
  

  

Abstract—Purpose of this research is to make chatbot based 

system to help Small and Medium Enterprise business. Initially, 

we build this application only to help Small and Medium 

Enterprise owner to monitor their business and report. Yet, we 

realize that we can make our chatbot to be more effective and 

efficient using machine learning technique. N-gram and machine 

learning using schema matching are embedded to the chatbot to 

understand user intention and correct typographical error 

inside the sentences. Finally, the chatbot has been successfully 

achieved those objectives. It can be concluded that the chatbot 

can drive the users’ feeling to be more convenient and help Small 

and Medium Enterprise owner to monitor their business. 

 
Index Terms—Chatbot, n-gram, machine learning, schema 

matching, typographical error, user intention.  

 

I. INTRODUCTION 

There are no doubts that the digital era is developing 

quickly, with different platform reaching the users such as 

social media, email, and websites. We have a lot of ways of 

communication, the process of sending messages to become 

more and more interactive than it used to be. In the last few 

years, digital communication was about social media and 

information technology is influencing everything. 

In the recent years, several emerging issues are posing 

serious challenges to the small and medium-sized enterprises 

(SME's). These enterprises enter the new era, and one 

challenge that worth to be addressed is globalization. Small 

medium enterprises also need to adapt to globalization, one 

way to do that is to digitalize their business with information 

technology. 

As we can see, the role of IT is very big in small medium 

enterprises, 45% said that it is a necessary cost, the other 35% 

said that it is an enabler of business efficiency and the rest said 

it is a driver of competitive advantage or differentiation. In 

this research, we want to propose chatbot as a tool to help 

small medium enterprises in Indonesia. Chatbot is a computer 

program that has the ability to hold a conversation with a 

human using Natural Language Speech [1]. Basically, chatbot 

has an ability to send text messages and it feels like a human 

who sends it.  These days people might be using these daily 

needs, for example, Siri and Cortana are intelligent personal 
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assistants in the form of chatbot by Apple and Windows [2]. 

Using chatbot, people can easily send any information to their 

customers by creating some defined conversations. So, 

chatbots can be so convenient and easy to use. 

The problem that business owner faced these days, is they 

need to come to their store to check their income, employees, 

and their stock. With chatbot, those things are not necessary 

anymore, business owner only needs to send a message to 

Business Bot, to do all of those things. 

Chatbot is our future, however, people in Indonesia is not 

used to asking questions or do their daily basis using chatbot. 

Our idea is to introduce or SME (Small Medium Enterprise) 

to chatbot, so they can manage their business as easy as 

sending a chat message.  

To make it more convenient and easy to use, we will 

attempt to develop a chatbot using machine learning. Machine 

learning is a subfield of Artificial Intelligence that gives the 

machine the capabilities to learn from data. Using machine 

learning algorithm, we aim to produce a model that will 

correct the typo of users and understand user’s intent without 

typing the exact keyword.Typo itself is, Typing errors occurs 

when the typist or the author knows the actual and correct 

spelling of the word but mistakenly or by slip of finger presses 

an invalid key [3]. User intent is the identification and 

categorization of what a user intended or wanted when they 

typed their search terms [4]. To correct the typo, we will use 

N-gram technique. An N-gram is an N-character slice of a 

longer string, N-gram-based matching has had some success 

in dealing with ASCII. If we count N-grams that are common 

to two strings, we get a measure of their similarity that is 

resistant to a wide variety of textual errors [5]. In our system, 

we use N-grams of several different lengths simultaneously 

and compare the results of the N-gram to correct the typo. The 

user will have chatting experience such that it looks like doing 

chat with real person.  

Based on the introduction, we identify some problems, 

does this application help owner of Small Medium Enterprise? 

does the user feel more convenient with our application using 

Artificial Intelligence technique? are the evaluations for the 

technique good enough to satisfy the user? We hypothesize 

that by implementing artificial intelligence technique, such as 

N-gram and machine learning will help the chatbot become 

convenient and easy to use. 

The objectives of this research are: (1) to succeed in 

correcting the typo from the user's input based on our pre-set 

keywords, (2) to implement machine learning to define the 

user's intent after the user types something, and (3) to create 

an application that can help Small Medium Enterprises owner 
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retrieves information about their business. The benefits of this 

research are: (1) trained machine learning architecture can be 

used for another similar chatbot, and (2) Small Medium 

Enterprises owner can use this application to monitor their 

business.  
 

 
Fig. 1. SMEs survey of IT services (IDC, 2017). 

 

For objective evaluation, we provide N-gram score table 

for every related keyword and the accuracy of the output. For 

schema matching, we provide top five of our users’ input and 

count the accuracy, precision, recall and F1 score. They are 

calculated based on True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN). True positive is 

number of correctly predicted data as positive values which 

means the value of actual class is “Yes” and the value of 

predicted class is also “Yes”. True negative is number of 

correctly predicted data as negative values which means that 

the value of actual class is “No” and value of predicted class is 

also “No”. False positive is “No” for actual class and “Yes” 

for predicted class. False negative is “Yes” for actual class but 

“No” for predicted class. Accuracy is simply the ratio of 

correctly predicted observations, it is the number of correct 

prediction divided by total number of prediction [6]. Recall is 

the number of retrieved relevant items as a proportion of all 

relevant items. Therefore, recall is a measure of effectiveness 

in retrieving performance and can be viewed as a measure of 

effectiveness in including relevant items in the retrieved set. 

Precision is the number of retrieved relevant items as a 

proportion of the number of retrieved items. Precision is, 

therefore, a measure of purity in retrieval performance, a 

measure of effectiveness in excluding non-relevant items 

from the retrieved set. The F1 score is the weighted average of 

precision and recall. Therefore, this score takes both false 

positives and false negatives into account. It works best if 

false positives and false negatives have similar cost [7].  

This research writing systematics is divided into 5 chapters. 

Chapter 1 explains the background, identification of problems, 

scope of research, uses and objectives of the research, 

research methodology, and writing systematic. Chapter 2 

elaborates several previous related methods that is done by 

other researchers. Chapter 3 describes the explanation on how 

we run our experiments. Research framework is shown here. 

Chapter 4 shows and explains the experiment results, user 

interface, score of N-gram model and result of schema 

matching. Finally, chapter 5 provides conclusion, analysis of 

the previous chapter, and suggestions that will help further 

development of the systems. 

II. METHOD COMPARISON 

SuperAgent is a powerful customer service chatbot 

leveraging large-scale and publicly available e-commerce 

data. Nowadays, large e-commerce websites contain a great 

of in-page product descriptions as well as user-generated 

content, such as Amazon.com, Ebay.com and many others. 

Take an Amazon.com product page as an example, which 

contains detail Product Information (PI), a set of existing 

customer Questions & Answers (QA), as well as sufficient 

Customer Reviews (CR). This crowd-sourcing style of data 

provides appropriate information to feed into chat engines, 

accompanying human support staff to deliver better customer 

service experience when online shopping [8]. 

Fig. 2 shows the system overview of SuperAgent. As the 

figure shows, when the product page is visited, SuperAgent 

crawls the HTML information and scrapes PI+QA+CR data 

from the webpage. Given an input query from a customer, 

different engines are processed in parallel. If one of the 

answers from the first three engines has high confidence, the 

chatbot will return the answer as response. Otherwise, the 

chit-chat engine will generate a reply from the predefined 

permitted response sets. 

 

 
Fig. 2. The system overview of SuperAgent. 

 

SuperAgent uses regression forest model to choose 

between their techniques while our chatbot will automatically 

use between n-gram or schema matching technique after 

knowing the users’ intention. N-gram is “an n-token sequence 

of words” [9]. N-grams originate from the field of 

computational linguistics. Schema matching refers to problem 

of finding similarity between elements of different database 

schemas. Schema matching uses machine learning techniques 

to find the correct equivalence between the input schemas 

[10]. For the training system, we use K-Nearest Neighbor 

(KNN). KNN algorithm is a method for classifying objects 

based on closest training examples in the feature space [11].  

 

III. RESEARCH METHODOLOGY 

We use a simple system for our chatbot, we set a certain 

keyword to let users proceed to another state by typing the 

keywords. The keywords are set according to the user’s state, 

category, and intent value. To check the intention, category, 

and state of a user, our system will connect to the database 

where all information of users and data related to the business 

are stored. If our system detected a new user, the system will 

add new user information in the database with zero intention 

value, null category value, and zero as state value. All data 

that business bot shows is provided by the database, which is 

the data from the cashier machine or manually input. Detail of 

business bot method is shown in Fig. 3. 
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Fig. 3. Business bot method. 

 

Upon receiving an input which is in form of a text sent by a 

user through LINE, our system will check whether the user’s 

intent value is 0 or 1, depends on the input that already settled. 

If a user’s intent value is 1, the input will run in n-gram engine. 

Otherwise, the input will run in the schema matching package 

engine called Flexmatcher. We use machine learning 

technique inside Flexmatcher with KNN Algorithm. The 

details inside n-gram and schema matching will be mentioned 

further later in this chapter. If the users’ intention is 

recognized, our system will update the users’ information 

according to their intention.  

For n-gram, our system will constantly check a user’s 

information on the database every time the user sends a 

message to the chatbot. N-gram will run if the value of the 

user’s intent value is 1. Our system will use trigram (n-gram 

with n=3) to calculate the similarity between the keywords 

and user’s input. The first step of the N-gram engine is to 

receive the input, state, and category. Then, N-gram engine 

will validate the state and category. After validating state and 

category, certain keywords are chosen to be compared with 

the input for example: 

1. State: 1; Category: Laporan, keywords that will be 

compared are: “pemasukan” (income), “pengeluaran” 

(outcome), “report”, and “tambah pemasukan” (add 

income). 

2. State: 1; Category: List, keywords that will be compared 

are: “stok” (stock), “pemasok” (supplier), “pelanggan” 

(customer), “bahan” (material), “tambah stok” (add 

stock), “tambah pemasok” (add supplier), “tambah 

pelanggan” (add customer), and “tambah bahan” (add 

material). 

3. State: 2, keywords that will be compared are: “bulan” 

(month) and “tanggal” (date). 

After comparing all keywords with the input, n-gram will 

save the highest value. If the value that n-gram saved exceeds 

the threshold that we set which is 0.25, then the system will 

send the keyword back to the system. 

To calculate the N-gram we use the following formula: 

 

( )X Y

X

−                                         (1) 

where X is the total number of distinct n-gram across the two 

strings and Y is the number of characters (duplicate characters 

counted) not shared by the two strings. We set 0.25 as 

threshold because this is the most logical calculation. It will 

correct one letter typographical error in a less than four letters 

word, and two letters typographical error in a word less than 7 

letters. 

Upon sending back a keyword, our system will update the 

user’s state and category in accordance with the keyword. 

If the user’s intent value is 0, schema matching engine will 

be called to process the input data. Schema matching is a 

package in Python which handles the problem of matching 

multiple schemas to a single mediated schema. Before our 

system process the input, there are few things that need to be 

prepared: 

1. Make dummy datasets in an array or more as a 

foundation to train 

For schema matching, we need few words as foundation to 

train for. We will prepare dummy datasets containing 

commands and keywords that will be trained in schema 

matching engine. We will collect the data by group discussion 

about commands and keywords that are related to the business. 

Given multiple dummy datasets listing every command 

related to business, we must set the mediated schema in the 

first array of every dummy datasets.  

2. Set headers and arrange the training datasets 

In this step, we must turn the previous datasets of array into 

tables and fill the first column with the mediated schemas of 

the datasets. The number of tables made is according to the 

amount of the datasets 

3. Specify headers into name classifiers 

The next step is to determine headers of the tables into 

name classifiers. We manually specify every header into the 

name classifiers and inserted into an array variable. Headers 

with the same meaning or category but different words will be 

classified into the same name classifier. The utility of these 

name classifiers is to recognize the input from the prediction 

variable 

4. Create and map the prediction dataset 

After classifying the headers, we will make the prediction 

dataset to predict the intention. The prediction dataset will be 

mapped exactly like the other datasets. Like the other datasets, 

prediction dataset has to be an array. 

5. Combine training data into an array variable 

After the previous step, we combine the training datasets that 

have been converted into tables into an array variable called 

“schema_list”. 

6. Prepare, train, and retrieve the data 

The next step is to prepare the data to train. A schema 

matching package called Flexmatcher will be used to train the 

data. Before training the data, we have to make a variable 

containing the training data, “.train()”, for example: 

 

• data.train() 

where “data” is the training data that was prepared in the 

previous step right before “.train()” is called. After the data is 

trained, we will retrieve the prediction by using 

“make_prediction” command on the mapped prediction table.  

• predicted_mapping = data.make_prediction(data3) 

where “predicted_mapping” is the variable made to contain 

the prediction and “data” is the training data, and “data3” is 

the prediction table. To retrieve the name classifier of the 

prediction, we just have to print “predicted_mapping” array 

of “data3” header. 

• print(predicted_mapping[“kata”]) 

where “kata” is the header of prediction table. The predicted 

name classifier of the header input will be printed after “print” 

is called. 

 

After all these steps, our system can run this schema 

matching engine and retrieve the prediction by sending the 

input text from the user. However, there are few cases that 
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schema matching engine received an unpredictable or 

unrecognized input text. Therefore, we ask our system to save 

the unrecognized input to an error log. Then, our system will 

respond with a message telling the user that it did not 

recognize the input and ask the user to send another input.  

Every unrecognized input text from users will be filtered 

and manually added to training datasets. First, our system 

receives unknown users' input. For example, the user sends 

"income" and our system sends the input to the schema 

matching engine to process the word "income". The engine 

does not understand what that word is and gives an error 

message. The unknown users’ input will automatically be 

stored in error log.  

However, if the engine understands or recognizes that input, 

it will respond with a message and update the user’s state, 

category, and intent. To update user’s information, our system 

will need the prediction from schema matching engine. After 

updating user’s information, our system will push a text 

message to the user according to the user’s current intent, state, 

and category. After proceeding from state to state, there will 

be a time where there are no more state to continue, our 

system will automatically update the user’s information to 

default. Where intent and state values become 0 and category 

becomes NULL. 

 

IV. RESULT AND DISCUSSIONS 

In this chapter, we explore more about what result that we 

got. We use dummy data for our testing, which is suitable for 

clothing business. We attempted to experiment with 2 

different methods: N-gram and Schema Matching. We will 

show the numbers that we got from those experiments. We 

choose N-gram and Schema Matching for this research, 

because of how useful N-gram and Schema Matching for the 

user to experience chatting with another human while using 

the bot. Bahasa (Indonesia language) is used for the whole 

experiment. For each Bahasa mentioned in the examples, we 

provide its English inside the brackets afterwards. 

For the N-gram method, we used N = 3 namely trigram, and 

it was categorized as good if the score was higher than 0.25. 

We use trigram, because it may be identified by the set of the 

characters they contain, and completely ignore the ordering 

information.  

For Schema Matching we use Flexmatcher and pandas as 

our plugin, which include several examples of texts or 

sentences that might be typed by the users also from the 

respondents that already tried to use this bot. Flexmatcher is a 

Schema Matching package in Python which handles the 

problem of matching multiple schemas to a single mediated 

schema.  

We use Flexmatcher to calculate the user’s input value and 

pandas to make a table consisting our array of data using 

pandas data-frame. So, after the bot received the user’s input, 

it can determine what is the user’s “real” intention and then 

place the user in a specific state.  

Table Ipresents the result for correct the typographical 

error. To measure the user intention, we used some of our 

users input as our sample inputs for this result. Table I 

provides the accuracy, precision, recall and f1 score based on 

those sample inputs. We attempted for each input for 5 times. 

 
TABLE I: RESULT FOR N-GRAM 

 
 

TABLE II: AVERAGE AND F1 SCORE FROM SOME OF THE USER’S INPUT 

 
 

 
Fig. 4. Flexmatcher functionality for respondent’s input. 

 

For evaluating user’s satisfaction, we used subjective 

International Journal of Machine Learning and Computing, Vol. 9, No. 4, August 2019

474



  

evaluation. In this case, we use the questionnaire from Google 

Form. We use Google Form because of the simplicity, 

respondent’s familiarity, and how easy to share the 

questionnaire to our targeted individuals. For our targeted 

individuals, we involve university students, store owners, and 

working people. The questionnaire is comprised of 7 

questions about our chatbot, but we will only show 3 of them 

because other question is not quite relevant with this research. 

We shared the questionnaire after we showed our application 

and asked the user to try it by him/herself. In the questionnaire, 

we told them to act as if they have a cloth business and answer 

the question based on their role. We got a total of 30 

responses for our subjective evaluation. 

 

 
Fig. 5. N-gram functionality on respondent’s input. 

 

As presented in Fig. 4 out of 30 responses, 76.7% 

respondents stated that Business Bot knew their intentions 

after they typed something unsolicited by Business Bot. The 

questions are about our N-gram and Flexmatcher 

functionality in our chatbot, and most of the time our chatbot 

knows the respondent’s intention even if they type something 

unsolicited. In Fig. 5, out of 30 responses, Business Bot 

successfully corrected 90% of the respondents typing errors. 

As we can see from the chart, our N-gram works well even 

though some errors still occur. In Figure, 6 out of 30 

responses, number of letters that were corrected by Business 

Bot until it did not fix respondents’ words anymore are: 1 

Letter – 13.3%, 2 Letters – 43.3%, 3 Letters – 20%, More 

than 3 Letters – 23.3%.   

For the discussion, the first one is about the chit-chat 

conversation model in the chatbot. Our system has not 

understood a chit-chat conversation input like "How are 

you?" or "I love you". We have done our research about 

chit-chat model, and in the SuperAgent’s paper, they used 

seq2seq model trained on twitter conversation. 

 

 
Fig. 6. N-gram and Flexmatcher error on respondent’s input. 

 

They selected 5 million most frequent non-duplicate short 

replies as the permitted response set. Most of which are 

greetings and common replies. To understand that kind of 

input, they need to have some deep learning technique, which 

we cannot perform it yet because our application database and 

capability is limited.  

For our further improvement, we will try to implement deep 

learning for our chatbot. Chit-chat conversation model is a 

crucial point in every chatbot, because it makes the bot more 

human- like. 

The second one, is an opinion oriented based model in the 

chatbot. Our chatbot does not understand an opinion-oriented 

input like "What do you think of this report?". Our chatbot is 

limited to only understand the intent of the users, because to 

understand opinion-oriented input, the chatbot needs to 

review rich information for different aspects of the report 

from the user’s perspective. 

SuperAgent's use hybrid approach method to extract the 

aspects from review sentences, and sentiment classifier to 

determine the polarity of the sentence regarding the specific 

aspect mentioned. We think opinion oriented based input is 

important for our chatbot, so the bot can give any advice or a 

good suggestion to the users. In conclusion, both of those 

points are important to achieve. However, due to our 

limitation in platform and databases, we cannot perform those 

two models. 

 

V. CONCLUSIONS AND SUGGESTIONS 

Our research tried to do a new approach to chatbot by 

implementing machine learning and n-gram library. For 

N-gram, the summaries are, every time the user types 

something, our bot will automatically have an N-gram score. 

Our threshold for N-gram model is 0.25, if the score is above 

0.25, the bot will be able to correct the typographical error 

and if the score is less than 0.25 the bot will not be able to 

correct the typographical error. N-gram score in every 

keyword is not balanced, because sometimes if we expect ten 

or more than ten letters in a word, the N-gram model will 

correct more than three miss types. It is weird, because if the 

users do more than three miss types, the input would be so 

different than the keyword that we expect.  

There is a menu that expects “Tambah Bahan” (add 

material) keyword, but if the user type “Tenbah Bihan”, the 

bot will correct the typographical error, because the score is 

more than 0.25. 

The accuracy for one typographical error is 100%, two 

typos are 76%, and three typos are 41%.  

By using machine learning, specifically the schema 

matching technique, our chatbot can understand the users’ 

intent. We use top five of our users’ input to count precision, 

recall, and F1 score. Given the keywords in our system is X, 

the top five inputs are : “minta X dong”(give me X please), “X 

please”(X please), “tampilkan X”(show me X), “permisi, 

tolong tunjukkan X”(excuse me, please show X), “halo, 

tampilkan X dong”(hello, show X please) The precision for 

our five top most asked question is averaging at 97%, 97% for 

recall, and 98 % for the F1 score. But the bot will not be able 

to understand something that is not trained yet. The user 

interface is modified to help Small Medium Enterprises 

owners to help their business report. Our chatbot does not 

understand chit-chat and opinion-oriented input, for example, 
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“How are you?” or “Is this good?”. 

For the suggestion on this research, we faced a lot of 

challenges, starting from the integrate Python with PHP, and 

LINE API, imbalance score of N-gram, lack of training data 

for the machine learning, and the limitation of our computing 

power to implement the deep learning. Some suggestions that 

we can give to future researchers are: 

1. To make the N-gram score to be balanced, we suggest to 

set a different threshold for every keyword. The score 

would be more balanced, and it will be able to correct 

the typo properly. 

2. To further improve the performance of the machine 

learning, every users’ input needs to be automatically 

trained every time the user input something. For now, we 

train the data manually from our error log.   

Other thing that we learn is to make sure that the bot should 

have understood chit-chat and opinion-oriented model. The 

next researcher can use word embedding technique, which 

requires deep learning and good computing power to develop 

it. The bigger the training data, the bigger the required 

computing power the model will need, so make sure to 

consider the computing power that you have, and maybe 

renting a cloud computing is a good idea to run a big training 

data like word embedding model or generative model. We 

thought of this because chit-chat and opinion-oriented model 

make the bot more human-like. 
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