
 

 

  

Abstract—Minimum cross-entropy estimation is an 

extension to the maximum likelihood estimation for 

multinomial probabilities. Given a probability 

distribution {𝒓𝒊}𝒊=𝟏
𝒌 ,  we show in this paper that the 

monotonic estimates {𝒑𝒊}𝒊=𝟏
𝒌  for the probability 

distribution by minimum cross-entropy are each given by 

the simple average of the given distribution values over 

some consecutive indexes. Results extend to the 

monotonic estimation for multivariate outcomes by 

generalized cross-entropy.  These estimates are the exact 

solution for the corresponding constrained optimization 

and coincide with the monotonic estimates by least 

squares.  A non-parametric algorithm for the exact 

solution is proposed. The algorithm is compared to the 

“pool adjacent violators” algorithm in least squares case 

for the isotonic regression problem. Applications to 

monotonic estimation of migration matrices and risk 

scales for multivariate outcomes are discussed.    

   

Index Terms—Maximum likelihood, cross-entropy, 

least squares, isotonic regression, constrained 

optimization, multivariate risk scales. 

 

I. INTRODUCTION 

Utilizing prior knowledge is important for a learning 

process. A common prior is the monotone relationship 

between input and output. For example, we expect the loss 

for a loan to be lower when collateral value and quality of 

collateral type are higher; and people tend to buy less of a 

product when price increases. Examples of learnings, where 

monotonic constraints are imposed, include isotonic 

regression ([1]-[4]), rating migration models ([5]), 

classification trees ([6]), rule learning ([7]), binning ([8]), 

and deep lattice network ([9]). 

For a random vector (𝑦1, 𝑦2, … , 𝑦𝑘), let 𝑝𝑖  be the expected 

value of 𝑦𝑖 , and 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛  a given sample 

for the random vector, where  (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘) denotes the 

𝑖𝑡ℎ observation, and 𝑦𝑖𝑗   its 𝑗𝑡ℎ   component. We assume:  

    0 ≤ 𝑦𝑖𝑗 ≤ 1,  1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛,                (1.1) 

𝑦𝑖1 +  𝑦𝑖2 +  … + 𝑦𝑖𝑘 = 1.                        (1.2)      

That is, each observation (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘) is a percentage 

distribution over 𝑘  ordinal indexes. We use the following 

notations: 𝑑𝑗 = ∑ 𝑦𝑖𝑗
𝑛
𝑖=1 , 𝑟𝑗 = 𝑑𝑗/𝑛, 𝐷 = 𝑑1 + 𝑑2 + ⋯ +
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𝑑𝑘 , and 𝑅 =
𝐷

𝑛
. 

Given an observed distribution 𝑞 = {𝑞𝑖}𝑖=1
𝑘  and the 

predicted distribution 𝑝 = {𝑝𝑖}𝑖=1
𝑘 ,  the cross-entropy 

between 𝑞 and 𝑝 is defined as: 
 

𝐻(𝑞, 𝑝) = − ∑ 𝑞𝑖 log(𝑝𝑖).

𝑘

𝑖=1

 

 

By using the Kullback-Leibler (KL) divergence (also 

called relative entropy) between 𝑞  and 𝑝  ([10]), one can 

show that cross-entropy 𝐻(𝑞, 𝑝) measures the dissimilarity 

between 𝑞 and 𝑝 (see Appendix, or [11], [12]). The cross-

entropy for the given sample 𝑆 is defined as: 
 

                 
𝐶𝐸 = − ∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑗)𝑘

𝑗=1
𝑛
𝑖=1

 

          = − ∑ (∑ 𝑦𝑖𝑗) log(𝑝𝑗)  𝑛
𝑖=1

𝑘
𝑗=1                      (1.3)

 

                 
    

 
= − ∑ 𝑑𝑗 log(𝑝𝑗) .𝑘

𝑗=1                
 

 

The monotonic minimum cross-entropy estimates are the 

values {𝑝𝑗}
𝑗=1

𝑘
 

that minimize (1.3) subject to (1.4) and (1.5) 

below:

 

        0 ≤ 𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑘 ,                      (1.4) 

 

         𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 = 1.

                       

(1.5) 

 

Because − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 = −𝑛 ∑ 𝑟𝑗 log(𝑝𝑗)𝑘

𝑗=1 ,

 

the 

measure 𝐶𝐸

 

defined by

 

(1.3) is the same as the cross-entropy 

between {𝑟𝑗}
𝑗=1

𝑘
 and

 

{𝑝𝑗}
𝑗=1

𝑘
,

 

up to a scalar

 

𝑛.  Therefore, 𝐶𝐸

 

measures the dissimilarity between {𝑟𝑗}
𝑗=1

𝑘
 and {𝑝𝑗}

𝑗=1

𝑘
.

 

When each observation (𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)

 

is multinomial, 

i.e. all 𝑦𝑖1 , 𝑦𝑖2, …, and 𝑦𝑖𝑘

 

are zero but one, which is 1, then 

𝑑𝑖

 

becomes the frequency that 𝑦𝑖

 

takes the value 1. Therefore, 

(1.3) is the negative multinomial log-likelihood, up to a 

constant given by the logarithm of some multinomial 

coefficient, which is independent of {𝑝𝑗}
𝑗=1

𝑘
.  In this case, the 

minimum cross-entropy estimates are the maximum 

multinomial likelihood estimates.

 

Generalization to multivariate outcomes.

 

Given a 

sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑘)}𝑖=1
𝑛

 

of the random vector 

(𝑦1, 𝑦2, … , 𝑦𝑘), where  𝑦𝑖𝑗 ≥ 0

 

for 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛

 

(in absence of (1.2)),

 

the generalized cross-entropy is defined,

 

similarly

 

to 𝐶𝐸,

 

as:

 

𝐺𝐶𝐸 = − ∑ ∑ 𝑦𝑖𝑗 log(𝑝𝑗)  𝑘
𝑗=1

𝑛
𝑖=1

 

 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1 .(1.6)
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The monotonic minimum generalized cross-entropy 

estimates are the values {𝑝𝑗}
𝑗=1

𝑘
that minimize (1.6) subject to 

(1.4) and (1.7) below: 

     𝑝1 + 𝑝2 + … + 𝑝𝑘 = 𝑅.                         (1.7) 

Recall 𝑅 =
𝐷

𝑛
. Clearly, minimizing (1.3) for 𝐶𝐸 subject to 

(1.4) and (1.5) is a special case of minimizing (1.6) for 𝐺𝐶𝐸 

subject to (1.4) and (1.7). 

Main results. We show in this paper that for a given 

sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2 , … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗 ≥ 0  for 1 ≤

𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑛, there exist partition integers {𝑘𝑖}𝑖=0
𝑚 , 

where 0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘,  such that the 

monotonic minimum generalized cross-entropy estimates 

{𝑝𝑗}
𝑗=1

𝑘
 that minimize (1.6) subject to (1.4) and (1.7) are 

given by the simple average (see Proposition 3.3) below: 

     𝑝𝑗 =
1

𝑘𝑖−𝑘𝑖−1
∑ 𝑟𝑗

𝑘𝑖
𝑗=𝑘𝑖−1+1 .                       (1.8) 

One of the most important monotonic estimations is by 

least squares, i.e. the isotonic regression ([1]). The goal of 

isotonic regression is to find {𝑝𝑖}𝑖=1
𝑘 , subject to (1.4), that 

minimize the weighted sum squares ∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)
2𝑘

𝑖=1 , 

where {𝑤𝑖}𝑖=1
𝑘  are the given weights. A unique exact solution 

to the isotonic regression exists and can be obtained by a non-

parametric algorithm called Pool Adjacent Violators (PAV) 

([1], [2], [4], [8]).  

Results by (1.8) are the exact solution to the constrained 

optimization problem corresponding to (1.6) and are proved 

to be also the least squares estimates subject only to (1.4) (see 

Proposition 3.4), which links to isotonic regression. That is, 

for monotonic least squares estimates, (1.7) is an implication, 

while it is a condition (i.e. a constraint) for monotonic 

generalized cross-entropy estimates. 

A non-parametric algorithm (Algorithm 4.1) is proposed 

in section IV for the partition integers in (1.8), hence the 

monotonic estimates. This algorithm is compared in section 

V to the PAV algorithm.  

The key ideas to the proof of (1.8) and the algorithms 

proposed in this paper are the re-parameterization of the 

estimates so that (1.4) is automatically satisfied. 

Consequently, the constrained programming is transformed 

into a tractable non-constrained mathematical programming 

problem (see Section III and Section IV).   

The paper is organized as follows: Partition integers are 

defined in Section II. Equation (1.8) is proved in Section III. 

We propose in Section IV a non-parametric algorithm for 

finding these partition integers. In Section V, we compare 

this non-parametric algorithm, in least squares case, with the 

Pool Adjacent Violators algorithm for isotonic regression. 

Two examples are provided in Section V, where monotonic 

estimation for long-run rating migration matrices and loss 

rate time series are discussed.  

 

II. THE PARTITION INTEGERS  

Given a sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗  are 

real numbers, let where 𝑑𝑗 = ∑ 𝑦𝑖𝑗
𝑛
𝑖=1  and 𝑟𝑗 = 𝑑𝑗/𝑛. Define: 

 

   𝑣(𝑖, 𝑗) =
𝑟𝑖+𝑟𝑖+1+⋯+𝑟𝑗

(𝑗−𝑖+1)
                        (2.1)  

  =
𝑑𝑖+𝑑𝑖+1+⋯+𝑑𝑗

𝑛(𝑗−𝑖+1)
 .                             (2.2)  

Then 𝑣(𝑖, 𝑗)  is the simple average for the consecutive 

values of  {𝑟𝑖 , 𝑟𝑖+1, … , 𝑟𝑗 }, and 𝑣(1, 𝑘) =
𝐷

𝑛𝑘
,  where 𝑑1 +

𝑑2 + ⋯ + 𝑑𝑘 = 𝐷.  Let  {𝑘𝑖}𝑖=0
𝑚  be partition integers, where 

0 = 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚 = 𝑘, such that (2.3) and (2.4) below 

hold for each  𝑖 > 0: 

𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) 

   = 𝑚𝑖𝑛{𝑣(𝑘𝑖−1 + 1, 𝑗)  | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘},   (2.3)  

    𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) < 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖 + 1).          (2.4)  

That is, given 𝑘𝑖−1,  the partition integer 𝑘𝑖 is the largest 

index where 𝑣(𝑘𝑖−1 + 1, 𝑗)  reaches its minimum at  𝑗 = 𝑘𝑖 

within the remaining range 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘. By definition, 

when {𝑟}𝑖=1
𝑘  are strictly increasing, we have  𝑚 = 𝑘  and 

{𝑘𝑖}𝑖=1
𝑚 = {1, 2, … , 𝑘}.  By (2.3) and (2.4), we have:  

𝑣(1, 𝑘1) < 𝑣(𝑘1 + 1, 𝑘2) < ⋯ < =  𝑣(𝑘𝑚−1 + 1, 𝑘𝑚).(2.5)  

This is because, for example, if 𝑣(1, 𝑘1) ≥ 𝑣(𝑘1 + 1, 𝑘2), 

then we have: 

 

𝑣(1, 𝑘2) =  
𝑘1

𝑘2
 𝑣(1, 𝑘1) +  

𝑘2−𝑘1

𝑘2
𝑣(𝑘1 + 1, 𝑘2) ≤ 𝑣(1, 𝑘1). 

 

This contradicts the fact that 𝑘1 is the largest index where 

𝑣(1, 𝑗) reaches its minimum at  𝑗 = 𝑘𝑖 for 𝑗 ≥ 𝑘𝑖−1 + 1.   
 

             

III. MONOTONIC ESTIMATION BY MINIMUM CROSS-

ENTROPY  

In this section, we prove equation (1.8), first for the 

minimum cross-entropy estimates subject to (1.4) and (1.5), 

then for the minimum generalized cross-entropy estimates 

subject to (1.4) and (1.7). At the end of the section, we show 

that these estimates are also the monotonic least squares 

estimates, in absence of (1.7). 

Lemma 3.1. In absence of (1.4), the sample rates {𝑟𝑖}𝑖=1
𝑘  

minimize (1.3) subject to (1.5). Similarly, in absence of (1.4), 

the sample rates {𝑟𝑖}𝑖=1
𝑘  minimize (1.6) subject to (1.7). 

Proof.  First, we show that the 1st statement implies the 2nd 

statement. The second statement in the lemma holds if  𝑅 =
𝐷

𝑛
= 0 because, in this case, 𝑑𝑖 = 0 and 𝑟𝑖 = 0 for all 𝑖′𝑠.  If 

𝑅 > 0, then:  

     𝐺𝐶𝐸 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1                          (3.1) 

              = −𝑅 ∑ 𝑑𝑗
′[log(𝑝𝑗

′) + log(𝑅)]𝑘
𝑗=1  

               = 𝑐 − 𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1                              (3.2)  

where 𝑑𝑗
′ = 𝑑𝑗/𝑅, 𝑝𝑗

′ = 𝑝𝑗/𝑅, and 𝑐 = − ∑ 𝑑𝑗 log(𝑅)𝑘
𝑗=1 . By 

(1.7), {𝑝𝑗
′}

𝑗=1

𝑘
sum to one. Since {𝑑𝑗

′}
𝑗=1

𝑘
 sum to 𝑛,  the 

function −𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1  differs from (1.3), the 

formulation of 𝐶𝐸, only by a constant scalar 𝑅. Therefore, if 

the first statement in the lemma holds, then {𝑝𝑗
′ =

𝑟𝑗′}
𝑗=1

𝑘
minimize (3.2), because 𝑅 and 𝑐 are constants, where 
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𝑟𝑗
′ =

𝑑𝑗
′

𝑛
=

𝑑𝑗

𝑛𝑅
= 𝑟𝑗/𝑅. Since 𝑝𝑗 = 𝑝𝑗

′𝑅 = 𝑟𝑗, the sample rates  

{𝑟𝑗}
𝑗=1

𝑘
 minimize (3.1) subject to (1.7). 

We now show the first statement. We consider the 

following three cases. Case (a). 0 < 𝑟𝑖 < 1 for all 1 ≤ 𝑖 ≤ 𝑘. 

Take the derivative of 𝐶𝐸  with respect to 𝑝𝑖  in the range 

0 < 𝑝𝑖 < 1 and set it to zero, using the relation 𝑝𝑘 = 1 −

(𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘−1). We have 
𝑑𝑖

𝑝𝑖
−

𝑑𝑘

𝑝𝑘
= 0. This holds for 

all 𝑖′𝑠 . Thus the vector  (𝑝1, 𝑝2, … , 𝑝𝑘) is in proportion 

to  (𝑑1, 𝑑2, … , 𝑑𝑘) , hence in proportion to  (𝑟1, 𝑟2, … , 𝑟𝑘) . 

Because of (1.5), we must have 𝑝𝑖 = 𝑟𝑖 .  
Case (b). 𝑟𝑖 = 1 for some 𝑖. Then 𝑟𝑗 are all zero but this 𝑟𝑖 . 

In this case, 𝐶𝐸 reduces to −𝑑𝑖 log(𝑝𝑖), which is minimized 

at 𝑝𝑖 = 1(= 𝑟𝑖) within 0 ≤ 𝑝𝑖 ≤ 1.  

Case (c). 𝑟𝑖 = 0 for some 𝑖′𝑠 and 0 < 𝑟𝑗 < 1 for all other 

𝑟𝑗′𝑠 . Without loss of generality, we assume that 𝑖0  is the 

integer where 0 < 𝑟𝑖 < 1  for 𝑖 ≤ 𝑖0  and 𝑟𝑖 = 0  for 𝑖 > 𝑖0. 

Then 𝐶𝐸 reduces to − ∑ 𝑑𝑖log (𝑝𝑖)
𝑖0
𝑖=1 . Setting the derivatives 

with respect to 𝑝𝑖  in the range 0 < 𝑝𝑖 < 1, 𝑖 ≤ 𝑖0, to zero, 

and using the relation 𝑝𝑖0
= 1 − (𝑝1 + 𝑝2 + ⋯ + 𝑝𝑖0−1 +

𝑝𝑖0+1 + ⋯ + 𝑝𝑘),  we have 
𝑑𝑖

𝑝𝑖
−

𝑑𝑖0

𝑝𝑖0

= 0 . This implies, 

 (𝑝1, 𝑝2, … , 𝑝𝑖0
) is in proportion to (𝑟1, 𝑟2, … , 𝑟𝑖0

). Thus 𝑝𝑖 =

𝑠𝑟𝑖  for 𝑖 ≤ 𝑖0  for a scalar 𝑠 > 0. Because 𝑟𝑖 = 0 for 𝑖 > 𝑖0 , 

we have ∑ 𝑟𝑖
𝑖0
𝑖=1 =1. Hence by (1.5), we have  0 < 𝑠 ≤ 1 . 

With 𝑝𝑖 = 𝑠𝑟𝑖 , 0 < 𝑠 ≤ 1, for 𝑖 ≤ 𝑖0 , the function 

− ∑ 𝑑𝑖log (𝑝𝑖)
𝑖0
𝑖=1  reaches its minimum at 𝑠 = 1,  because  

𝑑𝑖log (𝑠𝑟𝑖) is an increasing function of 𝑠. Therefore, 𝑝𝑖 = 𝑟𝑖 

for 𝑖 ≤ 𝑖0. By (1.5), we must have 𝑝𝑖 = 0 = 𝑟𝑖 for 𝑖 > 𝑖0. □ 

Proposition 3.2. Given a sample 𝑆 =
{(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1

𝑛  subject to (1.1) and (1.2), let {𝑘𝑖}𝑖=0
𝑚  be 

the partition integers defined by (2.3) and (2.4). Then the 

minimum cross-entropy estimates {𝑝𝑖}𝑖=1
𝑘  that minimize (1.3) 

subject to (1.4) and (1.5) are given by: 

𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) 

            =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
                        (3.3) 

where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖.                                                  

Proof. First, with the values given by (3.3), (1.4) holds by 

(2.5), and  𝑝𝑘𝑖−1+1 + 𝑝𝑘𝑖−1+2 + ⋯ + 𝑝𝑘𝑖
= 𝑟𝑘𝑖−1+1 +

𝑟𝑘𝑖−1+2 + ⋯ + 𝑟𝑘𝑖
. Thus (1.5) holds as well for these specific 

values. 

Next, with the partition integers {𝑘𝑖}𝑖=0
𝑚  given by (2.3) and 

(2.4), we have: 

 

𝐶𝐸 = − ∑ 𝑑𝑗 log(𝑝𝑗)𝑘
𝑗=1     = 𝐶𝐸(1, 𝑘1) + 𝐶𝐸(𝑘1 +

1, 𝑘2) + ⋯ +                  𝐶𝐸(𝑘𝑚−1 + 1, 𝑘𝑚)              (3.4) 

 

where:  

               𝐶𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) = − ∑ 𝑑𝑗 log(𝑝𝑗) .
𝑘𝑖
𝑗=𝑘𝑖−1 +1   

Case (a). 𝑟1 = 0.  In this case, 𝑟𝑗 = 0  and 𝑑𝑗 = 0  for all 

1 ≤ 𝑗 ≤ 𝑘1, this is because 𝑗 = 𝑘1 is the largest index such 

that 𝑣(1, 𝑗) reaches its minimum within the range 1 ≤ 𝑗 ≤ 𝑘. 

Thus 𝐶𝐸(1, 𝑘1) = 0. Set 𝑝𝑗 = 0 by (3.3) for all 1 ≤ 𝑗 ≤ 𝑘1, 

drop out 𝐶𝐸(1, 𝑘1)  from (3.4), and focus only on  𝐶𝐸 =
𝐸(𝑘1 + 1, 𝑘2) + ⋯ + 𝐶𝐸(𝑘𝑚−1 + 1, 𝑘𝑚). By the definition 

of partition integers, we have 𝑟𝑘1+1 > 0 . Essentially, 

dropping out indexes 1 ≤ 𝑗 ≤ 𝑘1 is the same as assuming 

that the index starts from 𝑘1 + 1. Therefore, the problem 

reduces to case (b) below.          

Case (b).  𝑟1 > 0.  Let  𝑝(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑝𝑘𝑖−1+1 +

𝑝𝑘𝑖−1+2 + ⋯ + 𝑝𝑘𝑖
 and  𝑑(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑑𝑘𝑖−1+1 +

𝑑𝑘𝑖−1+1 + ⋯ + 𝑑𝑘𝑖
. Normalize 𝑝𝑗

′𝑠  for  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 

by letting: 
 

𝑝𝑗
0 =

𝑝𝑗

𝑝(𝑘𝑖−1 + 1,  𝑘𝑖)
,  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 . 

 

Then {𝑝𝑗
0 | 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖} sum up to 1, and we have: 

 

𝐶𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) 

= − ∑ 𝑑𝑗{log(𝑝𝑗
0) +

𝑘𝑖

𝑗=𝑘𝑖−1 +1 

 

                     log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]}.                      (3.5) 
 

Then by (3.4) and (3.5), we have: 
 

𝐶𝐸 = − ∑ ∑ 𝑑𝑗{log(𝑝𝑗
0) +

𝑘𝑖
𝑗=𝑘𝑖−1 +1 

𝑚
𝑖=1

                                       log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]}                =

− ∑ ∑ 𝑑𝑗 log(𝑝𝑗
0) –      

𝑘𝑖
𝑗=𝑘𝑖−1 +1 

𝑚
𝑖=1        ∑ 𝑑(𝑘𝑖−1 +𝑚

𝑖=1

1, 𝑘𝑖) log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)] 
 = 𝐶𝐸1 + 𝐶𝐸2 

 

where 𝐶𝐸1 = − ∑ ∑ 𝑑𝑗log (𝑝𝑗
0)

𝑘𝑖
𝑗=𝑘𝑖−1 +1 

𝑚
𝑖=1 , 𝐶𝐸2 =

− ∑ 𝑑(𝑘𝑖−1 + 1, 𝑘𝑖) log[𝑝(𝑘𝑖−1 + 1, 𝑘𝑖)]𝑚
𝑖=1 . By Lemma 3.1, 

𝐶𝐸2 is minimized at: 
 

  𝑝(𝑘𝑖−1 + 1, 𝑘𝑖) = 𝑑(𝑘𝑖−1 + 1, 𝑘𝑖)/𝑛.                   (3.6) 
                                                          

Let 𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) = − ∑ 𝑑𝑗log (𝑝𝑗
0)

𝑘𝑖
𝑗=𝑘𝑖−1 +1 .   Then 

𝐶𝐸1 = 𝐶𝐸1(1, 𝑘1) + 𝐶𝐸1(𝑘1 + 1, 𝑘2) + ⋯ +  𝐶𝐸1(𝑘𝑚−1 +
1, 𝑘𝑚).  It suffices to show that  each 𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) is 

minimized at: 
 

     𝑝𝑗
0 =

1

𝑘𝑖−𝑘𝑖−1
.                                   (3.7)  

                                                                                            

This is because, if (3.7) is true, then by (3.6), we have:   
 

𝑝𝑗 = 𝑝𝑗
0𝑝(𝑘𝑖−1 + 1, 𝑘𝑖) 

 =
1

𝑘𝑖 − 𝑘𝑖−1

𝑑(𝑘𝑖−1 + 1,  𝑘𝑖)

𝑛
 

             = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖)                      (3.8)  
                                                                           

by (2.2). The proof is then complete. 

We prove (3.7) only for 𝐶𝐸1(1, 𝑘1). The proof for other 

𝐶𝐸1(𝑘𝑖−1 + 1, 𝑘𝑖) is similar. Without loss of generality, we 

assume 𝑚 = 1 . In this case, 𝐶𝐸1(1, 𝑘1) = 𝐶𝐸(1, 𝑘)  and 

 𝑝𝑗
0 = 𝑝𝑗  for all  𝑗′𝑠.   

For 1≤ 𝑖 ≤ 𝑘,  parameterize 𝑝𝑖  by:  

       𝑝𝑖 = exp(𝑏1 + 𝑏2 + ⋯ + 𝑏𝑖) /∆                        (3.9) 

where 𝑏𝑖 = 𝑎𝑖
2, 1 ≤ 𝑖 ≤ 𝑘 , and  ∆= ∑ exp(𝑏1 + 𝑏2 +𝑘

𝑖=1

⋯ + 𝑏𝑖). Then by (3.9), {𝑝𝑖}𝑖=1
𝑘  satisfy (1.4) and (1.5). Let 

𝑐0 = 0 and 𝑐𝑖 = 𝑝𝑖 + 𝑝2 + ⋯ + 𝑝𝑖 . The partial derivative of  

𝑑𝑖log (𝑝𝑖) with respect to 𝑎𝑗, when 𝑗 ≤ 𝑖, is:  
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𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗
    

     = (
2𝑑𝑖𝑎𝑗

𝑝𝑖
) [𝑝𝑖 − 𝑝𝑖(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]  

     = 2𝑑𝑖𝑎𝑗[1 − (𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)] 

     = 2𝑑𝑖𝑎𝑗𝑐𝑗−1     

 
using the relation  1 = 𝑐𝑘 = 𝑝1 + 𝑝2 + ⋯ + 𝑝𝑘 .  

When 𝑗 > 𝑖, we have: 

 

   
𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗
                  

   = (
2𝑑𝑖𝑎𝑗

𝑝𝑖
) [−𝑝𝑖(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)]  

   = 2𝑑𝑖𝑎𝑗[−(𝑝𝑗 + 𝑝𝑗+1 + ⋯ + 𝑝𝑘)] 

= 2𝑑𝑖𝑎𝑗(𝑐𝑗−1 − 1).   

 

Therefore, the partial derivative of 𝐶𝐸(1, 𝑘) with respect 

to 𝑎𝑗 is: 

 

  
𝜕𝐶𝐸

𝜕𝑎𝑗
= − ∑

𝜕𝑑𝑖 log(𝑝𝑖)

𝜕𝑎𝑗

𝑘
𝑖=1       

         = −2𝑎𝑗(𝑐𝑗−1 ∑ 𝑑𝑖
𝑘
𝑖=1 − ∑ 𝑑𝑖

𝑗−1
𝑖=1 )  

         = −2𝑎𝑗(𝑐𝑗−1𝑛 − ∑ 𝑑𝑖
𝑗−1
𝑖=1 ) = −2𝑎𝑗𝑔(𝑗)   

 

using the relation ∑ 𝑑𝑖
𝑘
𝑖=1 = 𝑛, where:  

 

                         𝑔(𝑗) = (𝑐𝑗−1𝑛 − ∑ 𝑑𝑖
𝑗−1
𝑖=1 ).  

 

We claim 𝑎2 = 𝑎3 = 𝑎𝑘 = 0. If this is true, then by (3.9), 

we have 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 =
1

𝑘
= 𝑣(1, 𝑘).  The proof 

follows. Otherwise, let 𝑖0 > 1 be the smallest index such that 

𝑎𝑖0
≠ 0.  Then we have: 

 

(i)  𝑝𝑖0−1 < 𝑝𝑖0
;  

(ii)  𝑝1 = 𝑝2 = ⋯ = 𝑝𝑖0−1;  

(iii)  𝑔(𝑖0) = 0.  
 

Therefore, by (iii), we have: 

 

   0 = 𝑔(𝑖0) = 𝑐𝑖0−1𝑛 − ∑ 𝑑𝑖
𝑖0−1
𝑖=1            

  ⇒ 𝑐𝑖0−1 = ∑
𝑑𝑖

𝑛
= (𝑖0 − 1)𝑣(1, 𝑖0 − 1)

𝑖0−1
𝑖=1 .  

 

By (ii), 𝑐𝑖0−1 = (𝑖0 − 1)𝑝1, thus we have  𝑝1 = 𝑣(1, 𝑖0 −

1). This leads to the following:  

       

 1 = 𝑘𝑣(1, 𝑘) 

 = 𝑝1 + 𝑝2+. . +𝑝𝑘 > 𝑘𝑝1 = 𝑘𝑣(1, 𝑖0 − 1)  

 

where the inequality follows from (i) and (1.4). Thus we have 

𝑣(1, 𝑖0 − 1) <  𝑣(1, 𝑘).This contradicts the fact that 𝑗 = 𝑘 is 

the largest index that 𝑣(1, 𝑗) reaches it minimum for all 1 ≤
𝑗 ≤ 𝑘. □ 

The following proposition generalizes the results of 

Proposition 3.2 to the case for the minimum generalized 

cross-entropy estimates. 

Proposition 3.3. Given a sample 𝑆 =
{(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1

𝑛 , where 𝑦𝑖𝑗 ≥ 0,  let {𝑘𝑖}𝑖=0
𝑚  be the 

partition integers defined by (2.3) and (2.4). The minimum 

generalized cross-entropy estimates  {𝑝𝑖}𝑖=1
𝑘  that minimize 

(1.6) subject to (1.4) and (1.7) are given by: 
 

     𝑝𝑗 =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
                     (3.10) 

 

where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 .                                     
 

Proof. If 𝑅 =
𝐷

𝑛
= 0, the proposition holds, because 𝑑𝑗 =

0 for all 1 ≤ 𝑗 ≤ 𝑘. Assume 𝑅 > 0. By (3.2), we have: 
 

𝐺𝐶𝐸 = 𝑐 − 𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′ )𝑘
𝑗=1  

                                                                          

where 𝑑𝑗
′ = 𝑑𝑗/𝑅, 𝑝𝑗

′ = 𝑝𝑗/𝑅,  and 𝑐 = −𝑅 ∑ 𝑑𝑗
′ log(𝑅)𝑘

𝑗=1 . 

Since {𝑝𝑗
′}

𝑗=1

𝑘
sum to one and {𝑑𝑗

′}
𝑗=1

𝑘
 sum to 𝑛, the function 

−𝑅 ∑ 𝑑𝑗
′ log(𝑝𝑗

′)𝑘
𝑗=1  differs from (1.3), the formulation of 𝐶𝐸, 

only by a scalar 𝑅 . Because 𝑅  and 𝑐  are constants, by 

Proposition 3.2, the minimum estimates of this function 

subject to (1.4) and (1.5) are given by  𝑝𝑗
′ =

𝑟𝑘𝑖−1+1
′ +𝑟𝑘𝑖−1+2

′ +⋯+𝑟𝑘𝑖
′

(𝑘𝑖−𝑘𝑖−1)
  for 𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖 ,  where 𝑟𝑗

′ =

𝑑𝑗
′

𝑛
=

𝑑𝑗

𝑛𝑅
= 𝑟𝑗/𝑅 . The equation (3.10) follows from the 

equations 𝑝𝑗 = 𝑅𝑝𝑗
′  and 𝑟𝑗

′ =
𝑟𝑗

𝑅
. □ 

    Given a sample 𝑆 = {(𝑦𝑖1 , 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 ,  where 𝑦𝑖𝑗 

are real numbers, we are interested in the least squares 

estimates {𝑝𝑖}𝑖=1
𝑘  that minimize (3.11) subject to (3.12) 

below: 

𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑝𝑗)
2

,𝑛
𝑖=1

𝑘
𝑗=1                   (3.11) 

                     𝑝1 ≤ 𝑝2 ≤ ⋯ ≤ 𝑝𝑘 .                          (3.12)  

Proposition 3.4. 𝐿𝑒𝑡 {𝑘𝑖}𝑖=0
𝑚  be the partition integers 

defined by (2.3) and (2.4). The least squares estimates 

{𝑝𝑗}
𝑗=1

𝑘
 of (3.11) subject to (3.12) are given by:       

𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) 

         =
𝑟𝑘𝑖−1+1+𝑟𝑘𝑖−1+2+⋯+𝑟𝑘𝑖

(𝑘𝑖−𝑘𝑖−1)
                     (3.13) 

where  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘𝑖. These estimates satisfy (1.7). 

 

Proof.  First, similarly to the proof of Proposition 3.2, these 

specific values for {𝑝𝑗}
𝑗=1

𝑘
 satisfy (1.7). By (2.5), (3.12) 

holds. Let: 
 

                      𝑆𝑆𝐸 = ∑ 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖)
𝑚
𝑖=1    

 

where: 
 

𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) 

                           = ∑ ∑ (𝑦𝑔𝑗 − 𝑝𝑗)
2

.𝑛
𝑔=1

𝑘𝑖
𝑗=𝑘𝑖−1+1   

 

Because of (2.5), it suffices to show 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) is 

minimized at 𝑝𝑗 = 𝑣(𝑘𝑖−1 + 1, 𝑘𝑖) , where 𝑘𝑖−1 + 1 ≤ 𝑗 ≤

𝑘𝑖. We show only the case when  𝑖 = 1 for 𝑆𝑆𝐸(1, 𝑘1). The 

proof for other 𝑆𝑆𝐸(𝑘𝑖−1 + 1, 𝑘𝑖) is similar. Without loss of 

generality, we assume 𝑘1 = 𝑘. In this case, 𝑚 = 1 and 𝑘1 =
𝑘, and 𝑆𝑆𝐸(1, 𝑘) = 𝑆𝑆𝐸. 

Parameterize 𝑝𝑗  by letting 𝑝1 = 𝑎1  and for 2 ≤ 𝑗 ≤

𝑘:          

   𝑝𝑗 = 𝑎1 + (𝑏2 + ⋯ + 𝑏𝑗)                      (3.14) 
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where 𝑏𝑖 = 𝑎𝑖
2. With this parametrization, (3.12) holds. Plug 

(3.14) into (3.11) and take the partial derivative of 𝑆𝑆𝐸 with 

respect to 𝑎𝑗. For 𝑗 ≥ 2,  we have: 
 

                 
𝜕𝑆𝑆𝐸

𝜕𝑎𝑗
= − ∑ ∑ 4𝑎𝑗(𝑦𝑔𝑖 − 𝑝𝑖)𝑛

𝑔=1
𝑘
𝑖=𝑗       

               = −4𝑎𝑗 ∑ (𝑑𝑖 − 𝑛𝑝𝑖)
𝑘
𝑖=𝑗 = −4𝑎𝑗ℎ(𝑗)    

     

where  ℎ(𝑗) = ∑  (𝑑𝑖 − 𝑛𝑝𝑖)𝑘
𝑖=𝑗 .  Setting this derivative to 

zero, we have either 𝑎𝑗 = 0 or ℎ(𝑗) = 0. For 𝑗 = 1,  we have: 
 

𝜕𝑆𝑆𝐸

𝜕𝑎1
= − ∑ ∑ 2(𝑦𝑔𝑖 − 𝑝𝑖)

𝑛
𝑔=1

𝑘
𝑖=1    

= −2 ∑  (𝑑𝑖 − 𝑛𝑝𝑖)
𝑘
𝑖=1 = −2ℎ(1).           

 

Setting this derivative to zero, we have: 
 

        0 = ℎ(1) = ∑ (𝑑𝑖 − 𝑛𝑝𝑖)𝑘
𝑖=1   

  ⇒ ∑ 𝑝𝑖 =
𝑑1+𝑑2+⋯+𝑑𝑘

𝑛

𝑘
𝑖=1                                         (3.15)  

=
𝐷

𝑛
= 𝑅 = 𝑘𝑣(1, 𝑘).                             

We claim that 𝑎𝑗 = 0 for all 1 < 𝑗 ≤ 𝑘.  If this is true, then 

𝑝1 = 𝑝2 = ⋯ = 𝑝𝑘 . By (3.15), we have  𝑝1 =
𝐷

𝑛𝑘
=

𝑣(1, 𝑘), and the proof follows. Otherwise, let 𝑖0, 1 < 𝑖0 ≤
𝑘, be the smallest index such that 𝑎𝑗 = 0 𝑤hen 1 < 𝑗 < 𝑖0 , 

and 𝑎𝑖0
≠ 0 . Then we have ℎ(1) = 0 and ℎ(𝑖0) = 0. Thus: 

0 = ℎ(1) − ℎ(𝑖0)   = ∑ (𝑑𝑖 − 𝑛𝑝𝑖)
𝑖0−1
𝑖=1 .                       (3.16)   

Since  𝑎𝑗 = 0  for 1 < 𝑗 < 𝑖0 , we have 𝑝1 = 𝑝2 = ⋯ =

𝑝𝑖0−1. Thus by (3.16), we have:  
 

   𝑝1 =
𝑑1+𝑑2+⋯+𝑑𝑖0−1

𝑛 (𝑖0−1)
= 𝑣(1, 𝑖0 − 1).  (3.17)  

                                                              

Since  𝑎𝑖𝑜
> 0,  we have 𝑝1 < 𝑝𝑖0

, hence ∑ 𝑝𝑖 > 𝑘𝑝1
𝑘
𝑖=1  

by (3.12). Thus by (3.17) and (3.15), we have: 
 

   𝑘𝑣(1, 𝑖0 − 1)         

    = 𝑘𝑝1 < ∑ 𝑝𝑖 = 𝑘𝑣(1, 𝑘)𝑘
𝑖=1   

   ⇒ 𝑣(1, 𝑖0 − 1) < 𝑣(1, 𝑘). 
 

This contradicts the fact that 𝑗 = 𝑘 is the largest index that 

𝑣(1, 𝑗) reaches it minimum for all  1 ≤ 𝑗 ≤ 𝑘. □      

 

IV. ALGORITHMS FOR MONOTONIC ESTIMATION BY 

MINIMUM GENERALISED CROSS-ENTROPY 

In this section we propose algorithms for finding 

monotonic estimates. First, we propose a non-parametric 

algorithm with time complexity 𝑂(𝑘2)  for the partition 

integers, hence the exact solution for the monotonic estimates.  

Algorithm 4.1 (Non-parametric). Set 𝑘0 = 0.   Assume 

that partition integers {𝑘𝑗}, 0 ≤ 𝑗 ≤ 𝑖 − 1, have been found 

for an integer 𝑖 > 0, and that {𝑝𝑗}, 1 ≤ 𝑗 ≤ 𝑘𝑖−1, have been 

calculated by (3.10) or (3.13). Scan into the remaining 

indexes range  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘 for a value 𝑗 = 𝑘𝑖  such that    

 

𝑣(𝑘𝑖−1 + 1, 𝑗) =
𝑟𝑘𝑖−1+1 + 𝑟𝑘𝑖−1+2 + ⋯ + 𝑟𝑗

(𝑗 − 𝑘𝑖−1)
 

 

reaches its minimum for all  𝑘𝑖−1 + 1 ≤ 𝑗 ≤ 𝑘, and 𝑗 = 𝑘𝑖 is 

the largest index for this minimum. Calculate  {𝑝𝑗}, 𝑘𝑖−1 +

1 ≤ 𝑗 ≤ 𝑘𝑖 ,  by (3.10) or (3.13) as  𝑣(𝑘𝑖−1 + 1, 𝑘𝑖). Repeat 

this process until 𝑘𝑖 = 𝑘.  □      

Next, we propose a parametric algorithm as below, which 

can be implemented by using SAS procedure PROC 

NLMIXED ([13]), for an approximation of the estimates 

minimizing (1.6) subject to (1.4) and (1.7) (or strictly 

monotonic constraints: 0 ≤ 𝑝1 < 𝑝2 < ⋯ < 𝑝𝑘). Recall that 

𝑅 = ∑ 𝑟𝑖
𝑘
𝑖=1 = 𝐷/𝑛.  

 

Algorithm 4.2 (Parametric). Assume 𝑅 > 0. 
Parameterize 𝑝𝑗 by: 

         𝑝𝑗 =
𝑅𝑤𝑗

𝑤1+𝑤2+⋯+𝑤𝑘
,                            (4.1)  

where: 

 

     𝑤𝑗 = exp( 𝑏1 + 𝑏2 + ⋯ +𝑏𝑗),                  (4.2)    

  

and 𝑏𝑖 = 𝑎𝑖
2 + 𝜖, 1 ≤ 𝑖, 𝑗 ≤ 𝑘. Then ∑ 𝑝𝑖  𝑘

𝑖=1 = 𝑅  and 
𝑝𝑖

𝑝𝑖−1
≥ exp(𝜖) .  Here 𝜖 ≥ 0  is an appropriately selected 

constant for the desired monotonicity. Plug (4.1) into (1.6) 

and perform a non-constrained optimization to obtain the 

estimates {𝑎𝑖}𝑖=1
𝑘 , hence {𝑝𝑖}𝑖=1

𝑘  by (4.1) and (4.2).  □      

 

V. APPLICATIONS  

A. Isotonic Regression 

Given real numbers {𝑟𝑖}𝑖=1
𝑘 , the task of isotonic regression 

is to find {𝑝𝑖}𝑖=1
𝑘  that minimize the weighted sum squares 

∑ 𝑤𝑖(𝑟𝑖 − 𝑝𝑖)
2𝑘

𝑖=1 ,  where {𝑤𝑖}𝑖=1
𝑘  are the given weights. 

When 𝑤𝑖  is 1 and 𝑟𝑖 takes value 0 or 1 for all 𝑖’s, it is known 

([14]) that the results for isotonic regression coincide with the 

maximum likelihood estimates subject to (1.4) for the 

Bernoulli log-likelihood ∑ [𝑟𝑖 log(𝑝𝑖) + (1 − 𝑟𝑖)log (1 −𝑘
𝑖=1

𝑝𝑖)]. 
A unique exact solution to the isotonic regression exists 

and can be obtained by a non-parametric algorithm called 

Pool Adjacent Violators (PAV) ([1]). The basic idea, as 

described in [4], is the following: Starting with 𝑟1, we move 

to the right and stop at the first place where 𝑟𝑖 > 𝑟𝑖+1. 
Since 𝑟𝑖+1 violates the monotonic assumption, we pool 𝑟𝑖  and 

𝑟𝑖+1  replacing both with their weighted average. Call this 

average 𝑟𝑖
∗ = 𝑟𝑖+1

∗ = (𝑤𝑖𝑟𝑖 + 𝑤𝑖+1𝑟𝑖+1)/(𝑤𝑖 + 𝑤𝑖+1).  We 

then move to the left to make sure that 𝑟𝑖−1 ≤ 𝑟𝑖
∗- if not, we 

pool 𝑟𝑖−1  with 𝑟𝑖
∗ and 𝑟𝑖+1

∗  replacing these three with their 

weighted average. We continue to the left until the monotonic 

requirement is satisfied, then proceed again to the right (see 

[1], [2], [4], [8]). This algorithm finds the exact solution via 

forward and backward averaging.  

Another parametric algorithm, called Active Set Method, 

approximates the solution using the Karush-Kuhn-Tucker 

(KKT, [15]) conditions for linearly constrained optimization 

([2], [8]).  

For a given sample 𝑆 = {(𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑘)}𝑖=1
𝑛 , where 𝑦𝑖𝑗  

are real numbers, the sum-squares-error 𝑆𝑆𝐸 in (3.11) can be 

rewritten as: 

   𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑝𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1  

            = ∑ ∑ (𝑦𝑖𝑗 − 𝑟𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1 + 
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                ∑ 𝑛(𝑟𝑗 − 𝑝𝑗)
2𝑘

𝑗=1 = 𝑆𝑆𝐸1 + 𝑆𝑆𝐸2  

 

where  𝑆𝑆𝐸1 = ∑ ∑ (𝑦𝑖𝑗 − 𝑟𝑗)
2𝑛

𝑖=1
𝑘
𝑗=1 , 𝑆𝑆𝐸2 = ∑ 𝑛(𝑟𝑗 −𝑘

𝑗=1

𝑝𝑗)
2

,  𝑟𝑗 =
𝑑𝑗

𝑛
,  and 𝑑𝑗 = ∑ 𝑦𝑖𝑗

𝑛
𝑖=1 .  Because 𝑆𝑆𝐸1  does not 

depend on parameters {𝑝𝑗}
𝑗=1

𝑘
, the estimates that minimize 

𝑆𝑆𝐸  subject to (3.12) are the same as the estimates that 

minimize 𝑆𝑆𝐸2  subject to (3.12). Hence, the least squares 

estimates {𝑝𝑗}
𝑗=1

𝑘
of (3.11) subject to (3.12) are the solution 

to the isotonic regression problem where weights 𝑤𝑖  are 

equal to 𝑛. 
The algorithm PAV repeatedly searches both backward 

and forward for violators and takes average whenever a 

violator is found. In contrast, Algorithm 4.1 determines 

explicitly the groups of consecutive indexes by a forward 

search for partition integers. Average is then to be taken over 

each of these groups. For Algorithm 4.2, the constrained 

optimization is transformed into a non-constrained 

mathematical programming, through a re-parameterization. 

No KKT conditions and active set method are used.      

B. Monotonic Estimation of Risk Scales for Multivariate 

Outcomes 

In this section, we show two examples on how the 

proposed algorithms can be used for monotonic estimation 

for a loss rate time series and a long-run migration matrix. 

Parametric methods for monotonic estimation of long-run 

migration matrices was discussed in ([5]). 

 
TABLE I: SMOOTHING LOSS SERIES 

 
 

In the first example, a loan portfolio is observed for loss 

for each loan since the account is opened. The 1st row in 

Table I shows the yearly (since account open date) loss rate 

for the portfolio for 25000 accounts (i.e. 𝑛 = 25000). The 

rate is calculated as the ratio of the total loss amount in a year 

divided by the total initial balance at open date for the 

portfolio. It is assumed that the loss rate is decreasing as loans 

survive through time.  

The non-parametric algorithm (Algorithm 4.1, labelled as 

“NPSM”) is used, by reversing the time index, to obtain the 

monotonic least squares estimates for 10 yearly rates. As a 

result, simple average is taken for cell groups {1, 2} and {8, 

9, 10} respectively. For other cells the rate is kept unchanged. 

Strictly monotonic least squares estimates are obtained by 

using algorithm 4.2 (labelled as “PSM”, where 𝜖  in the 

algorithm is chosen to satisfy exp(𝜖) = 1.05).  

A benchmark model of the form 𝑝𝑖 = 𝑎 + 𝑏𝑒𝜆𝑡𝑖  is 

calibrated, where 𝑡𝑖 denotes the time since account opening, 

with parameters being estimated by least squares regression. 

This is a simplified model for monotonic continuous yield 

curve used by Nelson and Siegel ([16], pp.483). We label this 

approach by “NSSM”.  

As shown in the table, the non-parametric algorithm gets 

the lowest sum squared error (labelled as “SSE”).  

In the second example, the non-parametric algorithm is 

used to “smooth” the long-run average rating migration 

matrix for a portfolio with six non-default ratings. It is 

expected that an entity will migrate to the closer non-default 

rating than a faraway non-default rating, i.e. the following 

conditions are required for each 𝑖𝑡ℎ row in the long-run 

average migration matrix: 

    𝑝𝑖,𝑖+1 ≥ 𝑝𝑖,𝑖+2 ≥ ⋯ ≥ 𝑝𝑖,𝑘,                   (5.1)  

    𝑝𝑖,1 ≤ 𝑝𝑖,2  ≤ ⋯ ≤ 𝑝𝑖,𝑖−1                     (5.2)  

where 𝑝𝑖,𝑗  denotes the probability of migrating from non-

default rating 𝑖 to non-default rating 𝑗, conditional on that it 

migrates to a non-default rating. Smoothing of a given 

migration matrix means the action of modifying the 

migration matrix subject to (5.1) and (5.2) with minimum 

loss (cross-entropy).   

Table II below shows the sample long-run average rating 

migration matrix before smoothing, conditional on migrating 

to a non-default rating, calculated from the historical sample 

generated synthetically between 2007Q1 and 2017Q1 for a 

commercial portfolio. There are six non-default ratings. 

Three highlighted blocks violate (5.1) or (5.2).   
 

TABLE II: LONG-RUN TRANSITION MATRIX BEFORE SMOOTHING 

 
 

For the  𝑖𝑡ℎ row of the migration matrix, we let 𝑛𝑖𝑗 and 𝑟𝑖𝑗  

denote respectively the observed frequency and rate 

migrating from  𝑖𝑡ℎ  rating to 𝑗𝑡ℎ  rating, conditional on 

migrating to a non-default rating. Let 𝑛1 = 𝑛𝑖1 + 𝑛𝑖2 + ⋯ +
𝑛𝑖𝑖−1 , and  𝑛2 = 𝑛𝑖 𝑖+1 + 𝑛𝑖 𝑖+2 + ⋯ + 𝑛𝑖6 . For  𝑗 < 𝑖 , let  

𝑝𝑖𝑗
0 = 𝑝𝑖𝑗/𝑝1, where  𝑝1 = 𝑝𝑖1 + 𝑝𝑖2 + ⋯ + 𝑝𝑖 𝑖−1. For  𝑗 > 𝑖, 

let  𝑝𝑖𝑗
0 = 𝑝𝑖𝑗/𝑝2 , where 𝑝2 = 𝑝𝑖 𝑖+1 + 𝑝𝑖 𝑖+2 + ⋯ + 𝑝𝑖6 .The 

log-likelihood for a specific 𝑖𝑡ℎ row of the migration matrix 

is: 

  𝐿𝐿 = ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗)6
𝑗=1   = 𝑛𝑖𝑖 log(𝑝𝑖𝑖)+ 

              ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗) +𝑖−1
𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗)6

𝑗=𝑖+1   

 = 𝑛𝑖𝑖 log(𝑝𝑖𝑖) + 𝑛1 log(𝑝1) + 𝑛2 log(𝑝2) +  

     ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 ) +𝑖−1

𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 )6

𝑗=𝑖+1   

  = 𝐿𝐿1 +       ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 ) +𝑖−1

𝑗=1 ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 )6

𝑗=𝑖+1   

where 𝐿𝐿1 = 𝑛𝑖𝑖 log(𝑝𝑖𝑖) + 𝑛1 log(𝑝1) + 𝑛2 log(𝑝2).  By 

Lemma 3.1, 𝐿𝐿1  is maximized at 𝑝𝑖𝑖 = 𝑟𝑖𝑖 , 𝑝1 = 𝑟𝑖1 + 𝑟𝑖2 +
⋯ + 𝑟𝑖 𝑖−1,  and 𝑝2 = 𝑟𝑖 𝑖+1 + 𝑟𝑖 𝑖+2 + ⋯ + 𝑟𝑖 6.  Applying 

Algorithm 4.1 respectively to ∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 )𝑖−1

𝑗=1  for the left-

hand-side off the diagonal in the row, and to 

∑ 𝑛𝑖𝑗 log(𝑝𝑖𝑗
0 )6

𝑗=𝑖+1   for the right-hand-side off the diagonal, 

                      TABLE 1. SMOOTHING LOSS RATE SERIES

Loss rate by year since open

1 2 3 4 5 6 7

5.000% 6.500% 5.000% 4.000% 5.000% 3.500% 3.000%

NPSM 5.750% 5.750% 5.000% 4.500% 4.500% 3.500% 3.000%

PSM 5.890% 5.610% 5.000% 4.610% 4.390% 3.500% 3.089%

NSSM 5.723% 5.332% 4.948% 4.572% 4.203% 3.841% 3.486%

8 9 10 SSE

2.500% 3.000% 3.000% 0.00000

2.830% 2.830% 2.830% 4.47917

2.942% 2.802% 2.668% 6.70271

3.138% 2.796% 2.462% 9.85846

       TABLE 2. LONG-RUN TRANSITION MATRIX BEFORE SMOOTHING  

Transition  probability before smoothing

Rating 1 2 3 4 5 6

1 0.9716 0.0183 0.0031 0.0055 0.0010 0.0002

2 0.0062 0.9453 0.0307 0.0128 0.0021 0.0026

3 0.0007 0.0103 0.9380 0.0409 0.0066 0.0028

4 0.0002 0.0007 0.0126 0.9673 0.0126 0.0054

5 0.0004 0.0012 0.0079 0.0800 0.8272 0.0705

6 0.0002 0.0013 0.0027 0.0450 0.0120 0.8994
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we get the maximum likelihood estimates for  𝑝𝑖𝑗
0  subject to 

(5.2) or (5.1), hence the maximum likelihood estimates 𝑝𝑖𝑗 

for all 𝑗 for a fixed 𝑖, subject to (5.1) or (5.2). 

Take, for example, the right-hand-side of the diagonal for 

the first row in the matrix, before smoothing, these numbers 

are:   
 

   0.0183, 0.0031, 0.0055, 0.0010, 0.0002.           (5.3)  
 

We can think these numbers are the sample multinomial 

percentages by dividing into each the sum of these 5 numbers, 

then applying Algorithm 4.1 to obtain the smoothed rates, 

and finally times back the sum of the above 5 numbers. Or 

equivalently, apply Algorithm 4.1 directly without 

normalization to (5.3). This means, the smoothed results are 

given by replacing the values for the 2nd and the 3rd numbers 

by their average on 0.0031 and 0.0055, while keeping others 

unchanged. Table III shows the migration matrix after 

smoothing. 

 
TABLE III: LONG-RUN TRANSITION MATRIX AFTER SMOOTHING 

 
 

VI. CONCLUSIONS AND FUTURE WORKS 

With the proposed non-parametric algorithm, the exact 

solution to the monotonic estimation of the risk scales for 

multivariate outcomes becomes easier. No calculation for the 

optimization gradients and Hessian matrices, only a machine 

learning data driven process is required.  

 One of the interesting future research subjects is the 

monotonic estimation for the survival probability of a loan 

over a risk rated portfolio: a loan with lower risk rating is 

expected to survive more likely. We will propose models and 

algorithms for the monotonic estimation of these survival 

probabilities.   
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APPENDIX 

Given two discrete probability distributions 𝑝 = {𝑝𝑖}𝑖=1
𝑘  

and 𝑞 = {𝑞𝑖}𝑖=1
𝑘 , the Kullback-Leibler (KL) divergence (also 

called relative entropy) between  𝑞  and 𝑝  is defined as   
    

     𝐷𝐾𝐿(𝑞||𝑝) = ∑ 𝑞𝑖 log(𝑞𝑖/𝑝𝑖)
𝑘
𝑖=1                      (A-1)    

 

For a fixed 𝑞 , 𝐷𝐾𝐿(𝑞||𝑝)  measures the dissimilarity 

between 𝑞 and 𝑝 ([7]). The cross-entropy 𝐻(𝑞, 𝑝) is defined 

as 
 

    𝐻(𝑞, 𝑝) = − ∑ 𝑞𝑖 log(𝑝𝑖)𝑘
𝑖=1                      (A-2)  

 

Hence, we have   
 

𝐻(𝑞, 𝑝) = 𝐻(𝑞) + 𝐷𝐾𝐿(𝑞||𝑝) 
 

where 𝐻(𝑞) = − ∑ 𝑞𝑖 log(𝑞𝑖)
𝑘
𝑖=1 , the entropy for distribution 

𝑞. When 𝑞 is fixed and given, cross-entropy 𝐻(𝑞, 𝑝) is the 

same as 𝐷𝐾𝐿(𝑞||𝑝)(= ∑ 𝑞𝑖 log(𝑞𝑖) − ∑ 𝑞𝑖 log(𝑝𝑖)𝑘
𝑖=1

𝑘
𝑖=1  ) as 

a function of 𝑝,  up to an additive constant (because 𝑞  is 

fixed). Both take on minimal values when 𝑝 = 𝑞, which is 0 

for KL divergence and 𝐻(𝑞)  for the cross-entropy. Thus 

cross-entropy measures the dissimilarity between the given 

distribution 𝑞 and the distribution 𝑝 ([5], [9]).  
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           TABLE 3. LONG-RUN TRANSITION MATRIX AFTER SMOOTHING

Transition probability after smoothing

Rating 1 2 3 4 5 6

1 0.9718 0.0183 0.0043 0.0043 0.0010 0.0002

2 0.0062 0.9455 0.0307 0.0128 0.0024 0.0024

3 0.0007 0.0103 0.9387 0.0409 0.0066 0.0028

4 0.0002 0.0007 0.0126 0.9684 0.0126 0.0054

5 0.0004 0.0012 0.0080 0.0810 0.8380 0.0714

6 0.0002 0.0014 0.0028 0.0296 0.0296 0.9363
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