

Abstract—Purpose of this research is to make chatbot based

system to help Small and Medium Enterprise business. Initially,

we build this application only to help Small and Medium

Enterprise owner to monitor their business and report. Yet, we

realize that we can make our chatbot to be more effective and

efficient using machine learning technique. N-gram and machine

learning using schema matching are embedded to the chatbot to

understand user intention and correct typographical error

inside the sentences. Finally, the chatbot has been successfully

achieved those objectives. It can be concluded that the chatbot

can drive the users’ feeling to be more convenient and help Small

and Medium Enterprise owner to monitor their business.

Index Terms—Chatbot, n-gram, machine learning, schema

matching, typographical error, user intention.

I. INTRODUCTION

There are no doubts that the digital era is developing

quickly, with different platform reaching the users such as

social media, email, and websites. We have a lot of ways of

communication, the process of sending messages to become

more and more interactive than it used to be. In the last few

years, digital communication was about social media and

information technology is influencing everything.

In the recent years, several emerging issues are posing

serious challenges to the small and medium-sized enterprises

(SME's). These enterprises enter the new era, and one

challenge that worth to be addressed is globalization. Small

medium enterprises also need to adapt to globalization, one

way to do that is to digitalize their business with information

technology.

As we can see, the role of IT is very big in small medium

enterprises, 45% said that it is a necessary cost, the other 35%

said that it is an enabler of business efficiency and the rest said

it is a driver of competitive advantage or differentiation. In

this research, we want to propose chatbot as a tool to help

small medium enterprises in Indonesia. Chatbot is a computer

program that has the ability to hold a conversation with a

human using Natural Language Speech [1]. Basically, chatbot

has an ability to send text messages and it feels like a human

who sends it. These days people might be using these daily

needs, for example, Siri and Cortana are intelligent personal

Manuscript received October 22, 2018; revised April 15, 2019. This work

was supported by Bina Nusantara University.

The authors are with Computer Science Department, School of Computer

Science, Bina Nusantara University, Jakarta, Indonesia 11480 (e-mail:

mikael.tedjopranoto@binus.ac.id, andreas.wijaya002@binus.ac.id,

levi.santoso@binus.ac.id, dsuhartono@binus.edu).

assistants in the form of chatbot by Apple and Windows [2].

Using chatbot, people can easily send any information to their

customers by creating some defined conversations. So,

chatbots can be so convenient and easy to use.

The problem that business owner faced these days, is they

need to come to their store to check their income, employees,

and their stock. With chatbot, those things are not necessary

anymore, business owner only needs to send a message to

Business Bot, to do all of those things.

Chatbot is our future, however, people in Indonesia is not

used to asking questions or do their daily basis using chatbot.

Our idea is to introduce or SME (Small Medium Enterprise)

to chatbot, so they can manage their business as easy as

sending a chat message.

To make it more convenient and easy to use, we will

attempt to develop a chatbot using machine learning. Machine

learning is a subfield of Artificial Intelligence that gives the

machine the capabilities to learn from data. Using machine

learning algorithm, we aim to produce a model that will

correct the typo of users and understand user’s intent without

typing the exact keyword.Typo itself is, Typing errors occurs

when the typist or the author knows the actual and correct

spelling of the word but mistakenly or by slip of finger presses

an invalid key [3]. User intent is the identification and

categorization of what a user intended or wanted when they

typed their search terms [4]. To correct the typo, we will use

N-gram technique. An N-gram is an N-character slice of a

longer string, N-gram-based matching has had some success

in dealing with ASCII. If we count N-grams that are common

to two strings, we get a measure of their similarity that is

resistant to a wide variety of textual errors [5]. In our system,

we use N-grams of several different lengths simultaneously

and compare the results of the N-gram to correct the typo. The

user will have chatting experience such that it looks like doing

chat with real person.

Based on the introduction, we identify some problems,

does this application help owner of Small Medium Enterprise?

does the user feel more convenient with our application using

Artificial Intelligence technique? are the evaluations for the

technique good enough to satisfy the user? We hypothesize

that by implementing artificial intelligence technique, such as

N-gram and machine learning will help the chatbot become

convenient and easy to use.

The objectives of this research are: (1) to succeed in

correcting the typo from the user's input based on our pre-set

keywords, (2) to implement machine learning to define the

user's intent after the user types something, and (3) to create

an application that can help Small Medium Enterprises owner

Correcting Typographical Error and Understanding User

Intention in Chatbot by Combining N-Gram and Machine

Learning Using Schema Matching Technique

Mikael L. Tedjopranoto, Andreas Wijaya, Levi Hanny Santoso, and Derwin Suhartono

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

471doi: 10.18178/ijmlc.2019.9.4.828

mailto:mikael.tedjopranoto@binus.ac.id
mailto:andreas.wijaya002@binus.ac.id
mailto:levi.santoso@binus.ac.id

retrieves information about their business. The benefits of this

research are: (1) trained machine learning architecture can be

used for another similar chatbot, and (2) Small Medium

Enterprises owner can use this application to monitor their

business.

Fig. 1. SMEs survey of IT services (IDC, 2017).

For objective evaluation, we provide N-gram score table

for every related keyword and the accuracy of the output. For

schema matching, we provide top five of our users’ input and

count the accuracy, precision, recall and F1 score. They are

calculated based on True Positive (TP), True Negative (TN),

False Positive (FP) and False Negative (FN). True positive is

number of correctly predicted data as positive values which

means the value of actual class is “Yes” and the value of

predicted class is also “Yes”. True negative is number of

correctly predicted data as negative values which means that

the value of actual class is “No” and value of predicted class is

also “No”. False positive is “No” for actual class and “Yes”

for predicted class. False negative is “Yes” for actual class but

“No” for predicted class. Accuracy is simply the ratio of

correctly predicted observations, it is the number of correct

prediction divided by total number of prediction [6]. Recall is

the number of retrieved relevant items as a proportion of all

relevant items. Therefore, recall is a measure of effectiveness

in retrieving performance and can be viewed as a measure of

effectiveness in including relevant items in the retrieved set.

Precision is the number of retrieved relevant items as a

proportion of the number of retrieved items. Precision is,

therefore, a measure of purity in retrieval performance, a

measure of effectiveness in excluding non-relevant items

from the retrieved set. The F1 score is the weighted average of

precision and recall. Therefore, this score takes both false

positives and false negatives into account. It works best if

false positives and false negatives have similar cost [7].

This research writing systematics is divided into 5 chapters.

Chapter 1 explains the background, identification of problems,

scope of research, uses and objectives of the research,

research methodology, and writing systematic. Chapter 2

elaborates several previous related methods that is done by

other researchers. Chapter 3 describes the explanation on how

we run our experiments. Research framework is shown here.

Chapter 4 shows and explains the experiment results, user

interface, score of N-gram model and result of schema

matching. Finally, chapter 5 provides conclusion, analysis of

the previous chapter, and suggestions that will help further

development of the systems.

II. METHOD COMPARISON

SuperAgent is a powerful customer service chatbot

leveraging large-scale and publicly available e-commerce

data. Nowadays, large e-commerce websites contain a great

of in-page product descriptions as well as user-generated

content, such as Amazon.com, Ebay.com and many others.

Take an Amazon.com product page as an example, which

contains detail Product Information (PI), a set of existing

customer Questions & Answers (QA), as well as sufficient

Customer Reviews (CR). This crowd-sourcing style of data

provides appropriate information to feed into chat engines,

accompanying human support staff to deliver better customer

service experience when online shopping [8].

Fig. 2 shows the system overview of SuperAgent. As the

figure shows, when the product page is visited, SuperAgent

crawls the HTML information and scrapes PI+QA+CR data

from the webpage. Given an input query from a customer,

different engines are processed in parallel. If one of the

answers from the first three engines has high confidence, the

chatbot will return the answer as response. Otherwise, the

chit-chat engine will generate a reply from the predefined

permitted response sets.

Fig. 2. The system overview of SuperAgent.

SuperAgent uses regression forest model to choose

between their techniques while our chatbot will automatically

use between n-gram or schema matching technique after

knowing the users’ intention. N-gram is “an n-token sequence

of words” [9]. N-grams originate from the field of

computational linguistics. Schema matching refers to problem

of finding similarity between elements of different database

schemas. Schema matching uses machine learning techniques

to find the correct equivalence between the input schemas

[10]. For the training system, we use K-Nearest Neighbor

(KNN). KNN algorithm is a method for classifying objects

based on closest training examples in the feature space [11].

III. RESEARCH METHODOLOGY

We use a simple system for our chatbot, we set a certain

keyword to let users proceed to another state by typing the

keywords. The keywords are set according to the user’s state,

category, and intent value. To check the intention, category,

and state of a user, our system will connect to the database

where all information of users and data related to the business

are stored. If our system detected a new user, the system will

add new user information in the database with zero intention

value, null category value, and zero as state value. All data

that business bot shows is provided by the database, which is

the data from the cashier machine or manually input. Detail of

business bot method is shown in Fig. 3.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

472

Fig. 3. Business bot method.

Upon receiving an input which is in form of a text sent by a

user through LINE, our system will check whether the user’s

intent value is 0 or 1, depends on the input that already settled.

If a user’s intent value is 1, the input will run in n-gram engine.

Otherwise, the input will run in the schema matching package

engine called Flexmatcher. We use machine learning

technique inside Flexmatcher with KNN Algorithm. The

details inside n-gram and schema matching will be mentioned

further later in this chapter. If the users’ intention is

recognized, our system will update the users’ information

according to their intention.

For n-gram, our system will constantly check a user’s

information on the database every time the user sends a

message to the chatbot. N-gram will run if the value of the

user’s intent value is 1. Our system will use trigram (n-gram

with n=3) to calculate the similarity between the keywords

and user’s input. The first step of the N-gram engine is to

receive the input, state, and category. Then, N-gram engine

will validate the state and category. After validating state and

category, certain keywords are chosen to be compared with

the input for example:

1. State: 1; Category: Laporan, keywords that will be

compared are: “pemasukan” (income), “pengeluaran”

(outcome), “report”, and “tambah pemasukan” (add

income).

2. State: 1; Category: List, keywords that will be compared

are: “stok” (stock), “pemasok” (supplier), “pelanggan”

(customer), “bahan” (material), “tambah stok” (add

stock), “tambah pemasok” (add supplier), “tambah

pelanggan” (add customer), and “tambah bahan” (add

material).

3. State: 2, keywords that will be compared are: “bulan”

(month) and “tanggal” (date).

After comparing all keywords with the input, n-gram will

save the highest value. If the value that n-gram saved exceeds

the threshold that we set which is 0.25, then the system will

send the keyword back to the system.

To calculate the N-gram we use the following formula:

()X Y

X

− (1)

where X is the total number of distinct n-gram across the two

strings and Y is the number of characters (duplicate characters

counted) not shared by the two strings. We set 0.25 as

threshold because this is the most logical calculation. It will

correct one letter typographical error in a less than four letters

word, and two letters typographical error in a word less than 7

letters.

Upon sending back a keyword, our system will update the

user’s state and category in accordance with the keyword.

If the user’s intent value is 0, schema matching engine will

be called to process the input data. Schema matching is a

package in Python which handles the problem of matching

multiple schemas to a single mediated schema. Before our

system process the input, there are few things that need to be

prepared:

1. Make dummy datasets in an array or more as a

foundation to train

For schema matching, we need few words as foundation to

train for. We will prepare dummy datasets containing

commands and keywords that will be trained in schema

matching engine. We will collect the data by group discussion

about commands and keywords that are related to the business.

Given multiple dummy datasets listing every command

related to business, we must set the mediated schema in the

first array of every dummy datasets.

2. Set headers and arrange the training datasets

In this step, we must turn the previous datasets of array into

tables and fill the first column with the mediated schemas of

the datasets. The number of tables made is according to the

amount of the datasets

3. Specify headers into name classifiers

The next step is to determine headers of the tables into

name classifiers. We manually specify every header into the

name classifiers and inserted into an array variable. Headers

with the same meaning or category but different words will be

classified into the same name classifier. The utility of these

name classifiers is to recognize the input from the prediction

variable

4. Create and map the prediction dataset

After classifying the headers, we will make the prediction

dataset to predict the intention. The prediction dataset will be

mapped exactly like the other datasets. Like the other datasets,

prediction dataset has to be an array.

5. Combine training data into an array variable

After the previous step, we combine the training datasets that

have been converted into tables into an array variable called

“schema_list”.

6. Prepare, train, and retrieve the data

The next step is to prepare the data to train. A schema

matching package called Flexmatcher will be used to train the

data. Before training the data, we have to make a variable

containing the training data, “.train()”, for example:

• data.train()

where “data” is the training data that was prepared in the

previous step right before “.train()” is called. After the data is

trained, we will retrieve the prediction by using

“make_prediction” command on the mapped prediction table.

• predicted_mapping = data.make_prediction(data3)

where “predicted_mapping” is the variable made to contain

the prediction and “data” is the training data, and “data3” is

the prediction table. To retrieve the name classifier of the

prediction, we just have to print “predicted_mapping” array

of “data3” header.

• print(predicted_mapping[“kata”])

where “kata” is the header of prediction table. The predicted

name classifier of the header input will be printed after “print”

is called.

After all these steps, our system can run this schema

matching engine and retrieve the prediction by sending the

input text from the user. However, there are few cases that

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

473

schema matching engine received an unpredictable or

unrecognized input text. Therefore, we ask our system to save

the unrecognized input to an error log. Then, our system will

respond with a message telling the user that it did not

recognize the input and ask the user to send another input.

Every unrecognized input text from users will be filtered

and manually added to training datasets. First, our system

receives unknown users' input. For example, the user sends

"income" and our system sends the input to the schema

matching engine to process the word "income". The engine

does not understand what that word is and gives an error

message. The unknown users’ input will automatically be

stored in error log.

However, if the engine understands or recognizes that input,

it will respond with a message and update the user’s state,

category, and intent. To update user’s information, our system

will need the prediction from schema matching engine. After

updating user’s information, our system will push a text

message to the user according to the user’s current intent, state,

and category. After proceeding from state to state, there will

be a time where there are no more state to continue, our

system will automatically update the user’s information to

default. Where intent and state values become 0 and category

becomes NULL.

IV. RESULT AND DISCUSSIONS

In this chapter, we explore more about what result that we

got. We use dummy data for our testing, which is suitable for

clothing business. We attempted to experiment with 2

different methods: N-gram and Schema Matching. We will

show the numbers that we got from those experiments. We

choose N-gram and Schema Matching for this research,

because of how useful N-gram and Schema Matching for the

user to experience chatting with another human while using

the bot. Bahasa (Indonesia language) is used for the whole

experiment. For each Bahasa mentioned in the examples, we

provide its English inside the brackets afterwards.

For the N-gram method, we used N = 3 namely trigram, and

it was categorized as good if the score was higher than 0.25.

We use trigram, because it may be identified by the set of the

characters they contain, and completely ignore the ordering

information.

For Schema Matching we use Flexmatcher and pandas as

our plugin, which include several examples of texts or

sentences that might be typed by the users also from the

respondents that already tried to use this bot. Flexmatcher is a

Schema Matching package in Python which handles the

problem of matching multiple schemas to a single mediated

schema.

We use Flexmatcher to calculate the user’s input value and

pandas to make a table consisting our array of data using

pandas data-frame. So, after the bot received the user’s input,

it can determine what is the user’s “real” intention and then

place the user in a specific state.

Table Ipresents the result for correct the typographical

error. To measure the user intention, we used some of our

users input as our sample inputs for this result. Table I

provides the accuracy, precision, recall and f1 score based on

those sample inputs. We attempted for each input for 5 times.

TABLE I: RESULT FOR N-GRAM

TABLE II: AVERAGE AND F1 SCORE FROM SOME OF THE USER’S INPUT

Fig. 4. Flexmatcher functionality for respondent’s input.

For evaluating user’s satisfaction, we used subjective

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

474

evaluation. In this case, we use the questionnaire from Google

Form. We use Google Form because of the simplicity,

respondent’s familiarity, and how easy to share the

questionnaire to our targeted individuals. For our targeted

individuals, we involve university students, store owners, and

working people. The questionnaire is comprised of 7

questions about our chatbot, but we will only show 3 of them

because other question is not quite relevant with this research.

We shared the questionnaire after we showed our application

and asked the user to try it by him/herself. In the questionnaire,

we told them to act as if they have a cloth business and answer

the question based on their role. We got a total of 30

responses for our subjective evaluation.

Fig. 5. N-gram functionality on respondent’s input.

As presented in Fig. 4 out of 30 responses, 76.7%

respondents stated that Business Bot knew their intentions

after they typed something unsolicited by Business Bot. The

questions are about our N-gram and Flexmatcher

functionality in our chatbot, and most of the time our chatbot

knows the respondent’s intention even if they type something

unsolicited. In Fig. 5, out of 30 responses, Business Bot

successfully corrected 90% of the respondents typing errors.

As we can see from the chart, our N-gram works well even

though some errors still occur. In Figure, 6 out of 30

responses, number of letters that were corrected by Business

Bot until it did not fix respondents’ words anymore are: 1

Letter – 13.3%, 2 Letters – 43.3%, 3 Letters – 20%, More

than 3 Letters – 23.3%.

For the discussion, the first one is about the chit-chat

conversation model in the chatbot. Our system has not

understood a chit-chat conversation input like "How are

you?" or "I love you". We have done our research about

chit-chat model, and in the SuperAgent’s paper, they used

seq2seq model trained on twitter conversation.

Fig. 6. N-gram and Flexmatcher error on respondent’s input.

They selected 5 million most frequent non-duplicate short

replies as the permitted response set. Most of which are

greetings and common replies. To understand that kind of

input, they need to have some deep learning technique, which

we cannot perform it yet because our application database and

capability is limited.

For our further improvement, we will try to implement deep

learning for our chatbot. Chit-chat conversation model is a

crucial point in every chatbot, because it makes the bot more

human- like.

The second one, is an opinion oriented based model in the

chatbot. Our chatbot does not understand an opinion-oriented

input like "What do you think of this report?". Our chatbot is

limited to only understand the intent of the users, because to

understand opinion-oriented input, the chatbot needs to

review rich information for different aspects of the report

from the user’s perspective.

SuperAgent's use hybrid approach method to extract the

aspects from review sentences, and sentiment classifier to

determine the polarity of the sentence regarding the specific

aspect mentioned. We think opinion oriented based input is

important for our chatbot, so the bot can give any advice or a

good suggestion to the users. In conclusion, both of those

points are important to achieve. However, due to our

limitation in platform and databases, we cannot perform those

two models.

V. CONCLUSIONS AND SUGGESTIONS

Our research tried to do a new approach to chatbot by

implementing machine learning and n-gram library. For

N-gram, the summaries are, every time the user types

something, our bot will automatically have an N-gram score.

Our threshold for N-gram model is 0.25, if the score is above

0.25, the bot will be able to correct the typographical error

and if the score is less than 0.25 the bot will not be able to

correct the typographical error. N-gram score in every

keyword is not balanced, because sometimes if we expect ten

or more than ten letters in a word, the N-gram model will

correct more than three miss types. It is weird, because if the

users do more than three miss types, the input would be so

different than the keyword that we expect.

There is a menu that expects “Tambah Bahan” (add

material) keyword, but if the user type “Tenbah Bihan”, the

bot will correct the typographical error, because the score is

more than 0.25.

The accuracy for one typographical error is 100%, two

typos are 76%, and three typos are 41%.

By using machine learning, specifically the schema

matching technique, our chatbot can understand the users’

intent. We use top five of our users’ input to count precision,

recall, and F1 score. Given the keywords in our system is X,

the top five inputs are : “minta X dong”(give me X please), “X

please”(X please), “tampilkan X”(show me X), “permisi,

tolong tunjukkan X”(excuse me, please show X), “halo,

tampilkan X dong”(hello, show X please) The precision for

our five top most asked question is averaging at 97%, 97% for

recall, and 98 % for the F1 score. But the bot will not be able

to understand something that is not trained yet. The user

interface is modified to help Small Medium Enterprises

owners to help their business report. Our chatbot does not

understand chit-chat and opinion-oriented input, for example,

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

475

“How are you?” or “Is this good?”.

For the suggestion on this research, we faced a lot of

challenges, starting from the integrate Python with PHP, and

LINE API, imbalance score of N-gram, lack of training data

for the machine learning, and the limitation of our computing

power to implement the deep learning. Some suggestions that

we can give to future researchers are:

1. To make the N-gram score to be balanced, we suggest to

set a different threshold for every keyword. The score

would be more balanced, and it will be able to correct

the typo properly.

2. To further improve the performance of the machine

learning, every users’ input needs to be automatically

trained every time the user input something. For now, we

train the data manually from our error log.

Other thing that we learn is to make sure that the bot should

have understood chit-chat and opinion-oriented model. The

next researcher can use word embedding technique, which

requires deep learning and good computing power to develop

it. The bigger the training data, the bigger the required

computing power the model will need, so make sure to

consider the computing power that you have, and maybe

renting a cloud computing is a good idea to run a big training

data like word embedding model or generative model. We

thought of this because chit-chat and opinion-oriented model

make the bot more human-like.

REFERENCES

[1] S. A. Abdul-Kader and J. Woods, “Survey on chatbot design

techniques in speech conversation systems,” International Journal on

Advanced Computer Science and Applications, vol. 6, no. 7, 2015.

[2] B. A. Shawar and E. Atwell, “Chatbots: Are they really useful?”

LDV-Forum 2007 – Band, vol. 22, no. 1, pp. 29-49.

[3] Z. Bhatti, I. A. Ismaili, A. A. Shaikh, and W. Javaid, “Spelling error

trends and patterns in Sindhi,” Journal of Emerging Trends in

Computing and Information Sciences, vol. 3, no.10, 2012.

[4] B. Jansen and A. Spink, “Determining the user intent of web search

engine queries,” WWW, Banff, Alberta, Canada, May 8-12, 2007.

[5] K. Hornik, P. Mair, and C. Buchta, “The textcat package for n-gram

based text categorizatiton in R,” Journal of Statistic Software, vol. 52,

no. 6, 2013.

[6] T. Saito and M. Rehmsmeier, “The precision-recall plot is more

informative than the ROC plot when evaluating binary classifiers on

imbalanced datasets,” PLoS ONE, vol. 10, no. 3.

[7] L. Egghe, “The measures precision, recall,” UHASSLET, vol. 4, 2008.

[8] L. Cui, S. Huang, F. Wei, C. Tan, C. Duan, and M. Zhou, “SuperAgent:

A Customer service chatbot for e-commerce websites,” in Proc. ACL,

System Demonstrations, 2017, pp. 97-102.

[9] D. Jurafsky and J. Martin, Speech and Language Processing, New

Jersey: Upper Saddle, 2009.

[10] C. Chen, B. Golshan, A. Halevy, W. C. Tan, and A. Doan, “BigGorilla:

An open-source ecosystem for data preparation and integration,”

Bulletin of the IEEE Computer Society Technical Committee on Data

Engineering, pp. 10-22, 2018.

[11] S. B. Imandoust and M. Bolandraftar, “Application of K-nearest

neighbor (KNN) approach for predicting economic events,”

Theoretical Background, 2013.

Mikael L. Tedjopranoto was born in Bekasi,

Indonesia on October 24, 1996. He has completed his

bachelor degree in 2018. He majored in computer

science at Bina Nusantara University.

 He currently works as an assistant channel

development manager at Unilever Indonesia. Previously

he interns as a web developer at Bank Central Asia.

 Mr. Tedjopranoto joined a student organization

called BSSC (BINUS Square Student Committee) for 1 year.

Andreas Wijaya was born in Medan, Indonesia on

November 17, 1996. He has completed his bachelor

degree in 2018. He majored in computer science at Bina

Nusantara University.

He currently works as a full stack developer at a

wellness rewards and gamification platform called Lyfe.

Previously he interns as a Web developer at a

technology consultant called Sintech.

Mr. Wijaya joined a student organization called BSSC (BINUS Square

Student Committee) for 2 years.

Levi Hanny Santoso was born in Jakarta, Indonesia on

October 18, 1996. He has completed his bachelor

degree in 2018. He majored in computer science at

Bina Nusantara University.

 He currently works as a software developer at PT.

Adrena Solusi Insan Muda. Previously, he interns as a

Web developer at PT. Media Bintang Indonesia.

 Mr. Levi joined a student organization called BNCC

(Bina Nusantara Computer Club) for 2 years.

Derwin Suhartono was born in Pekalongan,

Indonesia on January 24, 1988. He has completed his

bachelor in 2009 and master degree in 2012 majoring

in computer science from Bina Nusantara University.

He got his PhD in computer studies from Universitas

Indonesia in 2018.

 He currently serves as the head of Computer

Science Program, Bina Nusantara University.

Previously, he played as a coordinator of intelligent systems field in the

faculty. He has published around 35 international publications, 11 national

publications, and 1 book entitled “Artificial Intelligence: Konsep dan

Penerapannya”. His interest is in natural language processing, machine

learning and applied artificial intelligence.

 Dr. Suhartono actively involves in INACL (Indonesia Association of

Computational Linguistics). He takes a role as reviewer in several

international conferences and journals.

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

476

