -1. 7634e+07  -1. 7618e+07  

RandWeight -1. 7617e+07  -1. 7630e+07  -1. 7623e+07  

AdaWeight -1. 7623e+07  -1. 7633e+07  -1. 7629e+07  

Rastrigin 

Common -3. 5335e+03  -3. 8098e+03  -3. 6871e+03  

LinearDec -3. 3329e+03  -3. 6315e+03  -3. 4593e+03  

RandWeight -3. 4798e+03  -3. 8615e+03  -3. 6268e+03 

AdaWeight -3. 4790e+03  -3. 7647e+03  -3. 6594e+03  

Griewank 

Common -2. 4060  -2. 5049  -2. 4678  

LinearDec -2. 2832  -2. 3687  -2. 3295  

RandWeight -2. 3436  -2. 3935  -2. 3603  

AdaWeight -2. 4191  -2. 5088 -2. 4735  

Ackley 

Common -21. 6584  -21. 7131  -21. 6852  

LinearDec -21. 6106  -21. 7239  -21. 6806  

RandWeight -21. 4792  -21. 6555  -21. 5964  

AdaWeight -21. 6790  -21. 7725  -21. 7146  

 

From the analysis of Table IV and Table V, the 

Cooperative Particle Swarm Optimization algorithm with 

Cloud Mutation Operator Based on Normal Cloud Model 

runs more time, but the number of iterations about it are 

smaller than the other three algorithms. However, it can be 

seen from the average of the four algorithms compared that 

the Cooperative Particle Swarm Optimization algorithm with 

Cloud Mutation Operator Based on Normal Cloud Model has 

the smallest fitness value. Therefore, the algorithm is better 

than the other three algorithms in solving the optimization 

problem.  

TABLE III: COMPARISON OF FOUR INERTIA WEIGHT PROCESSING METHODS 

(B) 

Function Method Average running time 

Rosenbrock 

Common 1. 057  

LinearDec 1. 117  

RandWeight 1. 081  
AdaWeight 1. 532  

Rastrigin 

Common 1. 413  

LinearDec 1. 482  
RandWeight 1. 478  

AdaWeight 2. 272  

Griewank 

Common 1. 816  
LinearDec 1. 857  

RandWeight 1. 995  

AdaWeight 3. 096  

Ackley 

Common 1. 929  

LinearDec 2. 038  

RandWeight 3. 389  
AdaWeight 2. 239  

 
TABLE IV: COMPARISON OF FOUR ALGORITHMS (A) 

Function Algorithm Worst Best Mean 

Rosenbrock 

PSO 7. 313E+01  1. 926E+01  2. 911E+01  

CH-PSO 7. 678E+01  2. 405E-01  2. 701E+01  

HC-PSO 7. 857E+01  2. 373E-01  2. 207E+01  
CH-HC-PSO 7. 278E+01  2. 178E-01  2. 133E+01  

Rastrigin 

PSO 8. 127E+01  1. 531E+01  4. 234E+01  

CH-PSO 1. 291E+02  1. 496E+01  4. 295E+01  

HC-PSO 1. 229E+02  1. 990E+01  4. 478E+01  

CH-HC-PSO 1. 319E+02  1. 982E+01  4. 235E+01  

Griewank 

PSO 9. 408E-01  6. 207E-03  7. 676E-02  

CH-PSO 4. 505E-01  6. 505E-16  4. 919E-02  

HC-PSO 4. 490E-01  6. 661E-16  4. 649E-02  

CH-HC-PSO 5. 648E-01  6. 419E-16  4. 549E-02  

Ackley 

PSO 8. 611E+00  3. 271E-01  4. 164E+00  

CH-PSO 5. 394E-04  8. 963E-09  1. 202E-05  
HC-PSO 4. 332E-04  8. 516E-09  1. 105E-05  

CH-HC-PSO 4. 371E-04  8. 497E-09  1. 109E-05  

 
TABLE V: COMPARISON OF FOUR ALGORITHMS (B) 

Function Algorithm 
Average running 

time 

Average number 

of iterations 

Rosenbrock 

BPSO 0. 345  23  

CH-PSO 0. 305  23  

HC-PSO 0. 323  21  
CH-HC-PSO 0. 411  20  

Rastrigin 

BPSO 0. 202  23  

CH-PSO 0. 234  22  
HC-PSO 0. 239  20  

CH-HC-PSO 0. 379  18  

Griewank 

BPSO 0. 353  40  
CH-PSO 0. 305  36  

HC-PSO 0. 324  38  

CH-HC-PSO 0. 387  26  

Ackley 

BPSO 0. 302  23  

CH-PSO 0. 367  21  

HC-PSO 0. 387  20  
CH-HC-PSO 0. 479  16  

 

VII. CONCLUSION 

In this paper, a Cooperative Particle Swarm Optimization 

algorithm with Cloud Mutation Operator Based on Normal 

Cloud Model is proposed. The traditional Particle Swarm 

Optimization algorithm is improved. The two children with 

non-leaf nodes in the Huffman tree are closely related. In 

principle, a large population is divided into two independent 

sub-populations, and the evolution of the particles was 

carried out independently, and the Huffman Cloud Model 

algorithm was used to achieve rapid convergence, which 

ensures the diversity of the population and avoids the 

premature convergence. In terms of parameter control, this 

paper uses the adaptive inertia weight strategy to make the 

inertia weight continuously and dynamically adjusted by the 

influence of current environment’s factors, so as to eliminate 
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the local premature convergence and improve the search 

performance of the algorithm in the whole. Through the 

combination of Cloud Model, Huffman coding and particle 

swarm optimization, the algorithm achieves better 

performance in both macro and micro, and reduces storage 

space and improves storage utilization through the paradigm 

Huffman coding.  
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